tactic
stringlengths
1
5.59k
name
stringlengths
1
85
haveDraft
stringlengths
1
44.5k
goal
stringlengths
8
62.2k
rw [inter_comm, card_sdiff_comm]
rw
#r = #s
s : Finset β„€ c : β„€ hs : βˆ€ x ∈ s, c ≀ x r : Finset β„€ := Ico c (c + (↑(#s) : β„€)) ⊒ βˆ‘ x ∈ r ∩ s, x + #(r \ s) β€’ (c + (↑(#s) : β„€)) = βˆ‘ x ∈ s ∩ r, x + #(s \ r) β€’ (c + (↑(#s) : β„€))
inter_comm,
this
βˆ‘ x ∈ s ∩ r, x + #(r \ s) β€’ (c + (↑(#s) : β„€)) = βˆ‘ x ∈ s ∩ r, x + #(s \ r) β€’ (c + (↑(#s) : β„€))
s : Finset β„€ c : β„€ hs : βˆ€ x ∈ s, c ≀ x r : Finset β„€ := Ico c (c + (↑(#s) : β„€)) ⊒ βˆ‘ x ∈ r ∩ s, x + #(r \ s) β€’ (c + (↑(#s) : β„€)) = βˆ‘ x ∈ s ∩ r, x + #(s \ r) β€’ (c + (↑(#s) : β„€))
card_sdiff_comm
card_sdiff_comm
βˆ‘ x ∈ s ∩ r, x + #(s \ r) β€’ (c + (↑(#s) : β„€)) = βˆ‘ x ∈ s ∩ r, x + #(s \ r) β€’ (c + (↑(#s) : β„€))
s : Finset β„€ c : β„€ hs : βˆ€ x ∈ s, c ≀ x r : Finset β„€ := Ico c (c + (↑(#s) : β„€)) ⊒ βˆ‘ x ∈ s ∩ r, x + #(r \ s) β€’ (c + (↑(#s) : β„€)) = βˆ‘ x ∈ s ∩ r, x + #(s \ r) β€’ (c + (↑(#s) : β„€))
card_sdiff_comm
card_sdiff_comm
#r = #s
s : Finset β„€ c : β„€ hs : βˆ€ x ∈ s, c ≀ x r : Finset β„€ := Ico c (c + (↑(#s) : β„€)) card_sdiff_comm : βˆ‘ x ∈ s ∩ r, x + #(s \ r) β€’ (c + (↑(#s) : β„€)) = βˆ‘ x ∈ s ∩ r, x + #(s \ r) β€’ (c + (↑(#s) : β„€)) ⊒ βˆ‘ x ∈ s ∩ r, x + #(r \ s) β€’ (c + (↑(#s) : β„€)) = βˆ‘ x ∈ s ∩ r, x + #(s \ r) β€’ (c + (↑(#s) : β„€))
Int.card_Ico,
this
(c + (↑(#s) : β„€) - c).toNat = #s
s : Finset β„€ c : β„€ hs : βˆ€ x ∈ s, c ≀ x r : Finset β„€ := Ico c (c + (↑(#s) : β„€)) ⊒ #r = #s
add_sub_cancel_left,
this
(↑(#s) : β„€).toNat = #s
s : Finset β„€ c : β„€ hs : βˆ€ x ∈ s, c ≀ x r : Finset β„€ := Ico c (c + (↑(#s) : β„€)) ⊒ (c + (↑(#s) : β„€) - c).toNat = #s
Int.toNat_natCast
this
#s = #s
s : Finset β„€ c : β„€ hs : βˆ€ x ∈ s, c ≀ x r : Finset β„€ := Ico c (c + (↑(#s) : β„€)) ⊒ (↑(#s) : β„€).toNat = #s
rw [← sum_inter_add_sum_diff s r _]
rw
βˆ‘ x ∈ s ∩ r, x + #(s \ r) β€’ (c + (↑(#s) : β„€)) ≀ βˆ‘ x ∈ s ∩ r, x + βˆ‘ x ∈ s \ r, x
s : Finset β„€ c : β„€ hs : βˆ€ x ∈ s, c ≀ x r : Finset β„€ := Ico c (c + (↑(#s) : β„€)) ⊒ βˆ‘ x ∈ s ∩ r, x + #(s \ r) β€’ (c + (↑(#s) : β„€)) ≀ βˆ‘ x ∈ s, x
← sum_inter_add_sum_diff s r _
sum_inter_add_sum_diff
βˆ‘ x ∈ s ∩ r, x + #(s \ r) β€’ (c + (↑(#s) : β„€)) ≀ βˆ‘ x ∈ s ∩ r, x + βˆ‘ x ∈ s \ r, x
s : Finset β„€ c : β„€ hs : βˆ€ x ∈ s, c ≀ x r : Finset β„€ := Ico c (c + (↑(#s) : β„€)) ⊒ βˆ‘ x ∈ s ∩ r, x + #(s \ r) β€’ (c + (↑(#s) : β„€)) ≀ βˆ‘ x ∈ s, x
refine add_le_add_left (card_nsmul_le_sum _ _ _ fun x mx ↦ ?_) _
refine
x ∈ s \ r β†’ c + (↑(#s) : β„€) ≀ x
s : Finset β„€ c : β„€ hs : βˆ€ x ∈ s, c ≀ x r : Finset β„€ := Ico c (c + (↑(#s) : β„€)) ⊒ βˆ‘ x ∈ s ∩ r, x + #(s \ r) β€’ (c + (↑(#s) : β„€)) ≀ βˆ‘ x ∈ s ∩ r, x + βˆ‘ x ∈ s \ r, x
rw [mem_sdiff, mem_Ico, not_and] at mx
rw
x ∈ s ∧ (c ≀ x β†’ Β¬x < c + (↑(#s) : β„€))
s : Finset β„€ c : β„€ hs : βˆ€ x ∈ s, c ≀ x r : Finset β„€ := Ico c (c + (↑(#s) : β„€)) x : β„€ mx : x ∈ s \ r ⊒ c + (↑(#s) : β„€) ≀ x
mem_sdiff,
this
x ∈ s ∧ x βˆ‰ r
s : Finset β„€ c : β„€ hs : βˆ€ x ∈ s, c ≀ x r : Finset β„€ := Ico c (c + (↑(#s) : β„€)) x : β„€ mx : x ∈ s \ r ⊒ c + (↑(#s) : β„€) ≀ x
mem_Ico,
this
x ∈ s ∧ Β¬(c ≀ x ∧ x < c + (↑(#s) : β„€))
s : Finset β„€ c : β„€ hs : βˆ€ x ∈ s, c ≀ x r : Finset β„€ := Ico c (c + (↑(#s) : β„€)) x : β„€ mx : x ∈ s ∧ x βˆ‰ r ⊒ c + (↑(#s) : β„€) ≀ x
not_and
not_and
x ∈ s ∧ (c ≀ x β†’ Β¬x < c + (↑(#s) : β„€))
s : Finset β„€ c : β„€ hs : βˆ€ x ∈ s, c ≀ x r : Finset β„€ := Ico c (c + (↑(#s) : β„€)) x : β„€ mx : x ∈ s ∧ Β¬(c ≀ x ∧ x < c + (↑(#s) : β„€)) ⊒ c + (↑(#s) : β„€) ≀ x
have := mx.2 (hs _ mx.1)
have
Β¬x < c + (↑(#s) : β„€)
s : Finset β„€ c : β„€ hs : βˆ€ x ∈ s, c ≀ x r : Finset β„€ := Ico c (c + (↑(#s) : β„€)) x : β„€ mx : x ∈ s ∧ (c ≀ x β†’ Β¬x < c + (↑(#s) : β„€)) ⊒ c + (↑(#s) : β„€) ≀ x
convert sum_Ico_le_sum hs
h
βˆ‘ n ∈ range #s, (c + (↑n : β„€)) = βˆ‘ x ∈ Ico c (c + (↑(#s) : β„€)), x
s : Finset β„€ c : β„€ hs : βˆ€ x ∈ s, c ≀ x ⊒ βˆ‘ n ∈ range #s, (c + (↑n : β„€)) ≀ βˆ‘ x ∈ s, x
refine sum_nbij (c + Β·) ?_ ?_ ?_ (fun _ _ ↦ rfl)
h
βˆ€ a ∈ range #s, (fun x ↦ c + (↑x : β„€)) a ∈ Ico c (c + (↑(#s) : β„€))
s : Finset β„€ c : β„€ hs : βˆ€ x ∈ s, c ≀ x ⊒ βˆ‘ n ∈ range #s, (c + (↑n : β„€)) = βˆ‘ x ∈ Ico c (c + (↑(#s) : β„€)), x
refine sum_nbij (c + Β·) ?_ ?_ ?_ (fun _ _ ↦ rfl)
h
Set.InjOn (fun x ↦ c + (↑x : β„€)) (↑(range #s) : Set β„•)
s : Finset β„€ c : β„€ hs : βˆ€ x ∈ s, c ≀ x h : βˆ€ a ∈ range #s, (fun x ↦ c + (↑x : β„€)) a ∈ Ico c (c + (↑(#s) : β„€)) ⊒ βˆ‘ n ∈ range #s, (c + (↑n : β„€)) = βˆ‘ x ∈ Ico c (c + (↑(#s) : β„€)), x
refine sum_nbij (c + Β·) ?_ ?_ ?_ (fun _ _ ↦ rfl)
h
Set.SurjOn (fun x ↦ c + (↑x : β„€)) (↑(range #s) : Set β„•) (↑(Ico c (c + (↑(#s) : β„€))) : Set β„€)
s : Finset β„€ c : β„€ hs : βˆ€ x ∈ s, c ≀ x h : βˆ€ a ∈ range #s, (fun x ↦ c + (↑x : β„€)) a ∈ Ico c (c + (↑(#s) : β„€)) h₁ : Set.InjOn (fun x ↦ c + (↑x : β„€)) (↑(range #s) : Set β„•) ⊒ βˆ‘ n ∈ range #s, (c + (↑n : β„€)) = βˆ‘ x ∈ Ico c (c + (↑(#s) : β„€)), x
rw [mem_Ico]
h
c ≀ (fun x ↦ c + (↑x : β„€)) x ∧ (fun x ↦ c + (↑x : β„€)) x < c + (↑(#s) : β„€)
s : Finset β„€ c : β„€ hs : βˆ€ x ∈ s, c ≀ x x : β„• mx : x ∈ range #s ⊒ (fun x ↦ c + (↑x : β„€)) x ∈ Ico c (c + (↑(#s) : β„€))
mem_Ico
h
c ≀ (fun x ↦ c + (↑x : β„€)) x ∧ (fun x ↦ c + (↑x : β„€)) x < c + (↑(#s) : β„€)
s : Finset β„€ c : β„€ hs : βˆ€ x ∈ s, c ≀ x x : β„• mx : x ∈ range #s ⊒ (fun x ↦ c + (↑x : β„€)) x ∈ Ico c (c + (↑(#s) : β„€))
rw [mem_range] at mx
h
x < #s
s : Finset β„€ c : β„€ hs : βˆ€ x ∈ s, c ≀ x x : β„• mx : x ∈ range #s ⊒ c ≀ c + (↑x : β„€) ∧ c + (↑x : β„€) < c + (↑(#s) : β„€)
mem_range
h
x < #s
s : Finset β„€ c : β„€ hs : βˆ€ x ∈ s, c ≀ x x : β„• mx : x ∈ range #s ⊒ c ≀ c + (↑x : β„€) ∧ c + (↑x : β„€) < c + (↑(#s) : β„€)
simp_rw [coe_range, Set.mem_image, Set.mem_Iio]
h
βˆƒ x_1 < #s, c + (↑x_1 : β„€) = x
s : Finset β„€ c : β„€ hs : βˆ€ x ∈ s, c ≀ x x : β„€ mx : x ∈ (↑(Ico c (c + (↑(#s) : β„€))) : Set β„€) ⊒ x ∈ (fun x ↦ c + (↑x : β„€)) '' (↑(range #s) : Set β„•)
rw [mem_coe, mem_Ico] at mx
h
c ≀ x ∧ x < c + (↑(#s) : β„€)
s : Finset β„€ c : β„€ hs : βˆ€ x ∈ s, c ≀ x x : β„€ mx : x ∈ (↑(Ico c (c + (↑(#s) : β„€))) : Set β„€) ⊒ βˆƒ x_1 < #s, c + (↑x_1 : β„€) = x
mem_coe,
h
x ∈ Ico c (c + (↑(#s) : β„€))
s : Finset β„€ c : β„€ hs : βˆ€ x ∈ s, c ≀ x x : β„€ mx : x ∈ (↑(Ico c (c + (↑(#s) : β„€))) : Set β„€) ⊒ βˆƒ x_1 < #s, c + (↑x_1 : β„€) = x
mem_Ico
h
c ≀ x ∧ x < c + (↑(#s) : β„€)
s : Finset β„€ c : β„€ hs : βˆ€ x ∈ s, c ≀ x x : β„€ mx : x ∈ Ico c (c + (↑(#s) : β„€)) ⊒ βˆƒ x_1 < #s, c + (↑x_1 : β„€) = x
use (x - c).toNat
h
(x - c).toNat < #s ∧ c + (↑(x - c).toNat : β„€) = x
s : Finset β„€ c : β„€ hs : βˆ€ x ∈ s, c ≀ x x : β„€ mx : c ≀ x ∧ x < c + (↑(#s) : β„€) ⊒ βˆƒ x_1 < #s, c + (↑x_1 : β„€) = x
fapply Limits.PushoutCocone.mk
W
CommRingCat
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B ⊒ PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
fapply Limits.PushoutCocone.mk
inl
of A ⟢ of (A βŠ—[R] B)
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B W : CommRingCat ⊒ PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
fapply Limits.PushoutCocone.mk
inr
of B ⟢ of (A βŠ—[R] B)
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B W : CommRingCat inl : of A ⟢ of (A βŠ—[R] B) ⊒ PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
fapply Limits.PushoutCocone.mk
eq
ofHom (algebraMap R A) ≫ ofHom Algebra.TensorProduct.includeLeftRingHom = ofHom (algebraMap R B) ≫ ofHom Algebra.TensorProduct.includeRight.toRingHom
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B W : CommRingCat inl : of A ⟢ of (A βŠ—[R] B) inr : of B ⟢ of (A βŠ—[R] B) ⊒ PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
ext r
eq
(Hom.hom (ofHom (algebraMap R A) ≫ ofHom Algebra.TensorProduct.includeLeftRingHom) : (↑(of R) : Type u) β†’ (↑(of (A βŠ—[R] B)) : Type u)) r = (Hom.hom (ofHom (algebraMap R B) ≫ ofHom Algebra.TensorProduct.includeRight.toRingHom) : (↑(of R) : Type u) β†’ (↑(of (A βŠ—[R] B)) : Type u)) r
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B ⊒ ofHom (algebraMap R A) ≫ ofHom Algebra.TensorProduct.includeLeftRingHom = ofHom (algebraMap R B) ≫ ofHom Algebra.TensorProduct.includeRight.toRingHom
