tactic
stringlengths 1
5.59k
| name
stringlengths 1
85
| haveDraft
stringlengths 1
44.5k
| goal
stringlengths 8
62.2k
|
---|---|---|---|
rw [inter_comm, card_sdiff_comm]
|
rw
|
#r = #s
|
s : Finset β€
c : β€
hs : β x β s, c β€ x
r : Finset β€ := Ico c (c + (β(#s) : β€))
β’ β x β r β© s, x + #(r \ s) β’ (c + (β(#s) : β€)) = β x β s β© r, x + #(s \ r) β’ (c + (β(#s) : β€))
|
inter_comm,
|
this
|
β x β s β© r, x + #(r \ s) β’ (c + (β(#s) : β€)) = β x β s β© r, x + #(s \ r) β’ (c + (β(#s) : β€))
|
s : Finset β€
c : β€
hs : β x β s, c β€ x
r : Finset β€ := Ico c (c + (β(#s) : β€))
β’ β x β r β© s, x + #(r \ s) β’ (c + (β(#s) : β€)) = β x β s β© r, x + #(s \ r) β’ (c + (β(#s) : β€))
|
card_sdiff_comm
|
card_sdiff_comm
|
β x β s β© r, x + #(s \ r) β’ (c + (β(#s) : β€)) = β x β s β© r, x + #(s \ r) β’ (c + (β(#s) : β€))
|
s : Finset β€
c : β€
hs : β x β s, c β€ x
r : Finset β€ := Ico c (c + (β(#s) : β€))
β’ β x β s β© r, x + #(r \ s) β’ (c + (β(#s) : β€)) = β x β s β© r, x + #(s \ r) β’ (c + (β(#s) : β€))
|
card_sdiff_comm
|
card_sdiff_comm
|
#r = #s
|
s : Finset β€
c : β€
hs : β x β s, c β€ x
r : Finset β€ := Ico c (c + (β(#s) : β€))
card_sdiff_comm : β x β s β© r, x + #(s \ r) β’ (c + (β(#s) : β€)) = β x β s β© r, x + #(s \ r) β’ (c + (β(#s) : β€))
β’ β x β s β© r, x + #(r \ s) β’ (c + (β(#s) : β€)) = β x β s β© r, x + #(s \ r) β’ (c + (β(#s) : β€))
|
Int.card_Ico,
|
this
|
(c + (β(#s) : β€) - c).toNat = #s
|
s : Finset β€
c : β€
hs : β x β s, c β€ x
r : Finset β€ := Ico c (c + (β(#s) : β€))
β’ #r = #s
|
add_sub_cancel_left,
|
this
|
(β(#s) : β€).toNat = #s
|
s : Finset β€
c : β€
hs : β x β s, c β€ x
r : Finset β€ := Ico c (c + (β(#s) : β€))
β’ (c + (β(#s) : β€) - c).toNat = #s
|
Int.toNat_natCast
|
this
|
#s = #s
|
s : Finset β€
c : β€
hs : β x β s, c β€ x
r : Finset β€ := Ico c (c + (β(#s) : β€))
β’ (β(#s) : β€).toNat = #s
|
rw [β sum_inter_add_sum_diff s r _]
|
rw
|
β x β s β© r, x + #(s \ r) β’ (c + (β(#s) : β€)) β€ β x β s β© r, x + β x β s \ r, x
|
s : Finset β€
c : β€
hs : β x β s, c β€ x
r : Finset β€ := Ico c (c + (β(#s) : β€))
β’ β x β s β© r, x + #(s \ r) β’ (c + (β(#s) : β€)) β€ β x β s, x
|
β sum_inter_add_sum_diff s r _
|
sum_inter_add_sum_diff
|
β x β s β© r, x + #(s \ r) β’ (c + (β(#s) : β€)) β€ β x β s β© r, x + β x β s \ r, x
|
s : Finset β€
c : β€
hs : β x β s, c β€ x
r : Finset β€ := Ico c (c + (β(#s) : β€))
β’ β x β s β© r, x + #(s \ r) β’ (c + (β(#s) : β€)) β€ β x β s, x
|
refine add_le_add_left (card_nsmul_le_sum _ _ _ fun x mx β¦ ?_) _
|
refine
|
x β s \ r β c + (β(#s) : β€) β€ x
|
s : Finset β€
c : β€
hs : β x β s, c β€ x
r : Finset β€ := Ico c (c + (β(#s) : β€))
β’ β x β s β© r, x + #(s \ r) β’ (c + (β(#s) : β€)) β€ β x β s β© r, x + β x β s \ r, x
|
rw [mem_sdiff, mem_Ico, not_and] at mx
|
rw
|
x β s β§ (c β€ x β Β¬x < c + (β(#s) : β€))
|
s : Finset β€
c : β€
hs : β x β s, c β€ x
r : Finset β€ := Ico c (c + (β(#s) : β€))
x : β€
mx : x β s \ r
β’ c + (β(#s) : β€) β€ x
|
mem_sdiff,
|
this
|
x β s β§ x β r
|
s : Finset β€
c : β€
hs : β x β s, c β€ x
r : Finset β€ := Ico c (c + (β(#s) : β€))
x : β€
mx : x β s \ r
β’ c + (β(#s) : β€) β€ x
|
mem_Ico,
|
this
|
x β s β§ Β¬(c β€ x β§ x < c + (β(#s) : β€))
|
s : Finset β€
c : β€
hs : β x β s, c β€ x
r : Finset β€ := Ico c (c + (β(#s) : β€))
x : β€
mx : x β s β§ x β r