trans algebraMap R (A βŠ—[R] B) r
trans
(Hom.hom (ofHom (algebraMap R A) ≫ ofHom Algebra.TensorProduct.includeLeftRingHom) : (↑(of R) : Type u) β†’ (↑(of (A βŠ—[R] B)) : Type u)) r = (algebraMap R (A βŠ—[R] B) : R β†’ A βŠ—[R] B) r
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B r : (↑(of R) : Type u) ⊒ (Hom.hom (ofHom (algebraMap R A) ≫ ofHom Algebra.TensorProduct.includeLeftRingHom) : (↑(of R) : Type u) β†’ (↑(of (A βŠ—[R] B)) : Type u)) r = (Hom.hom (ofHom (algebraMap R B) ≫ ofHom Algebra.TensorProduct.includeRight.toRingHom) : (↑(of R) : Type u) β†’ (↑(of (A βŠ—[R] B)) : Type u)) r
trans algebraMap R (A βŠ—[R] B) r
trans
(algebraMap R (A βŠ—[R] B) : R β†’ A βŠ—[R] B) r = (Hom.hom (ofHom (algebraMap R B) ≫ ofHom Algebra.TensorProduct.includeRight.toRingHom) : (↑(of R) : Type u) β†’ (↑(of (A βŠ—[R] B)) : Type u)) r
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B r : (↑(of R) : Type u) trans : (Hom.hom (ofHom (algebraMap R A) ≫ ofHom Algebra.TensorProduct.includeLeftRingHom) : (↑(of R) : Type u) β†’ (↑(of (A βŠ—[R] B)) : Type u)) r = (algebraMap R (A βŠ—[R] B) : R β†’ A βŠ—[R] B) r ⊒ (Hom.hom (ofHom (algebraMap R A) ≫ ofHom Algebra.TensorProduct.includeLeftRingHom) : (↑(of R) : Type u) β†’ (↑(of (A βŠ—[R] B)) : Type u)) r = (Hom.hom (ofHom (algebraMap R B) ≫ ofHom Algebra.TensorProduct.includeRight.toRingHom) : (↑(of R) : Type u) β†’ (↑(of (A βŠ—[R] B)) : Type u)) r
use ofHom (AlgHom.toRingHom (Algebra.TensorProduct.productMap f' g'))
property
(pushoutCocone R A B).inl ≫ ofHom (Algebra.TensorProduct.productMap f' g').toRingHom = s.inl ∧ (pushoutCocone R A B).inr ≫ ofHom (Algebra.TensorProduct.productMap f' g').toRingHom = s.inr ∧ βˆ€ {m : (pushoutCocone R A B).pt ⟢ s.pt}, (pushoutCocone R A B).inl ≫ m = s.inl β†’ (pushoutCocone R A B).inr ≫ m = s.inr β†’ m = ofHom (Algebra.TensorProduct.productMap f' g').toRingHom
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B)) this✝ : Algebra R (↑s.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra f' : A →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inl; { toRingHom := __src, commutes' := β‹― } g' : B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inr; { toRingHom := __src, commutes' := β‹― } this : Algebra R (↑(pushoutCocone R A B).pt : Type u) := let_fun this := inferInstance; this ⊒ { l // (pushoutCocone R A B).inl ≫ l = s.inl ∧ (pushoutCocone R A B).inr ≫ l = s.inr ∧ βˆ€ {m : (pushoutCocone R A B).pt ⟢ s.pt}, (pushoutCocone R A B).inl ≫ m = s.inl β†’ (pushoutCocone R A B).inr ≫ m = s.inr β†’ m = l }
constructor
property
ofHom Algebra.TensorProduct.includeLeftRingHom ≫ ofHom (Algebra.TensorProduct.productMap f' g').toRingHom = s.inl
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B)) this✝ : Algebra R (↑s.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra f' : A →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inl; { toRingHom := __src, commutes' := β‹― } g' : B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inr; { toRingHom := __src, commutes' := β‹― } this : Algebra R (↑(pushoutCocone R A B).pt : Type u) := let_fun this := inferInstance; this ⊒ ofHom Algebra.TensorProduct.includeLeftRingHom ≫ ofHom (Algebra.TensorProduct.productMap f' g').toRingHom = s.inl ∧ ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ ofHom (Algebra.TensorProduct.productMap f' g').toRingHom = s.inr ∧ βˆ€ {m : (pushoutCocone R A B).pt ⟢ s.pt}, ofHom Algebra.TensorProduct.includeLeftRingHom ≫ m = s.inl β†’ ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ m = s.inr β†’ m = ofHom (Algebra.TensorProduct.productMap f' g').toRingHom
constructor
property
ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ ofHom (Algebra.TensorProduct.productMap f' g').toRingHom = s.inr ∧ βˆ€ {m : (pushoutCocone R A B).pt ⟢ s.pt}, ofHom Algebra.TensorProduct.includeLeftRingHom ≫ m = s.inl β†’ ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ m = s.inr β†’ m = ofHom (Algebra.TensorProduct.productMap f' g').toRingHom
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B)) this✝ : Algebra R (↑s.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra f' : A →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inl; { toRingHom := __src, commutes' := β‹― } g' : B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inr; { toRingHom := __src, commutes' := β‹― } this : Algebra R (↑(pushoutCocone R A B).pt : Type u) := let_fun this := inferInstance; this property : ofHom Algebra.TensorProduct.includeLeftRingHom ≫ ofHom (Algebra.TensorProduct.productMap f' g').toRingHom = s.inl ⊒ ofHom Algebra.TensorProduct.includeLeftRingHom ≫ ofHom (Algebra.TensorProduct.productMap f' g').toRingHom = s.inl ∧ ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ ofHom (Algebra.TensorProduct.productMap f' g').toRingHom = s.inr ∧ βˆ€ {m : (pushoutCocone R A B).pt ⟢ s.pt}, ofHom Algebra.TensorProduct.includeLeftRingHom ≫ m = s.inl β†’ ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ m = s.inr β†’ m = ofHom (Algebra.TensorProduct.productMap f' g').toRingHom
ext x
property
(Hom.hom (ofHom Algebra.TensorProduct.includeLeftRingHom ≫ ofHom (Algebra.TensorProduct.productMap f' g').toRingHom) : (↑(of A) : Type u) β†’ (↑s.pt : Type u)) x = (Hom.hom s.inl : (↑(of A) : Type u) β†’ (↑s.pt : Type u)) x
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B)) this✝ : Algebra R (↑s.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra f' : A →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inl; { toRingHom := __src, commutes' := β‹― } g' : B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inr; { toRingHom := __src, commutes' := β‹― } this : Algebra R (↑(pushoutCocone R A B).pt : Type u) := let_fun this := inferInstance; this ⊒ ofHom Algebra.TensorProduct.includeLeftRingHom ≫ ofHom (Algebra.TensorProduct.productMap f' g').toRingHom = s.inl
constructor
property
ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ ofHom (Algebra.TensorProduct.productMap f' g').toRingHom = s.inr
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B)) this✝ : Algebra R (↑s.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra f' : A →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inl; { toRingHom := __src, commutes' := β‹― } g' : B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inr; { toRingHom := __src, commutes' := β‹― } this : Algebra R (↑(pushoutCocone R A B).pt : Type u) := let_fun this := inferInstance; this ⊒ ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ ofHom (Algebra.TensorProduct.productMap f' g').toRingHom = s.inr ∧ βˆ€ {m : (pushoutCocone R A B).pt ⟢ s.pt}, ofHom Algebra.TensorProduct.includeLeftRingHom ≫ m = s.inl β†’ ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ m = s.inr β†’ m = ofHom (Algebra.TensorProduct.productMap f' g').toRingHom
constructor
property
βˆ€ {m : (pushoutCocone R A B).pt ⟢ s.pt}, ofHom Algebra.TensorProduct.includeLeftRingHom ≫ m = s.inl β†’ ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ m = s.inr β†’ m = ofHom (Algebra.TensorProduct.productMap f' g').toRingHom
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B)) this✝ : Algebra R (↑s.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra f' : A →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inl; { toRingHom := __src, commutes' := β‹― } g' : B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inr; { toRingHom := __src, commutes' := β‹― } this : Algebra R (↑(pushoutCocone R A B).pt : Type u) := let_fun this := inferInstance; this property : ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ ofHom (Algebra.TensorProduct.productMap f' g').toRingHom = s.inr ⊒ ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ ofHom (Algebra.TensorProduct.productMap f' g').toRingHom = s.inr ∧ βˆ€ {m : (pushoutCocone R A B).pt ⟢ s.pt}, ofHom Algebra.TensorProduct.includeLeftRingHom ≫ m = s.inl β†’ ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ m = s.inr β†’ m = ofHom (Algebra.TensorProduct.productMap f' g').toRingHom
ext x
property
(Hom.hom (ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ ofHom (Algebra.TensorProduct.productMap f' g').toRingHom) : (↑(of B) : Type u) β†’ (↑s.pt : Type u)) x = (Hom.hom s.inr : (↑(of B) : Type u) β†’ (↑s.pt : Type u)) x
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B)) this✝ : Algebra R (↑s.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra f' : A →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inl; { toRingHom := __src, commutes' := β‹― } g' : B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inr; { toRingHom := __src, commutes' := β‹― } this : Algebra R (↑(pushoutCocone R A B).pt : Type u) := let_fun this := inferInstance; this ⊒ ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ ofHom (Algebra.TensorProduct.productMap f' g').toRingHom = s.inr
change h (algebraMap R A r βŠ—β‚œ[R] 1) = s.inl (algebraMap R A r)
change
(ConcreteCategory.hom h : (↑(pushoutCocone R A B).pt : Type u) β†’ (↑s.pt : Type u)) ((algebraMap R A : R β†’ A) r βŠ—β‚œ[R] 1) = (ConcreteCategory.hom s.inl : (↑(of A) : Type u) β†’ (↑s.pt : Type u)) ((algebraMap R A : R β†’ A) r)
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B)) this✝ : Algebra R (↑s.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra f' : A →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inl; { toRingHom := __src, commutes' := β‹― } g' : B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inr; { toRingHom := __src, commutes' := β‹― } this : Algebra R (↑(pushoutCocone R A B).pt : Type u) := let_fun this := inferInstance; this h : (pushoutCocone R A B).pt ⟢ s.pt eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom ≫ h = s.inl eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ h = s.inr r : R ⊒ (↑(↑(Hom.hom h) : (↑(pushoutCocone R A B).pt : Type u) β†’* (↑s.pt : Type u)) : OneHom (↑(pushoutCocone R A B).pt : Type u) (↑s.pt : Type u)).toFun ((algebraMap R (A βŠ—[R] B) : R β†’ A βŠ—[R] B) r) = (algebraMap R (↑s.pt : Type u) : R β†’ (↑s.pt : Type u)) r
rw [← eq1]
rw
(ConcreteCategory.hom h : (↑(pushoutCocone R A B).pt : Type u) β†’ (↑s.pt : Type u)) ((algebraMap R A : R β†’ A) r βŠ—β‚œ[R] 1) = (ConcreteCategory.hom (ofHom Algebra.TensorProduct.includeLeftRingHom ≫ h) : (↑(of A) : Type u) β†’ (↑s.pt : Type u)) ((algebraMap R A : R β†’ A) r)
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B)) this✝ : Algebra R (↑s.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra f' : A →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inl; { toRingHom := __src, commutes' := β‹― } g' : B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inr; { toRingHom := __src, commutes' := β‹― } this : Algebra R (↑(pushoutCocone R A B).pt : Type u) := let_fun this := inferInstance; this h : (pushoutCocone R A B).pt ⟢ s.pt eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom ≫ h = s.inl eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ h = s.inr r : R ⊒ (ConcreteCategory.hom h : (↑(pushoutCocone R A B).pt : Type u) β†’ (↑s.pt : Type u)) ((algebraMap R A : R β†’ A) r βŠ—β‚œ[R] 1) = (ConcreteCategory.hom s.inl : (↑(of A) : Type u) β†’ (↑s.pt : Type u)) ((algebraMap R A : R β†’ A) r)
← eq1
eq1
(ConcreteCategory.hom h : (↑(pushoutCocone R A B).pt : Type u) β†’ (↑s.pt : Type u)) ((algebraMap R A : R β†’ A) r βŠ—β‚œ[R] 1) = (ConcreteCategory.hom (ofHom Algebra.TensorProduct.includeLeftRingHom ≫ h) : (↑(of A) : Type u) β†’ (↑s.pt : Type u)) ((algebraMap R A : R β†’ A) r)
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B)) this✝ : Algebra R (↑s.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra f' : A →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inl; { toRingHom := __src, commutes' := β‹― } g' : B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inr; { toRingHom := __src, commutes' := β‹― } this : Algebra R (↑(pushoutCocone R A B).pt : Type u) := let_fun this := inferInstance; this h : (pushoutCocone R A B).pt ⟢ s.pt eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom ≫ h = s.inl eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ h = s.inr r : R ⊒ (ConcreteCategory.hom h : (↑(pushoutCocone R A B).pt : Type u) β†’ (↑s.pt : Type u)) ((algebraMap R A : R β†’ A) r βŠ—β‚œ[R] 1) = (ConcreteCategory.hom s.inl : (↑(of A) : Type u) β†’ (↑s.pt : Type u)) ((algebraMap R A : R β†’ A) r)
simp only [pushoutCocone_pt, coe_of, AlgHom.toRingHom_eq_coe]
simp
(ConcreteCategory.hom h : A βŠ—[R] B β†’ (↑s.pt : Type u)) ((algebraMap R A : R β†’ A) r βŠ—β‚œ[R] 1) = (ConcreteCategory.hom (ofHom Algebra.TensorProduct.includeLeftRingHom ≫ h) : A β†’ (↑s.pt : Type u)) ((algebraMap R A : R β†’ A) r)
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B)) this✝ : Algebra R (↑s.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra f' : A →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inl; { toRingHom := __src, commutes' := β‹― } g' : B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inr; { toRingHom := __src, commutes' := β‹― } this : Algebra R (↑(pushoutCocone R A B).pt : Type u) := let_fun this := inferInstance; this h : (pushoutCocone R A B).pt ⟢ s.pt eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom ≫ h = s.inl eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ h = s.inr r : R ⊒ (ConcreteCategory.hom h : (↑(pushoutCocone R A B).pt : Type u) β†’ (↑s.pt : Type u)) ((algebraMap R A : R β†’ A) r βŠ—β‚œ[R] 1) = (ConcreteCategory.hom (ofHom Algebra.TensorProduct.includeLeftRingHom ≫ h) : (↑(of A) : Type u) β†’ (↑s.pt : Type u)) ((algebraMap R A : R β†’ A) r)
suffices h' = Algebra.TensorProduct.productMap f' g' by ext x change h' x = Algebra.TensorProduct.productMap f' g' x rw [this]
property
h' = Algebra.TensorProduct.productMap f' g'
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B)) this✝ : Algebra R (↑s.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra f' : A →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inl; { toRingHom := __src, commutes' := β‹― } g' : B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inr; { toRingHom := __src, commutes' := β‹― } this : Algebra R (↑(pushoutCocone R A B).pt : Type u) := let_fun this := inferInstance; this h : (pushoutCocone R A B).pt ⟢ s.pt eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom ≫ h = s.inl eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ h = s.inr h' : A βŠ—[R] B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom h; { toRingHom := __src, commutes' := β‹― } ⊒ h = ofHom (Algebra.TensorProduct.productMap f' g').toRingHom
ext x
hf
(Hom.hom h : (↑(pushoutCocone R A B).pt : Type u) β†’ (↑s.pt : Type u)) x = (Hom.hom (ofHom (Algebra.TensorProduct.productMap f' g').toRingHom) : (↑(pushoutCocone R A B).pt : Type u) β†’ (↑s.pt : Type u)) x
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B)) this✝¹ : Algebra R (↑s.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra f' : A →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inl; { toRingHom := __src, commutes' := β‹― } g' : B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inr; { toRingHom := __src, commutes' := β‹― } this✝ : Algebra R (↑(pushoutCocone R A B).pt : Type u) := let_fun this := inferInstance; this h : (pushoutCocone R A B).pt ⟢ s.pt eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom ≫ h = s.inl eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ h = s.inr h' : A βŠ—[R] B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom h; { toRingHom := __src, commutes' := β‹― } this : h' = Algebra.TensorProduct.productMap f' g' ⊒ h = ofHom (Algebra.TensorProduct.productMap f' g').toRingHom
change h' x = Algebra.TensorProduct.productMap f' g' x
hf
(h' : A βŠ—[R] B β†’ (↑s.pt : Type u)) x = (Algebra.TensorProduct.productMap f' g' : A βŠ—[R] B β†’ (↑s.pt : Type u)) x
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B)) this✝¹ : Algebra R (↑s.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra f' : A →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inl; { toRingHom := __src, commutes' := β‹― } g' : B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inr; { toRingHom := __src, commutes' := β‹― } this✝ : Algebra R (↑(pushoutCocone R A B).pt : Type u) := let_fun this := inferInstance; this h : (pushoutCocone R A B).pt ⟢ s.pt eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom ≫ h = s.inl eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ h = s.inr h' : A βŠ—[R] B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom h; { toRingHom := __src, commutes' := β‹― } this : h' = Algebra.TensorProduct.productMap f' g' x : (↑(pushoutCocone R A B).pt : Type u) ⊒ (Hom.hom h : (↑(pushoutCocone R A B).pt : Type u) β†’ (↑s.pt : Type u)) x = (Hom.hom (ofHom (Algebra.TensorProduct.productMap f' g').toRingHom) : (↑(pushoutCocone R A B).pt : Type u) β†’ (↑s.pt : Type u)) x