β’ c + (β(#s) : β€) β€ x
|
not_and
|
not_and
|
x β s β§ (c β€ x β Β¬x < c + (β(#s) : β€))
|
s : Finset β€
c : β€
hs : β x β s, c β€ x
r : Finset β€ := Ico c (c + (β(#s) : β€))
x : β€
mx : x β s β§ Β¬(c β€ x β§ x < c + (β(#s) : β€))
β’ c + (β(#s) : β€) β€ x
|
have := mx.2 (hs _ mx.1)
|
have
|
Β¬x < c + (β(#s) : β€)
|
s : Finset β€
c : β€
hs : β x β s, c β€ x
r : Finset β€ := Ico c (c + (β(#s) : β€))
x : β€
mx : x β s β§ (c β€ x β Β¬x < c + (β(#s) : β€))
β’ c + (β(#s) : β€) β€ x
|
convert sum_Ico_le_sum hs
|
h
|
β n β range #s, (c + (βn : β€)) = β x β Ico c (c + (β(#s) : β€)), x
|
s : Finset β€
c : β€
hs : β x β s, c β€ x
β’ β n β range #s, (c + (βn : β€)) β€ β x β s, x
|
refine sum_nbij (c + Β·) ?_ ?_ ?_ (fun _ _ β¦ rfl)
|
h
|
β a β range #s, (fun x β¦ c + (βx : β€)) a β Ico c (c + (β(#s) : β€))
|
s : Finset β€
c : β€
hs : β x β s, c β€ x
β’ β n β range #s, (c + (βn : β€)) = β x β Ico c (c + (β(#s) : β€)), x
|
refine sum_nbij (c + Β·) ?_ ?_ ?_ (fun _ _ β¦ rfl)
|
h
|
Set.InjOn (fun x β¦ c + (βx : β€)) (β(range #s) : Set β)
|
s : Finset β€
c : β€
hs : β x β s, c β€ x
h : β a β range #s, (fun x β¦ c + (βx : β€)) a β Ico c (c + (β(#s) : β€))
β’ β n β range #s, (c + (βn : β€)) = β x β Ico c (c + (β(#s) : β€)), x
|
refine sum_nbij (c + Β·) ?_ ?_ ?_ (fun _ _ β¦ rfl)
|
h
|
Set.SurjOn (fun x β¦ c + (βx : β€)) (β(range #s) : Set β) (β(Ico c (c + (β(#s) : β€))) : Set β€)
|
s : Finset β€
c : β€
hs : β x β s, c β€ x
h : β a β range #s, (fun x β¦ c + (βx : β€)) a β Ico c (c + (β(#s) : β€))
hβ : Set.InjOn (fun x β¦ c + (βx : β€)) (β(range #s) : Set β)
β’ β n β range #s, (c + (βn : β€)) = β x β Ico c (c + (β(#s) : β€)), x
|
rw [mem_Ico]
|
h
|
c β€ (fun x β¦ c + (βx : β€)) x β§ (fun x β¦ c + (βx : β€)) x < c + (β(#s) : β€)
|
s : Finset β€
c : β€
hs : β x β s, c β€ x
x : β
mx : x β range #s
β’ (fun x β¦ c + (βx : β€)) x β Ico c (c + (β(#s) : β€))
|
mem_Ico
|
h
|
c β€ (fun x β¦ c + (βx : β€)) x β§ (fun x β¦ c + (βx : β€)) x < c + (β(#s) : β€)
|
s : Finset β€
c : β€
hs : β x β s, c β€ x
x : β
mx : x β range #s
β’ (fun x β¦ c + (βx : β€)) x β Ico c (c + (β(#s) : β€))
|
rw [mem_range] at mx
|
h
|
x < #s
|
s : Finset β€
c : β€
hs : β x β s, c β€ x
x : β
mx : x β range #s
β’ c β€ c + (βx : β€) β§ c + (βx : β€) < c + (β(#s) : β€)
|
mem_range
|
h
|
x < #s
|
s : Finset β€
c : β€
hs : β x β s, c β€ x
x : β
mx : x β range #s
β’ c β€ c + (βx : β€) β§ c + (βx : β€) < c + (β(#s) : β€)
|
simp_rw [coe_range, Set.mem_image, Set.mem_Iio]
|
h
|
β x_1 < #s, c + (βx_1 : β€) = x
|
s : Finset β€
c : β€
hs : β x β s, c β€ x
x : β€
mx : x β (β(Ico c (c + (β(#s) : β€))) : Set β€)
β’ x β (fun x β¦ c + (βx : β€)) '' (β(range #s) : Set β)
|
rw [mem_coe, mem_Ico] at mx
|
h
|
c β€ x β§ x < c + (β(#s) : β€)
|
s : Finset β€
c : β€
hs : β x β s, c β€ x
x : β€
mx : x β (β(Ico c (c + (β(#s) : β€))) : Set β€)
β’ β x_1 < #s, c + (βx_1 : β€) = x
|
mem_coe,
|
h
|
x β Ico c (c + (β(#s) : β€))
|
s : Finset β€
c : β€
hs : β x β s, c β€ x
x : β€
mx : x β (β(Ico c (c + (β(#s) : β€))) : Set β€)
β’ β x_1 < #s, c + (βx_1 : β€) = x
|
mem_Ico
|
h
|
c β€ x β§ x < c + (β(#s) : β€)
|
s : Finset β€
c : β€
hs : β x β s, c β€ x
x : β€
mx : x β Ico c (c + (β(#s) : β€))
β’ β x_1 < #s, c + (βx_1 : β€) = x
|
use (x - c).toNat
|
h
|
(x - c).toNat < #s β§ c + (β(x - c).toNat : β€) = x
|
s : Finset β€
c : β€
hs : β x β s, c β€ x