this
hf
(Algebra.TensorProduct.productMap f' g' : A βŠ—[R] B β†’ (↑s.pt : Type u)) x = (Algebra.TensorProduct.productMap f' g' : A βŠ—[R] B β†’ (↑s.pt : Type u)) x
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B)) this✝¹ : Algebra R (↑s.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra f' : A →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inl; { toRingHom := __src, commutes' := β‹― } g' : B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inr; { toRingHom := __src, commutes' := β‹― } this✝ : Algebra R (↑(pushoutCocone R A B).pt : Type u) := let_fun this := inferInstance; this h : (pushoutCocone R A B).pt ⟢ s.pt eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom ≫ h = s.inl eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ h = s.inr h' : A βŠ—[R] B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom h; { toRingHom := __src, commutes' := β‹― } this : h' = Algebra.TensorProduct.productMap f' g' x : (↑(pushoutCocone R A B).pt : Type u) ⊒ (h' : A βŠ—[R] B β†’ (↑s.pt : Type u)) x = (Algebra.TensorProduct.productMap f' g' : A βŠ—[R] B β†’ (↑s.pt : Type u)) x
apply Algebra.TensorProduct.ext'
property
βˆ€ (a : A) (b : B), (h' : A βŠ—[R] B β†’ (↑s.pt : Type u)) (a βŠ—β‚œ[R] b) = (Algebra.TensorProduct.productMap f' g' : A βŠ—[R] B β†’ (↑s.pt : Type u)) (a βŠ—β‚œ[R] b)
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B)) this✝ : Algebra R (↑s.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra f' : A →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inl; { toRingHom := __src, commutes' := β‹― } g' : B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inr; { toRingHom := __src, commutes' := β‹― } this : Algebra R (↑(pushoutCocone R A B).pt : Type u) := let_fun this := inferInstance; this h : (pushoutCocone R A B).pt ⟢ s.pt eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom ≫ h = s.inl eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ h = s.inr h' : A βŠ—[R] B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom h; { toRingHom := __src, commutes' := β‹― } ⊒ h' = Algebra.TensorProduct.productMap f' g'
simp only [f', g', ← eq1, pushoutCocone_pt, ← eq2, AlgHom.toRingHom_eq_coe, Algebra.TensorProduct.productMap_apply_tmul, AlgHom.coe_mk]
property
(h' : A βŠ—[R] B β†’ (↑s.pt : Type u)) (a βŠ—β‚œ[R] b) = (Hom.hom (ofHom Algebra.TensorProduct.includeLeftRingHom ≫ h) : A β†’ (↑s.pt : Type u)) a * (Hom.hom (ofHom (↑Algebra.TensorProduct.includeRight : B β†’+* A βŠ—[R] B) ≫ h) : B β†’ (↑s.pt : Type u)) b
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B)) this✝ : Algebra R (↑s.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra f' : A →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inl; { toRingHom := __src, commutes' := β‹― } g' : B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inr; { toRingHom := __src, commutes' := β‹― } this : Algebra R (↑(pushoutCocone R A B).pt : Type u) := let_fun this := inferInstance; this h : (pushoutCocone R A B).pt ⟢ s.pt eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom ≫ h = s.inl eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ h = s.inr h' : A βŠ—[R] B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom h; { toRingHom := __src, commutes' := β‹― } a : A b : B ⊒ (h' : A βŠ—[R] B β†’ (↑s.pt : Type u)) (a βŠ—β‚œ[R] b) = (Algebra.TensorProduct.productMap f' g' : A βŠ—[R] B β†’ (↑s.pt : Type u)) (a βŠ—β‚œ[R] b)
change _ = h (a βŠ—β‚œ 1) * h (1 βŠ—β‚œ b)
property
(h' : A βŠ—[R] B β†’ (↑s.pt : Type u)) (a βŠ—β‚œ[R] b) = (ConcreteCategory.hom h : (↑(pushoutCocone R A B).pt : Type u) β†’ (↑s.pt : Type u)) (a βŠ—β‚œ[R] 1) * (ConcreteCategory.hom h : (↑(pushoutCocone R A B).pt : Type u) β†’ (↑s.pt : Type u)) (1 βŠ—β‚œ[R] b)
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B)) this✝ : Algebra R (↑s.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra f' : A →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inl; { toRingHom := __src, commutes' := β‹― } g' : B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inr; { toRingHom := __src, commutes' := β‹― } this : Algebra R (↑(pushoutCocone R A B).pt : Type u) := let_fun this := inferInstance; this h : (pushoutCocone R A B).pt ⟢ s.pt eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom ≫ h = s.inl eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ h = s.inr h' : A βŠ—[R] B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom h; { toRingHom := __src, commutes' := β‹― } a : A b : B ⊒ (h' : A βŠ—[R] B β†’ (↑s.pt : Type u)) (a βŠ—β‚œ[R] b) = (Hom.hom (ofHom Algebra.TensorProduct.includeLeftRingHom ≫ h) : A β†’ (↑s.pt : Type u)) a * (Hom.hom (ofHom (↑Algebra.TensorProduct.includeRight : B β†’+* A βŠ—[R] B) ≫ h) : B β†’ (↑s.pt : Type u)) b
rw [← h.hom.map_mul, Algebra.TensorProduct.tmul_mul_tmul, mul_one, one_mul]
property
(h' : A βŠ—[R] B β†’ (↑s.pt : Type u)) (a βŠ—β‚œ[R] b) = (Hom.hom h : (↑(pushoutCocone R A B).pt : Type u) β†’ (↑s.pt : Type u)) (a βŠ—β‚œ[R] b)
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B)) this✝ : Algebra R (↑s.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra f' : A →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inl; { toRingHom := __src, commutes' := β‹― } g' : B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inr; { toRingHom := __src, commutes' := β‹― } this : Algebra R (↑(pushoutCocone R A B).pt : Type u) := let_fun this := inferInstance; this h : (pushoutCocone R A B).pt ⟢ s.pt eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom ≫ h = s.inl eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ h = s.inr h' : A βŠ—[R] B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom h; { toRingHom := __src, commutes' := β‹― } a : A b : B ⊒ (h' : A βŠ—[R] B β†’ (↑s.pt : Type u)) (a βŠ—β‚œ[R] b) = (ConcreteCategory.hom h : (↑(pushoutCocone R A B).pt : Type u) β†’ (↑s.pt : Type u)) (a βŠ—β‚œ[R] 1) * (ConcreteCategory.hom h : (↑(pushoutCocone R A B).pt : Type u) β†’ (↑s.pt : Type u)) (1 βŠ—β‚œ[R] b)
← h.hom.map_mul,
property
(h' : A βŠ—[R] B β†’ (↑s.pt : Type u)) (a βŠ—β‚œ[R] b) = (Hom.hom h : (↑(pushoutCocone R A B).pt : Type u) β†’ (↑s.pt : Type u)) (a βŠ—β‚œ[R] 1 * 1 βŠ—β‚œ[R] b)
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B)) this✝ : Algebra R (↑s.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra f' : A →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inl; { toRingHom := __src, commutes' := β‹― } g' : B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inr; { toRingHom := __src, commutes' := β‹― } this : Algebra R (↑(pushoutCocone R A B).pt : Type u) := let_fun this := inferInstance; this h : (pushoutCocone R A B).pt ⟢ s.pt eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom ≫ h = s.inl eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ h = s.inr h' : A βŠ—[R] B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom h; { toRingHom := __src, commutes' := β‹― } a : A b : B ⊒ (h' : A βŠ—[R] B β†’ (↑s.pt : Type u)) (a βŠ—β‚œ[R] b) = (ConcreteCategory.hom h : (↑(pushoutCocone R A B).pt : Type u) β†’ (↑s.pt : Type u)) (a βŠ—β‚œ[R] 1) * (ConcreteCategory.hom h : (↑(pushoutCocone R A B).pt : Type u) β†’ (↑s.pt : Type u)) (1 βŠ—β‚œ[R] b)
Algebra.TensorProduct.tmul_mul_tmul,
property
(h' : A βŠ—[R] B β†’ (↑s.pt : Type u)) (a βŠ—β‚œ[R] b) = (Hom.hom h : (↑(pushoutCocone R A B).pt : Type u) β†’ (↑s.pt : Type u)) ((a * 1) βŠ—β‚œ[R] (1 * b))
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B)) this✝ : Algebra R (↑s.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra f' : A →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inl; { toRingHom := __src, commutes' := β‹― } g' : B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inr; { toRingHom := __src, commutes' := β‹― } this : Algebra R (↑(pushoutCocone R A B).pt : Type u) := let_fun this := inferInstance; this h : (pushoutCocone R A B).pt ⟢ s.pt eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom ≫ h = s.inl eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ h = s.inr h' : A βŠ—[R] B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom h; { toRingHom := __src, commutes' := β‹― } a : A b : B ⊒ (h' : A βŠ—[R] B β†’ (↑s.pt : Type u)) (a βŠ—β‚œ[R] b) = (Hom.hom h : (↑(pushoutCocone R A B).pt : Type u) β†’ (↑s.pt : Type u)) (a βŠ—β‚œ[R] 1 * 1 βŠ—β‚œ[R] b)
mul_one,
property
(h' : A βŠ—[R] B β†’ (↑s.pt : Type u)) (a βŠ—β‚œ[R] b) = (Hom.hom h : (↑(pushoutCocone R A B).pt : Type u) β†’ (↑s.pt : Type u)) (a βŠ—β‚œ[R] (1 * b))
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B)) this✝ : Algebra R (↑s.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra f' : A →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inl; { toRingHom := __src, commutes' := β‹― } g' : B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inr; { toRingHom := __src, commutes' := β‹― } this : Algebra R (↑(pushoutCocone R A B).pt : Type u) := let_fun this := inferInstance; this h : (pushoutCocone R A B).pt ⟢ s.pt eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom ≫ h = s.inl eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ h = s.inr h' : A βŠ—[R] B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom h; { toRingHom := __src, commutes' := β‹― } a : A b : B ⊒ (h' : A βŠ—[R] B β†’ (↑s.pt : Type u)) (a βŠ—β‚œ[R] b) = (Hom.hom h : (↑(pushoutCocone R A B).pt : Type u) β†’ (↑s.pt : Type u)) ((a * 1) βŠ—β‚œ[R] (1 * b))
one_mul
property
(h' : A βŠ—[R] B β†’ (↑s.pt : Type u)) (a βŠ—β‚œ[R] b) = (Hom.hom h : (↑(pushoutCocone R A B).pt : Type u) β†’ (↑s.pt : Type u)) (a βŠ—β‚œ[R] b)
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B)) this✝ : Algebra R (↑s.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra f' : A →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inl; { toRingHom := __src, commutes' := β‹― } g' : B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom s.inr; { toRingHom := __src, commutes' := β‹― } this : Algebra R (↑(pushoutCocone R A B).pt : Type u) := let_fun this := inferInstance; this h : (pushoutCocone R A B).pt ⟢ s.pt eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom ≫ h = s.inl eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ h = s.inr h' : A βŠ—[R] B →ₐ[R] (↑s.pt : Type u) := let __src := Hom.hom h; { toRingHom := __src, commutes' := β‹― } a : A b : B ⊒ (h' : A βŠ—[R] B β†’ (↑s.pt : Type u)) (a βŠ—β‚œ[R] b) = (Hom.hom h : (↑(pushoutCocone R A B).pt : Type u) β†’ (↑s.pt : Type u)) (a βŠ—β‚œ[R] (1 * b))
ext
hf
(Hom.hom (ofHom (algebraMap R A) ≫ ofHom Algebra.TensorProduct.includeLeftRingHom) : (↑(of R) : Type u) β†’ (↑(of (A βŠ—[R] B)) : Type u)) x✝ = (Hom.hom (ofHom (algebraMap R B) ≫ ofHom Algebra.TensorProduct.includeRight.toRingHom) : (↑(of R) : Type u) β†’ (↑(of (A βŠ—[R] B)) : Type u)) x✝
R A B : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra R A inst✝ : Algebra R B ⊒ ofHom (algebraMap R A) ≫ ofHom Algebra.TensorProduct.includeLeftRingHom = ofHom (algebraMap R B) ≫ ofHom Algebra.TensorProduct.includeRight.toRingHom
ext
hf
(Hom.hom (ofHom Algebra.TensorProduct.includeLeftRingHom ≫ (Algebra.IsPushout.equiv R S A B).toRingEquiv.toCommRingCatIso.hom) : (↑(of S) : Type u) β†’ (↑(of B) : Type u)) x✝ = (Hom.hom ((Iso.refl (of S)).hom ≫ ofHom (algebraMap S B)) : (↑(of S) : Type u) β†’ (↑(of B) : Type u)) x✝
R S A B : Type u inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing S inst✝⁹ : CommRing A inst✝⁸ : CommRing B inst✝⁷ : Algebra R S inst✝⁢ : Algebra S B inst✝⁡ : Algebra R A inst✝⁴ : Algebra A B inst✝³ : Algebra R B inst✝² : IsScalarTower R A B inst✝¹ : IsScalarTower R S B inst✝ : Algebra.IsPushout R S A B ⊒ ofHom Algebra.TensorProduct.includeLeftRingHom ≫ (Algebra.IsPushout.equiv R S A B).toRingEquiv.toCommRingCatIso.hom = (Iso.refl (of S)).hom ≫ ofHom (algebraMap S B)
ext
hf
(Hom.hom (ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ (Algebra.IsPushout.equiv R S A B).toRingEquiv.toCommRingCatIso.hom) : (↑(of A) : Type u) β†’ (↑(of B) : Type u)) x✝ = (Hom.hom ((Iso.refl (of A)).hom ≫ ofHom (algebraMap A B)) : (↑(of A) : Type u) β†’ (↑(of B) : Type u)) x✝
R S A B : Type u inst✝¹¹ : CommRing R inst✝¹⁰ : CommRing S inst✝⁹ : CommRing A inst✝⁸ : CommRing B inst✝⁷ : Algebra R S inst✝⁢ : Algebra S B inst✝⁡ : Algebra R A inst✝⁴ : Algebra A B inst✝³ : Algebra R B inst✝² : IsScalarTower R A B inst✝¹ : IsScalarTower R S B inst✝ : Algebra.IsPushout R S A B ⊒ ofHom Algebra.TensorProduct.includeRight.toRingHom ≫ (Algebra.IsPushout.equiv R S A B).toRingEquiv.toCommRingCatIso.hom = (Iso.refl (of A)).hom ≫ ofHom (algebraMap A B)
cases j <;> ext a
left
(Hom.hom ((A.coproductCocone B).ΞΉ.app { as := WalkingPair.left } ≫ ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom sorry).toRingHom) : (↑((pair A B).obj { as := WalkingPair.left }) : Type u) β†’ (↑s.pt : Type u)) a = (Hom.hom (s.ΞΉ.app { as := WalkingPair.left }) : (↑((pair A B).obj { as := WalkingPair.left }) : Type u) β†’ (↑s.pt : Type u)) a
A B : CommRingCat s : BinaryCofan A B x✝ : Discrete WalkingPair j : WalkingPair ⊒ (A.coproductCocone B).ΞΉ.app { as := j } ≫ ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β‹―).toRingHom = s.ΞΉ.app { as := j }
cases j <;> ext a
right
(Hom.hom ((A.coproductCocone B).ΞΉ.app { as := WalkingPair.right } ≫ ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom sorry).toRingHom) : (↑((pair A B).obj { as := WalkingPair.right }) : Type u) β†’ (↑s.pt : Type u)) a = (Hom.hom (s.ΞΉ.app { as := WalkingPair.right }) : (↑((pair A B).obj { as := WalkingPair.right }) : Type u) β†’ (↑s.pt : Type u)) a
A B : CommRingCat s : BinaryCofan A B x✝ : Discrete WalkingPair j : WalkingPair left : (Hom.hom ((A.coproductCocone B).ΞΉ.app { as := WalkingPair.left } ≫ ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β‹―).toRingHom) : (↑((pair A B).obj { as := WalkingPair.left }) : Type u) β†’ (↑s.pt : Type u)) _fvar.97312 = (Hom.hom (s.ΞΉ.app { as := WalkingPair.left }) : (↑((pair A B).obj { as := WalkingPair.left }) : Type u) β†’ (↑s.pt : Type u)) _fvar.97312 ⊒ (A.coproductCocone B).ΞΉ.app { as := j } ≫ ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β‹―).toRingHom = s.ΞΉ.app { as := j }
cases j
left
(A.coproductCocone B).ΞΉ.app { as := WalkingPair.left } ≫ ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom sorry).toRingHom = s.ΞΉ.app { as := WalkingPair.left }
A B : CommRingCat s : BinaryCofan A B x✝ : Discrete WalkingPair j : WalkingPair ⊒ (A.coproductCocone B).ΞΉ.app { as := j } ≫ ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β‹―).toRingHom = s.ΞΉ.app { as := j }
cases j
right
(A.coproductCocone B).ΞΉ.app { as := WalkingPair.right } ≫ ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom sorry).toRingHom = s.ΞΉ.app { as := WalkingPair.right }
A B : CommRingCat s : BinaryCofan A B x✝ : Discrete WalkingPair j : WalkingPair left : (A.coproductCocone B).ΞΉ.app { as := WalkingPair.left } ≫ ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β‹―).toRingHom = s.ΞΉ.app { as := WalkingPair.left } ⊒ (A.coproductCocone B).ΞΉ.app { as := j } ≫ ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β‹―).toRingHom = s.ΞΉ.app { as := j }
ext a
left
(Hom.hom ((A.coproductCocone B).ΞΉ.app { as := WalkingPair.left } ≫ ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom sorry).toRingHom) : (↑((pair A B).obj { as := WalkingPair.left }) : Type u) β†’ (↑s.pt : Type u)) a = (Hom.hom (s.ΞΉ.app { as := WalkingPair.left }) : (↑((pair A B).obj { as := WalkingPair.left }) : Type u) β†’ (↑s.pt : Type u)) a
A B : CommRingCat s : BinaryCofan A B x✝ : Discrete WalkingPair ⊒ (A.coproductCocone B).ΞΉ.app { as := WalkingPair.left } ≫ ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β‹―).toRingHom = s.ΞΉ.app { as := WalkingPair.left }
ext a
right
(Hom.hom ((A.coproductCocone B).ΞΉ.app { as := WalkingPair.right } ≫ ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom sorry).toRingHom) : (↑((pair A B).obj { as := WalkingPair.right }) : Type u) β†’ (↑s.pt : Type u)) a = (Hom.hom (s.ΞΉ.app { as := WalkingPair.right }) : (↑((pair A B).obj { as := WalkingPair.right }) : Type u) β†’ (↑s.pt : Type u)) a