x : β€
mx : c β€ x β§ x < c + (β(#s) : β€)
β’ β x_1 < #s, c + (βx_1 : β€) = x
|
fapply Limits.PushoutCocone.mk
|
W
|
CommRingCat
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
β’ PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
|
fapply Limits.PushoutCocone.mk
|
inl
|
of A βΆ of (A β[R] B)
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
W : CommRingCat
β’ PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
|
fapply Limits.PushoutCocone.mk
|
inr
|
of B βΆ of (A β[R] B)
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
W : CommRingCat
inl : of A βΆ of (A β[R] B)
β’ PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
|
fapply Limits.PushoutCocone.mk
|
eq
|
ofHom (algebraMap R A) β« ofHom Algebra.TensorProduct.includeLeftRingHom =
ofHom (algebraMap R B) β« ofHom Algebra.TensorProduct.includeRight.toRingHom
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
W : CommRingCat
inl : of A βΆ of (A β[R] B)
inr : of B βΆ of (A β[R] B)
β’ PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
|
ext r
|
eq
|
(Hom.hom (ofHom (algebraMap R A) β« ofHom Algebra.TensorProduct.includeLeftRingHom) :
(β(of R) : Type u) β (β(of (A β[R] B)) : Type u))
r =
(Hom.hom (ofHom (algebraMap R B) β« ofHom Algebra.TensorProduct.includeRight.toRingHom) :
(β(of R) : Type u) β (β(of (A β[R] B)) : Type u))
r
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
β’ ofHom (algebraMap R A) β« ofHom Algebra.TensorProduct.includeLeftRingHom =
ofHom (algebraMap R B) β« ofHom Algebra.TensorProduct.includeRight.toRingHom
|
trans algebraMap R (A β[R] B) r
|
trans
|
(Hom.hom (ofHom (algebraMap R A) β« ofHom Algebra.TensorProduct.includeLeftRingHom) :
(β(of R) : Type u) β (β(of (A β[R] B)) : Type u))
r =
(algebraMap R (A β[R] B) : R β A β[R] B) r
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
r : (β(of R) : Type u)
β’ (Hom.hom (ofHom (algebraMap R A) β« ofHom Algebra.TensorProduct.includeLeftRingHom) :
(β(of R) : Type u) β (β(of (A β[R] B)) : Type u))
r =
(Hom.hom (ofHom (algebraMap R B) β« ofHom Algebra.TensorProduct.includeRight.toRingHom) :
(β(of R) : Type u) β (β(of (A β[R] B)) : Type u))
r
|
trans algebraMap R (A β[R] B) r
|
trans
|
(algebraMap R (A β[R] B) : R β A β[R] B) r =
(Hom.hom (ofHom (algebraMap R B) β« ofHom Algebra.TensorProduct.includeRight.toRingHom) :
(β(of R) : Type u) β (β(of (A β[R] B)) : Type u))
r
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
r : (β(of R) : Type u)
trans : (Hom.hom (ofHom (algebraMap R A) β« ofHom Algebra.TensorProduct.includeLeftRingHom) :
(β(of R) : Type u) β (β(of (A β[R] B)) : Type u))
r =
(algebraMap R (A β[R] B) : R β A β[R] B) r
β’ (Hom.hom (ofHom (algebraMap R A) β« ofHom Algebra.TensorProduct.includeLeftRingHom) :
(β(of R) : Type u) β (β(of (A β[R] B)) : Type u))
r =
(Hom.hom (ofHom (algebraMap R B) β« ofHom Algebra.TensorProduct.includeRight.toRingHom) :
(β(of R) : Type u) β (β(of (A β[R] B)) : Type u))
r
|
use ofHom (AlgHom.toRingHom (Algebra.TensorProduct.productMap f' g'))
|
property
|
(pushoutCocone R A B).inl β« ofHom (Algebra.TensorProduct.productMap f' g').toRingHom = s.inl β§
(pushoutCocone R A B).inr β« ofHom (Algebra.TensorProduct.productMap f' g').toRingHom = s.inr β§
β {m : (pushoutCocone R A B).pt βΆ s.pt},
(pushoutCocone R A B).inl β« m = s.inl β