A B : CommRingCat s : BinaryCofan A B x✝ : Discrete WalkingPair ⊒ (A.coproductCocone B).ΞΉ.app { as := WalkingPair.right } ≫ ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β‹―).toRingHom = s.ΞΉ.app { as := WalkingPair.right }
apply CommRingCat.hom_ext
_private
{ hom' := m }.hom = Hom.hom (ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom sorry).toRingHom)
A B : CommRingCat s : BinaryCofan A B m : (↑A : Type u) βŠ—[β„€] (↑B : Type u) β†’+* (↑s.pt : Type u) hm : βˆ€ (j : Discrete WalkingPair), (A.coproductCocone B).ΞΉ.app j ≫ { hom' := m } = s.ΞΉ.app j ⊒ { hom' := m } = ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β‹―).toRingHom
apply RingHom.toIntAlgHom_injective
_private
{ hom' := m }.hom.toIntAlgHom = (Hom.hom (ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom sorry).toRingHom)).toIntAlgHom
A B : CommRingCat s : BinaryCofan A B m : (↑A : Type u) βŠ—[β„€] (↑B : Type u) β†’+* (↑s.pt : Type u) hm : βˆ€ (j : Discrete WalkingPair), (A.coproductCocone B).ΞΉ.app j ≫ { hom' := m } = s.ΞΉ.app j ⊒ { hom' := m }.hom = Hom.hom (ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β‹―).toRingHom)
apply Algebra.TensorProduct.liftEquiv.symm.injective
_private
(Algebra.TensorProduct.liftEquiv.symm : ((↑A : Type u) βŠ—[β„€] (↑B : Type u) →ₐ[β„€] (↑s.pt : Type u)) β†’ { fg // βˆ€ (x : (↑A : Type u)) (y : (↑B : Type u)), Commute ((fg.1 : (↑A : Type u) β†’ (↑s.pt : Type u)) x) ((fg.2 : (↑B : Type u) β†’ (↑s.pt : Type u)) y) }) { hom' := m }.hom.toIntAlgHom = (Algebra.TensorProduct.liftEquiv.symm : ((↑A : Type u) βŠ—[β„€] (↑B : Type u) →ₐ[β„€] (↑s.pt : Type u)) β†’ { fg // βˆ€ (x : (↑A : Type u)) (y : (↑B : Type u)), Commute ((fg.1 : (↑A : Type u) β†’ (↑s.pt : Type u)) x) ((fg.2 : (↑B : Type u) β†’ (↑s.pt : Type u)) y) }) (Hom.hom (ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom sorry).toRingHom)).toIntAlgHom
A B : CommRingCat s : BinaryCofan A B m : (↑A : Type u) βŠ—[β„€] (↑B : Type u) β†’+* (↑s.pt : Type u) hm : βˆ€ (j : Discrete WalkingPair), (A.coproductCocone B).ΞΉ.app j ≫ { hom' := m } = s.ΞΉ.app j ⊒ { hom' := m }.hom.toIntAlgHom = (Hom.hom (ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β‹―).toRingHom)).toIntAlgHom
apply Subtype.ext
_private
(↑((Algebra.TensorProduct.liftEquiv.symm : ((↑A : Type u) βŠ—[β„€] (↑B : Type u) →ₐ[β„€] (↑s.pt : Type u)) β†’ { fg // βˆ€ (x : (↑A : Type u)) (y : (↑B : Type u)), Commute ((fg.1 : (↑A : Type u) β†’ (↑s.pt : Type u)) x) ((fg.2 : (↑B : Type u) β†’ (↑s.pt : Type u)) y) }) { hom' := m }.hom.toIntAlgHom) : ((↑A : Type u) →ₐ[β„€] (↑s.pt : Type u)) Γ— ((↑B : Type u) →ₐ[β„€] (↑s.pt : Type u))) = (↑((Algebra.TensorProduct.liftEquiv.symm : ((↑A : Type u) βŠ—[β„€] (↑B : Type u) →ₐ[β„€] (↑s.pt : Type u)) β†’ { fg // βˆ€ (x : (↑A : Type u)) (y : (↑B : Type u)), Commute ((fg.1 : (↑A : Type u) β†’ (↑s.pt : Type u)) x) ((fg.2 : (↑B : Type u) β†’ (↑s.pt : Type u)) y) }) (Hom.hom (ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom sorry).toRingHom)).toIntAlgHom) : ((↑A : Type u) →ₐ[β„€] (↑s.pt : Type u)) Γ— ((↑B : Type u) →ₐ[β„€] (↑s.pt : Type u)))
A B : CommRingCat s : BinaryCofan A B m : (↑A : Type u) βŠ—[β„€] (↑B : Type u) β†’+* (↑s.pt : Type u) hm : βˆ€ (j : Discrete WalkingPair), (A.coproductCocone B).ΞΉ.app j ≫ { hom' := m } = s.ΞΉ.app j ⊒ (Algebra.TensorProduct.liftEquiv.symm : ((↑A : Type u) βŠ—[β„€] (↑B : Type u) →ₐ[β„€] (↑s.pt : Type u)) β†’ { fg // βˆ€ (x : (↑A : Type u)) (y : (↑B : Type u)), Commute ((fg.1 : (↑A : Type u) β†’ (↑s.pt : Type u)) x) ((fg.2 : (↑B : Type u) β†’ (↑s.pt : Type u)) y) }) { hom' := m }.hom.toIntAlgHom = (Algebra.TensorProduct.liftEquiv.symm : ((↑A : Type u) βŠ—[β„€] (↑B : Type u) →ₐ[β„€] (↑s.pt : Type u)) β†’ { fg // βˆ€ (x : (↑A : Type u)) (y : (↑B : Type u)), Commute ((fg.1 : (↑A : Type u) β†’ (↑s.pt : Type u)) x) ((fg.2 : (↑B : Type u) β†’ (↑s.pt : Type u)) y) }) (Hom.hom (ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β‹―).toRingHom)).toIntAlgHom
rw [Algebra.TensorProduct.liftEquiv_symm_apply_coe, Prod.mk.injEq]
_private
{ hom' := m }.hom.toIntAlgHom.comp Algebra.TensorProduct.includeLeft = ((Algebra.TensorProduct.liftEquiv.symm : ((↑A : Type u) βŠ—[β„€] (↑B : Type u) →ₐ[β„€] (↑s.pt : Type u)) β†’ { fg // βˆ€ (x : (↑A : Type u)) (y : (↑B : Type u)), Commute ((fg.1 : (↑A : Type u) β†’ (↑s.pt : Type u)) x) ((fg.2 : (↑B : Type u) β†’ (↑s.pt : Type u)) y) }) (Hom.hom (ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom sorry).toRingHom)).toIntAlgHom).1.1 ∧ (AlgHom.restrictScalars β„€ { hom' := m }.hom.toIntAlgHom).comp Algebra.TensorProduct.includeRight = ((Algebra.TensorProduct.liftEquiv.symm : ((↑A : Type u) βŠ—[β„€] (↑B : Type u) →ₐ[β„€] (↑s.pt : Type u)) β†’ { fg // βˆ€ (x : (↑A : Type u)) (y : (↑B : Type u)), Commute ((fg.1 : (↑A : Type u) β†’ (↑s.pt : Type u)) x) ((fg.2 : (↑B : Type u) β†’ (↑s.pt : Type u)) y) }) (Hom.hom (ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom sorry).toRingHom)).toIntAlgHom).1.2
A B : CommRingCat s : BinaryCofan A B m : (↑A : Type u) βŠ—[β„€] (↑B : Type u) β†’+* (↑s.pt : Type u) hm : βˆ€ (j : Discrete WalkingPair), (A.coproductCocone B).ΞΉ.app j ≫ { hom' := m } = s.ΞΉ.app j ⊒ (↑((Algebra.TensorProduct.liftEquiv.symm : ((↑A : Type u) βŠ—[β„€] (↑B : Type u) →ₐ[β„€] (↑s.pt : Type u)) β†’ { fg // βˆ€ (x : (↑A : Type u)) (y : (↑B : Type u)), Commute ((fg.1 : (↑A : Type u) β†’ (↑s.pt : Type u)) x) ((fg.2 : (↑B : Type u) β†’ (↑s.pt : Type u)) y) }) { hom' := m }.hom.toIntAlgHom) : ((↑A : Type u) →ₐ[β„€] (↑s.pt : Type u)) Γ— ((↑B : Type u) →ₐ[β„€] (↑s.pt : Type u))) = (↑((Algebra.TensorProduct.liftEquiv.symm : ((↑A : Type u) βŠ—[β„€] (↑B : Type u) →ₐ[β„€] (↑s.pt : Type u)) β†’ { fg // βˆ€ (x : (↑A : Type u)) (y : (↑B : Type u)), Commute ((fg.1 : (↑A : Type u) β†’ (↑s.pt : Type u)) x) ((fg.2 : (↑B : Type u) β†’ (↑s.pt : Type u)) y) }) (Hom.hom (ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β‹―).toRingHom)).toIntAlgHom) : ((↑A : Type u) →ₐ[β„€] (↑s.pt : Type u)) Γ— ((↑B : Type u) →ₐ[β„€] (↑s.pt : Type u)))
Prod.mk.injEq
_private
{ hom' := m }.hom.toIntAlgHom.comp Algebra.TensorProduct.includeLeft = ((Algebra.TensorProduct.liftEquiv.symm : ((↑A : Type u) βŠ—[β„€] (↑B : Type u) →ₐ[β„€] (↑s.pt : Type u)) β†’ { fg // βˆ€ (x : (↑A : Type u)) (y : (↑B : Type u)), Commute ((fg.1 : (↑A : Type u) β†’ (↑s.pt : Type u)) x) ((fg.2 : (↑B : Type u) β†’ (↑s.pt : Type u)) y) }) (Hom.hom (ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom sorry).toRingHom)).toIntAlgHom).1.1 ∧ (AlgHom.restrictScalars β„€ { hom' := m }.hom.toIntAlgHom).comp Algebra.TensorProduct.includeRight = ((Algebra.TensorProduct.liftEquiv.symm : ((↑A : Type u) βŠ—[β„€] (↑B : Type u) →ₐ[β„€] (↑s.pt : Type u)) β†’ { fg // βˆ€ (x : (↑A : Type u)) (y : (↑B : Type u)), Commute ((fg.1 : (↑A : Type u) β†’ (↑s.pt : Type u)) x) ((fg.2 : (↑B : Type u) β†’ (↑s.pt : Type u)) y) }) (Hom.hom (ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom sorry).toRingHom)).toIntAlgHom).1.2
A B : CommRingCat s : BinaryCofan A B m : (↑A : Type u) βŠ—[β„€] (↑B : Type u) β†’+* (↑s.pt : Type u) hm : βˆ€ (j : Discrete WalkingPair), (A.coproductCocone B).ΞΉ.app j ≫ { hom' := m } = s.ΞΉ.app j ⊒ ({ hom' := m }.hom.toIntAlgHom.comp Algebra.TensorProduct.includeLeft, (AlgHom.restrictScalars β„€ { hom' := m }.hom.toIntAlgHom).comp Algebra.TensorProduct.includeRight) = (↑((Algebra.TensorProduct.liftEquiv.symm : ((↑A : Type u) βŠ—[β„€] (↑B : Type u) →ₐ[β„€] (↑s.pt : Type u)) β†’ { fg // βˆ€ (x : (↑A : Type u)) (y : (↑B : Type u)), Commute ((fg.1 : (↑A : Type u) β†’ (↑s.pt : Type u)) x) ((fg.2 : (↑B : Type u) β†’ (↑s.pt : Type u)) y) }) (Hom.hom (ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β‹―).toRingHom)).toIntAlgHom) : ((↑A : Type u) →ₐ[β„€] (↑s.pt : Type u)) Γ— ((↑B : Type u) →ₐ[β„€] (↑s.pt : Type u)))
constructor
_private
{ hom' := m }.hom.toIntAlgHom.comp Algebra.TensorProduct.includeLeft = ((Algebra.TensorProduct.liftEquiv.symm : ((↑A : Type u) βŠ—[β„€] (↑B : Type u) →ₐ[β„€] (↑s.pt : Type u)) β†’ { fg // βˆ€ (x : (↑A : Type u)) (y : (↑B : Type u)), Commute ((fg.1 : (↑A : Type u) β†’ (↑s.pt : Type u)) x) ((fg.2 : (↑B : Type u) β†’ (↑s.pt : Type u)) y) }) (Hom.hom (ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom sorry).toRingHom)).toIntAlgHom).1.1