(pushoutCocone R A B).inr β« m = s.inr β m = ofHom (Algebra.TensorProduct.productMap f' g').toRingHom
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
thisβ : Algebra R (βs.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra
f' : A ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inl;
{ toRingHom := __src, commutes' := β― }
g' : B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inr;
{ toRingHom := __src, commutes' := β― }
this : Algebra R (β(pushoutCocone R A B).pt : Type u) :=
let_fun this := inferInstance;
this
β’ { l //
(pushoutCocone R A B).inl β« l = s.inl β§
(pushoutCocone R A B).inr β« l = s.inr β§
β {m : (pushoutCocone R A B).pt βΆ s.pt},
(pushoutCocone R A B).inl β« m = s.inl β (pushoutCocone R A B).inr β« m = s.inr β m = l }
|
constructor
|
property
|
ofHom Algebra.TensorProduct.includeLeftRingHom β« ofHom (Algebra.TensorProduct.productMap f' g').toRingHom = s.inl
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
thisβ : Algebra R (βs.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra
f' : A ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inl;
{ toRingHom := __src, commutes' := β― }
g' : B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inr;
{ toRingHom := __src, commutes' := β― }
this : Algebra R (β(pushoutCocone R A B).pt : Type u) :=
let_fun this := inferInstance;
this
β’ ofHom Algebra.TensorProduct.includeLeftRingHom β« ofHom (Algebra.TensorProduct.productMap f' g').toRingHom = s.inl β§
ofHom Algebra.TensorProduct.includeRight.toRingHom β« ofHom (Algebra.TensorProduct.productMap f' g').toRingHom =
s.inr β§
β {m : (pushoutCocone R A B).pt βΆ s.pt},
ofHom Algebra.TensorProduct.includeLeftRingHom β« m = s.inl β
ofHom Algebra.TensorProduct.includeRight.toRingHom β« m = s.inr β
m = ofHom (Algebra.TensorProduct.productMap f' g').toRingHom
|
constructor
|
property
|
ofHom Algebra.TensorProduct.includeRight.toRingHom β« ofHom (Algebra.TensorProduct.productMap f' g').toRingHom = s.inr β§
β {m : (pushoutCocone R A B).pt βΆ s.pt},
ofHom Algebra.TensorProduct.includeLeftRingHom β« m = s.inl β
ofHom Algebra.TensorProduct.includeRight.toRingHom β« m = s.inr β
m = ofHom (Algebra.TensorProduct.productMap f' g').toRingHom
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
thisβ : Algebra R (βs.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra
f' : A ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inl;
{ toRingHom := __src, commutes' := β― }
g' : B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inr;
{ toRingHom := __src, commutes' := β― }
this : Algebra R (β(pushoutCocone R A B).pt : Type u) :=
let_fun this := inferInstance;
this
property : ofHom Algebra.TensorProduct.includeLeftRingHom β« ofHom (Algebra.TensorProduct.productMap f' g').toRingHom = s.inl
β’ ofHom Algebra.TensorProduct.includeLeftRingHom β« ofHom (Algebra.TensorProduct.productMap f' g').toRingHom = s.inl β§
ofHom Algebra.TensorProduct.includeRight.toRingHom β« ofHom (Algebra.TensorProduct.productMap f' g').toRingHom =
s.inr β§
β {m : (pushoutCocone R A B).pt βΆ s.pt},
ofHom Algebra.TensorProduct.includeLeftRingHom β« m = s.inl β
ofHom Algebra.TensorProduct.includeRight.toRingHom β« m = s.inr β
m = ofHom (Algebra.TensorProduct.productMap f' g').toRingHom
|
ext x
|
property
|
(Hom.hom (ofHom Algebra.TensorProduct.includeLeftRingHom β« ofHom (Algebra.TensorProduct.productMap f' g').toRingHom) :