A B : CommRingCat s : BinaryCofan A B m : (↑A : Type u) βŠ—[β„€] (↑B : Type u) β†’+* (↑s.pt : Type u) hm : βˆ€ (j : Discrete WalkingPair), (A.coproductCocone B).ΞΉ.app j ≫ { hom' := m } = s.ΞΉ.app j ⊒ { hom' := m }.hom.toIntAlgHom.comp Algebra.TensorProduct.includeLeft = ((Algebra.TensorProduct.liftEquiv.symm : ((↑A : Type u) βŠ—[β„€] (↑B : Type u) →ₐ[β„€] (↑s.pt : Type u)) β†’ { fg // βˆ€ (x : (↑A : Type u)) (y : (↑B : Type u)), Commute ((fg.1 : (↑A : Type u) β†’ (↑s.pt : Type u)) x) ((fg.2 : (↑B : Type u) β†’ (↑s.pt : Type u)) y) }) (Hom.hom (ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β‹―).toRingHom)).toIntAlgHom).1.1 ∧ (AlgHom.restrictScalars β„€ { hom' := m }.hom.toIntAlgHom).comp Algebra.TensorProduct.includeRight = ((Algebra.TensorProduct.liftEquiv.symm : ((↑A : Type u) βŠ—[β„€] (↑B : Type u) →ₐ[β„€] (↑s.pt : Type u)) β†’ { fg // βˆ€ (x : (↑A : Type u)) (y : (↑B : Type u)), Commute ((fg.1 : (↑A : Type u) β†’ (↑s.pt : Type u)) x) ((fg.2 : (↑B : Type u) β†’ (↑s.pt : Type u)) y) }) (Hom.hom (ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β‹―).toRingHom)).toIntAlgHom).1.2
constructor
_private
(AlgHom.restrictScalars β„€ { hom' := m }.hom.toIntAlgHom).comp Algebra.TensorProduct.includeRight = ((Algebra.TensorProduct.liftEquiv.symm : ((↑A : Type u) βŠ—[β„€] (↑B : Type u) →ₐ[β„€] (↑s.pt : Type u)) β†’ { fg // βˆ€ (x : (↑A : Type u)) (y : (↑B : Type u)), Commute ((fg.1 : (↑A : Type u) β†’ (↑s.pt : Type u)) x) ((fg.2 : (↑B : Type u) β†’ (↑s.pt : Type u)) y) }) (Hom.hom (ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom sorry).toRingHom)).toIntAlgHom).1.2
A B : CommRingCat s : BinaryCofan A B m : (↑A : Type u) βŠ—[β„€] (↑B : Type u) β†’+* (↑s.pt : Type u) hm : βˆ€ (j : Discrete WalkingPair), (A.coproductCocone B).ΞΉ.app j ≫ { hom' := m } = s.ΞΉ.app j _private : { hom' := m }.hom.toIntAlgHom.comp Algebra.TensorProduct.includeLeft = ((Algebra.TensorProduct.liftEquiv.symm : ((↑A : Type u) βŠ—[β„€] (↑B : Type u) →ₐ[β„€] (↑s.pt : Type u)) β†’ { fg // βˆ€ (x : (↑A : Type u)) (y : (↑B : Type u)), Commute ((fg.1 : (↑A : Type u) β†’ (↑s.pt : Type u)) x) ((fg.2 : (↑B : Type u) β†’ (↑s.pt : Type u)) y) }) (Hom.hom (ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β‹―).toRingHom)).toIntAlgHom).1.1 ⊒ { hom' := m }.hom.toIntAlgHom.comp Algebra.TensorProduct.includeLeft = ((Algebra.TensorProduct.liftEquiv.symm : ((↑A : Type u) βŠ—[β„€] (↑B : Type u) →ₐ[β„€] (↑s.pt : Type u)) β†’ { fg // βˆ€ (x : (↑A : Type u)) (y : (↑B : Type u)), Commute ((fg.1 : (↑A : Type u) β†’ (↑s.pt : Type u)) x) ((fg.2 : (↑B : Type u) β†’ (↑s.pt : Type u)) y) }) (Hom.hom (ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β‹―).toRingHom)).toIntAlgHom).1.1 ∧ (AlgHom.restrictScalars β„€ { hom' := m }.hom.toIntAlgHom).comp Algebra.TensorProduct.includeRight = ((Algebra.TensorProduct.liftEquiv.symm : ((↑A : Type u) βŠ—[β„€] (↑B : Type u) →ₐ[β„€] (↑s.pt : Type u)) β†’ { fg // βˆ€ (x : (↑A : Type u)) (y : (↑B : Type u)), Commute ((fg.1 : (↑A : Type u) β†’ (↑s.pt : Type u)) x) ((fg.2 : (↑B : Type u) β†’ (↑s.pt : Type u)) y) }) (Hom.hom (ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β‹―).toRingHom)).toIntAlgHom).1.2
ext a
_private
({ hom' := m }.hom.toIntAlgHom.comp Algebra.TensorProduct.includeLeft : (↑A : Type u) β†’ (↑s.pt : Type u)) a = (((Algebra.TensorProduct.liftEquiv.symm : ((↑A : Type u) βŠ—[β„€] (↑B : Type u) →ₐ[β„€] (↑s.pt : Type u)) β†’ { fg // βˆ€ (x : (↑A : Type u)) (y : (↑B : Type u)), Commute ((fg.1 : (↑A : Type u) β†’ (↑s.pt : Type u)) x) ((fg.2 : (↑B : Type u) β†’ (↑s.pt : Type u)) y) }) (Hom.hom (ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom sorry).toRingHom)).toIntAlgHom).1.1 : (↑A : Type u) β†’ (↑s.pt : Type u)) a
A B : CommRingCat s : BinaryCofan A B m : (↑A : Type u) βŠ—[β„€] (↑B : Type u) β†’+* (↑s.pt : Type u) hm : βˆ€ (j : Discrete WalkingPair), (A.coproductCocone B).ΞΉ.app j ≫ { hom' := m } = s.ΞΉ.app j ⊒ { hom' := m }.hom.toIntAlgHom.comp Algebra.TensorProduct.includeLeft = ((Algebra.TensorProduct.liftEquiv.symm : ((↑A : Type u) βŠ—[β„€] (↑B : Type u) →ₐ[β„€] (↑s.pt : Type u)) β†’ { fg // βˆ€ (x : (↑A : Type u)) (y : (↑B : Type u)), Commute ((fg.1 : (↑A : Type u) β†’ (↑s.pt : Type u)) x) ((fg.2 : (↑B : Type u) β†’ (↑s.pt : Type u)) y) }) (Hom.hom (ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β‹―).toRingHom)).toIntAlgHom).1.1
ext b
_private
((AlgHom.restrictScalars β„€ { hom' := m }.hom.toIntAlgHom).comp Algebra.TensorProduct.includeRight : (↑B : Type u) β†’ (↑s.pt : Type u)) b = (((Algebra.TensorProduct.liftEquiv.symm : ((↑A : Type u) βŠ—[β„€] (↑B : Type u) →ₐ[β„€] (↑s.pt : Type u)) β†’ { fg // βˆ€ (x : (↑A : Type u)) (y : (↑B : Type u)), Commute ((fg.1 : (↑A : Type u) β†’ (↑s.pt : Type u)) x) ((fg.2 : (↑B : Type u) β†’ (↑s.pt : Type u)) y) }) (Hom.hom (ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom sorry).toRingHom)).toIntAlgHom).1.2 : (↑B : Type u) β†’ (↑s.pt : Type u)) b
A B : CommRingCat s : BinaryCofan A B m : (↑A : Type u) βŠ—[β„€] (↑B : Type u) β†’+* (↑s.pt : Type u) hm : βˆ€ (j : Discrete WalkingPair), (A.coproductCocone B).ΞΉ.app j ≫ { hom' := m } = s.ΞΉ.app j ⊒ (AlgHom.restrictScalars β„€ { hom' := m }.hom.toIntAlgHom).comp Algebra.TensorProduct.includeRight = ((Algebra.TensorProduct.liftEquiv.symm : ((↑A : Type u) βŠ—[β„€] (↑B : Type u) →ₐ[β„€] (↑s.pt : Type u)) β†’ { fg // βˆ€ (x : (↑A : Type u)) (y : (↑B : Type u)), Commute ((fg.1 : (↑A : Type u) β†’ (↑s.pt : Type u)) x) ((fg.2 : (↑B : Type u) β†’ (↑s.pt : Type u)) y) }) (Hom.hom (ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β‹―).toRingHom)).toIntAlgHom).1.2
apply hasStrictTerminalObjects_of_terminal_is_strict (CommRingCat.of PUnit)
apply
βˆ€ (A : CommRingCat) (f : of PUnit.{u + 1} ⟢ A), IsIso f
⊒ HasStrictTerminalObjects CommRingCat
refine ⟨ofHom ⟨1, rfl, by simp⟩, ?_, ?_⟩
refine_1
f ≫ ofHom { toMonoidHom := 1, map_zero' := sorry, map_add' := sorry } = πŸ™ (of PUnit.{u + 1})
X : CommRingCat f : of PUnit.{u + 1} ⟢ X ⊒ IsIso f
refine ⟨ofHom ⟨1, rfl, by simp⟩, ?_, ?_⟩
refine_2
ofHom { toMonoidHom := 1, map_zero' := sorry, map_add' := sorry } ≫ f = πŸ™ X
X : CommRingCat f : of PUnit.{u + 1} ⟢ X refine_1 : f ≫ ofHom { toMonoidHom := 1, map_zero' := β‹―, map_add' := β‹― } = πŸ™ (of PUnit.{u + 1}) ⊒ IsIso f
ext x
refine_2
(Hom.hom (ofHom { toMonoidHom := 1, map_zero' := sorry, map_add' := sorry } ≫ f) : (↑X : Type u) β†’ (↑X : Type u)) x = (Hom.hom (πŸ™ X) : (↑X : Type u) β†’ (↑X : Type u)) x
X : CommRingCat f : of PUnit.{u + 1} ⟢ X ⊒ ofHom { toMonoidHom := 1, map_zero' := β‹―, map_add' := β‹― } ≫ f = πŸ™ X
have e : (0 : X) = 1 := by rw [← f.hom.map_one, ← f.hom.map_zero]
refine_2
0 = 1
X : CommRingCat f : of PUnit.{u + 1} ⟢ X x : (↑X : Type u) ⊒ (Hom.hom (ofHom { toMonoidHom := 1, map_zero' := β‹―, map_add' := β‹― } ≫ f) : (↑X : Type u) β†’ (↑X : Type u)) x = (Hom.hom (πŸ™ X) : (↑X : Type u) β†’ (↑X : Type u)) x
← f.hom.map_one,
this
0 = (Hom.hom f : (↑(of PUnit.{u + 1}) : Type u) β†’ (↑X : Type u)) 1
X : CommRingCat f : of PUnit.{u + 1} ⟢ X x : (↑X : Type u) ⊒ 0 = 1
← f.hom.map_zero
this
(Hom.hom f : (↑(of PUnit.{u + 1}) : Type u) β†’ (↑X : Type u)) 0 = (Hom.hom f : (↑(of PUnit.{u + 1}) : Type u) β†’ (↑X : Type u)) 1
X : CommRingCat f : of PUnit.{u + 1} ⟢ X x : (↑X : Type u) ⊒ 0 = (Hom.hom f : (↑(of PUnit.{u + 1}) : Type u) β†’ (↑X : Type u)) 1
replace e : 0 * x = 1 * x := congr_arg (Β· * x) e
refine_2
0 * x = 1 * x
X : CommRingCat f : of PUnit.{u + 1} ⟢ X x : (↑X : Type u) e : 0 = 1 ⊒ (Hom.hom (ofHom { toMonoidHom := 1, map_zero' := β‹―, map_add' := β‹― } ≫ f) : (↑X : Type u) β†’ (↑X : Type u)) x = (Hom.hom (πŸ™ X) : (↑X : Type u) β†’ (↑X : Type u)) x
rw [one_mul, zero_mul, ← f.hom.map_zero] at e
refine_2
(Hom.hom f : (↑(of PUnit.{u + 1}) : Type u) β†’ (↑X : Type u)) 0 = x
X : CommRingCat f : of PUnit.{u + 1} ⟢ X x : (↑X : Type u) e : 0 * x = 1 * x ⊒ (Hom.hom (ofHom { toMonoidHom := 1, map_zero' := β‹―, map_add' := β‹― } ≫ f) : (↑X : Type u) β†’ (↑X : Type u)) x = (Hom.hom (πŸ™ X) : (↑X : Type u) β†’ (↑X : Type u)) x
one_mul,
refine_2
0 * x = x
X : CommRingCat f : of PUnit.{u + 1} ⟢ X x : (↑X : Type u) e : 0 * x = 1 * x ⊒ (Hom.hom (ofHom { toMonoidHom := 1, map_zero' := β‹―, map_add' := β‹― } ≫ f) : (↑X : Type u) β†’ (↑X : Type u)) x = (Hom.hom (πŸ™ X) : (↑X : Type u) β†’ (↑X : Type u)) x
zero_mul,
refine_2
0 = x
X : CommRingCat f : of PUnit.{u + 1} ⟢ X x : (↑X : Type u) e : 0 * x = x ⊒ (Hom.hom (ofHom { toMonoidHom := 1, map_zero' := β‹―, map_add' := β‹― } ≫ f) : (↑X : Type u) β†’ (↑X : Type u)) x = (Hom.hom (πŸ™ X) : (↑X : Type u) β†’ (↑X : Type u)) x
← f.hom.map_zero
refine_2
(Hom.hom f : (↑(of PUnit.{u + 1}) : Type u) β†’ (↑X : Type u)) 0 = x
X : CommRingCat f : of PUnit.{u + 1} ⟢ X x : (↑X : Type u) e : 0 = x ⊒ (Hom.hom (ofHom { toMonoidHom := 1, map_zero' := β‹―, map_add' := β‹― } ≫ f) : (↑X : Type u) β†’ (↑X : Type u)) x = (Hom.hom (πŸ™ X) : (↑X : Type u) β†’ (↑X : Type u)) x
ext : 1
hf
Hom.hom x✝ = Hom.hom default
R : CommRingCat x✝ : of (ULift.{u, 0} β„€) ⟢ R ⊒ x✝ = default
rw [← RingHom.cancel_right (f := (ULift.ringEquiv.{0, u} (R := β„€)).symm.toRingHom) (hf := ULift.ringEquiv.symm.surjective)]
hf
(Hom.hom x✝).comp ULift.ringEquiv.symm.toRingHom = (Hom.hom default).comp ULift.ringEquiv.symm.toRingHom
R : CommRingCat x✝ : of (ULift.{u, 0} β„€) ⟢ R ⊒ Hom.hom x✝ = Hom.hom default
← RingHom.cancel_right (f := (ULift.ringEquiv.{0, u} (R := β„€)).symm.toRingHom) (hf := ULift.ringEquiv.symm.surjective)
hf
(Hom.hom x✝).comp ULift.ringEquiv.symm.toRingHom = (Hom.hom default).comp ULift.ringEquiv.symm.toRingHom
R : CommRingCat x✝ : of (ULift.{u, 0} β„€) ⟢ R ⊒ Hom.hom x✝ = Hom.hom default
ext
hf
(Hom.hom (ofHom ((Hom.hom (c.Ο€.app { as := WalkingPair.left })).prod (Hom.hom (c.Ο€.app { as := WalkingPair.right }))) ≫ (A.prodFan B).Ο€.app j) : (↑c.pt : Type u) β†’ (↑((pair A B).obj j) : Type u)) x✝ = (Hom.hom (c.Ο€.app j) : (↑c.pt : Type u) β†’ (↑((pair A B).obj j) : Type u)) x✝
A B : CommRingCat c : Cone (pair A B) j : Discrete WalkingPair ⊒ ofHom ((Hom.hom (c.Ο€.app { as := WalkingPair.left })).prod (Hom.hom (c.Ο€.app { as := WalkingPair.right }))) ≫ (A.prodFan B).Ο€.app j = c.Ο€.app j
rcases j with ⟨⟨⟩⟩ <;> simp only [pair_obj_left, prodFan_pt, BinaryFan.Ο€_app_left, BinaryFan.Ο€_app_right, FunctorToTypes.map_comp_apply, forget_map, coe_of, RingHom.prod_apply]
hf
(Hom.hom (ofHom ((Hom.hom (BinaryFan.fst c)).prod (Hom.hom (BinaryFan.snd c))) ≫ (A.prodFan B).fst) : (↑c.pt : Type u) β†’ (↑A : Type u)) x✝ = (Hom.hom (BinaryFan.fst c) : (↑c.pt : Type u) β†’ (↑A : Type u)) x✝
A B : CommRingCat c : Cone (pair A B) j : Discrete WalkingPair x✝ : (↑c.pt : Type u) ⊒ (Hom.hom (ofHom ((Hom.hom (c.Ο€.app { as := WalkingPair.left })).prod (Hom.hom (c.Ο€.app { as := WalkingPair.right }))) ≫ (A.prodFan B).Ο€.app j) : (↑c.pt : Type u) β†’ (↑((pair A B).obj j) : Type u)) x✝ = (Hom.hom (c.Ο€.app j) : (↑c.pt : Type u) β†’ (↑((pair A B).obj j) : Type u)) x✝
rcases j with ⟨⟨⟩⟩ <;> simp only [pair_obj_left, prodFan_pt, BinaryFan.Ο€_app_left, BinaryFan.Ο€_app_right, FunctorToTypes.map_comp_apply, forget_map, coe_of, RingHom.prod_apply]
hf
(Hom.hom (ofHom ((Hom.hom (BinaryFan.fst c)).prod (Hom.hom (BinaryFan.snd c))) ≫ (A.prodFan B).snd) : (↑c.pt : Type u) β†’ (↑((pair A B).obj { as := WalkingPair.right }) : Type u)) x✝ = (Hom.hom (BinaryFan.snd c) : (↑c.pt : Type u) β†’ (↑((pair A B).obj { as := WalkingPair.right }) : Type u)) x✝
A B : CommRingCat c : Cone (pair A B) j : Discrete WalkingPair x✝ : (↑c.pt : Type u) hf : (Hom.hom (ofHom ((Hom.hom (BinaryFan.fst c)).prod (Hom.hom (BinaryFan.snd c))) ≫ (A.prodFan B).fst) : (↑c.pt : Type u) β†’ (↑A : Type u)) x✝ = (Hom.hom (BinaryFan.fst c) : (↑c.pt : Type u) β†’ (↑A : Type u)) x✝ ⊒ (Hom.hom (ofHom ((Hom.hom (c.Ο€.app { as := WalkingPair.left })).prod (Hom.hom (c.Ο€.app { as := WalkingPair.right }))) ≫ (A.prodFan B).Ο€.app j) : (↑c.pt : Type u) β†’ (↑((pair A B).obj j) : Type u)) x✝ = (Hom.hom (c.Ο€.app j) : (↑c.pt : Type u) β†’ (↑((pair A B).obj j) : Type u)) x✝
rcases j with ⟨⟨⟩⟩
hf
(Hom.hom (ofHom ((Hom.hom (c.Ο€.app { as := WalkingPair.left })).prod (Hom.hom (c.Ο€.app { as := WalkingPair.right }))) ≫ (A.prodFan B).Ο€.app { as := WalkingPair.left }) : (↑c.pt : Type u) β†’ (↑((pair A B).obj { as := WalkingPair.left }) : Type u)) x✝ = (Hom.hom (c.Ο€.app { as := WalkingPair.left }) : (↑c.pt : Type u) β†’ (↑((pair A B).obj { as := WalkingPair.left }) : Type u)) x✝
A B : CommRingCat c : Cone (pair A B) j : Discrete WalkingPair x✝ : (↑c.pt : Type u) ⊒ (Hom.hom (ofHom ((Hom.hom (c.Ο€.app { as := WalkingPair.left })).prod (Hom.hom (c.Ο€.app { as := WalkingPair.right }))) ≫ (A.prodFan B).Ο€.app j) : (↑c.pt : Type u) β†’ (↑((pair A B).obj j) : Type u)) x✝ = (Hom.hom (c.Ο€.app j) : (↑c.pt : Type u) β†’ (↑((pair A B).obj j) : Type u)) x✝
rcases j with ⟨⟨⟩⟩
hf
(Hom.hom (ofHom ((Hom.hom (c.Ο€.app { as := WalkingPair.left })).prod (Hom.hom (c.Ο€.app { as := WalkingPair.right }))) ≫ (A.prodFan B).Ο€.app { as := WalkingPair.right }) : (↑c.pt : Type u) β†’ (↑((pair A B).obj { as := WalkingPair.right }) : Type u)) x✝ = (Hom.hom (c.Ο€.app { as := WalkingPair.right }) : (↑c.pt : Type u) β†’ (↑((pair A B).obj { as := WalkingPair.right }) : Type u)) x✝
A B : CommRingCat c : Cone (pair A B) j : Discrete WalkingPair x✝ : (↑c.pt : Type u) hf : (Hom.hom (ofHom ((Hom.hom (c.Ο€.app { as := WalkingPair.left })).prod (Hom.hom (c.Ο€.app { as := WalkingPair.right }))) ≫ (A.prodFan B).Ο€.app { as := WalkingPair.left }) : (↑c.pt : Type u) β†’ (↑((pair A B).obj { as := WalkingPair.left }) : Type u)) x✝ = (Hom.hom (c.Ο€.app { as := WalkingPair.left }) : (↑c.pt : Type u) β†’ (↑((pair A B).obj { as := WalkingPair.left }) : Type u)) x✝ ⊒ (Hom.hom (ofHom ((Hom.hom (c.Ο€.app { as := WalkingPair.left })).prod (Hom.hom (c.Ο€.app { as := WalkingPair.right }))) ≫ (A.prodFan B).Ο€.app j) : (↑c.pt : Type u) β†’ (↑((pair A B).obj j) : Type u)) x✝ = (Hom.hom (c.Ο€.app j) : (↑c.pt : Type u) β†’ (↑((pair A B).obj j) : Type u)) x✝
simp only [pair_obj_left, prodFan_pt, BinaryFan.Ο€_app_left, BinaryFan.Ο€_app_right, FunctorToTypes.map_comp_apply, forget_map, coe_of, RingHom.prod_apply]
hf
(Hom.hom (ofHom ((Hom.hom (BinaryFan.fst c)).prod (Hom.hom (BinaryFan.snd c))) ≫ (A.prodFan B).fst) : (↑c.pt : Type u) β†’ (↑A : Type u)) x✝ = (Hom.hom (BinaryFan.fst c) : (↑c.pt : Type u) β†’ (↑A : Type u)) x✝
A B : CommRingCat c : Cone (pair A B) x✝ : (↑c.pt : Type u) ⊒ (Hom.hom (ofHom ((Hom.hom (c.Ο€.app { as := WalkingPair.left })).prod (Hom.hom (c.Ο€.app { as := WalkingPair.right }))) ≫ (A.prodFan B).Ο€.app { as := WalkingPair.left }) : (↑c.pt : Type u) β†’ (↑((pair A B).obj { as := WalkingPair.left }) : Type u)) x✝ = (Hom.hom (c.Ο€.app { as := WalkingPair.left }) : (↑c.pt : Type u) β†’ (↑((pair A B).obj { as := WalkingPair.left }) : Type u)) x✝
simp only [pair_obj_left, prodFan_pt, BinaryFan.Ο€_app_left, BinaryFan.Ο€_app_right, FunctorToTypes.map_comp_apply, forget_map, coe_of, RingHom.prod_apply]
hf
(Hom.hom (ofHom ((Hom.hom (BinaryFan.fst c)).prod (Hom.hom (BinaryFan.snd c))) ≫ (A.prodFan B).snd) : (↑c.pt : Type u) β†’ (↑((pair A B).obj { as := WalkingPair.right }) : Type u)) x✝ = (Hom.hom (BinaryFan.snd c) : (↑c.pt : Type u) β†’ (↑((pair A B).obj { as := WalkingPair.right }) : Type u)) x✝
A B : CommRingCat c : Cone (pair A B) x✝ : (↑c.pt : Type u) ⊒ (Hom.hom (ofHom ((Hom.hom (c.Ο€.app { as := WalkingPair.left })).prod (Hom.hom (c.Ο€.app { as := WalkingPair.right }))) ≫ (A.prodFan B).Ο€.app { as := WalkingPair.right }) : (↑c.pt : Type u) β†’ (↑((pair A B).obj { as := WalkingPair.right }) : Type u)) x✝ = (Hom.hom (c.Ο€.app { as := WalkingPair.right }) : (↑c.pt : Type u) β†’ (↑((pair A B).obj { as := WalkingPair.right }) : Type u)) x✝
ext x
hf
(Hom.hom m : (↑s.pt : Type u) β†’ (↑(A.prodFan B).pt : Type u)) x = (Hom.hom (ofHom ((Hom.hom (s.Ο€.app { as := WalkingPair.left })).prod (Hom.hom (s.Ο€.app { as := WalkingPair.right })))) : (↑s.pt : Type u) β†’ (↑(A.prodFan B).pt : Type u)) x
A B : CommRingCat s : Cone (pair A B) m : s.pt ⟢ (A.prodFan B).pt h : βˆ€ (j : Discrete WalkingPair), m ≫ (A.prodFan B).Ο€.app j = s.Ο€.app j ⊒ m = ofHom ((Hom.hom (s.Ο€.app { as := WalkingPair.left })).prod (Hom.hom (s.Ο€.app { as := WalkingPair.right })))