(β(of A) : Type u) β (βs.pt : Type u))
x =
(Hom.hom s.inl : (β(of A) : Type u) β (βs.pt : Type u)) x
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
thisβ : Algebra R (βs.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra
f' : A ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inl;
{ toRingHom := __src, commutes' := β― }
g' : B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inr;
{ toRingHom := __src, commutes' := β― }
this : Algebra R (β(pushoutCocone R A B).pt : Type u) :=
let_fun this := inferInstance;
this
β’ ofHom Algebra.TensorProduct.includeLeftRingHom β« ofHom (Algebra.TensorProduct.productMap f' g').toRingHom = s.inl
|
constructor
|
property
|
ofHom Algebra.TensorProduct.includeRight.toRingHom β« ofHom (Algebra.TensorProduct.productMap f' g').toRingHom = s.inr
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
thisβ : Algebra R (βs.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra
f' : A ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inl;
{ toRingHom := __src, commutes' := β― }
g' : B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inr;
{ toRingHom := __src, commutes' := β― }
this : Algebra R (β(pushoutCocone R A B).pt : Type u) :=
let_fun this := inferInstance;
this
β’ ofHom Algebra.TensorProduct.includeRight.toRingHom β« ofHom (Algebra.TensorProduct.productMap f' g').toRingHom =
s.inr β§
β {m : (pushoutCocone R A B).pt βΆ s.pt},
ofHom Algebra.TensorProduct.includeLeftRingHom β« m = s.inl β
ofHom Algebra.TensorProduct.includeRight.toRingHom β« m = s.inr β
m = ofHom (Algebra.TensorProduct.productMap f' g').toRingHom
|
constructor
|
property
|
β {m : (pushoutCocone R A B).pt βΆ s.pt},
ofHom Algebra.TensorProduct.includeLeftRingHom β« m = s.inl β
ofHom Algebra.TensorProduct.includeRight.toRingHom β« m = s.inr β
m = ofHom (Algebra.TensorProduct.productMap f' g').toRingHom
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
thisβ : Algebra R (βs.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra
f' : A ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inl;
{ toRingHom := __src, commutes' := β― }
g' : B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inr;
{ toRingHom := __src, commutes' := β― }
this : Algebra R (β(pushoutCocone R A B).pt : Type u) :=
let_fun this := inferInstance;
this
property : ofHom Algebra.TensorProduct.includeRight.toRingHom β« ofHom (Algebra.TensorProduct.productMap f' g').toRingHom = s.inr
β’ ofHom Algebra.TensorProduct.includeRight.toRingHom β« ofHom (Algebra.TensorProduct.productMap f' g').toRingHom =
s.inr β§
β {m : (pushoutCocone R A B).pt βΆ s.pt},
ofHom Algebra.TensorProduct.includeLeftRingHom β« m = s.inl β
ofHom Algebra.TensorProduct.includeRight.toRingHom β« m = s.inr β
m = ofHom (Algebra.TensorProduct.productMap f' g').toRingHom
|
ext x
|
property
|
(Hom.hom
(ofHom Algebra.TensorProduct.includeRight.toRingHom β«
ofHom (Algebra.TensorProduct.productMap f' g').toRingHom) :
(β(of B) : Type u) β (βs.pt : Type u))
x =
(Hom.hom s.inr : (β(of B) : Type u) β (βs.pt : Type u)) x
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
thisβ : Algebra R (βs.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra
f' : A ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inl;
{ toRingHom := __src, commutes' := β― }
g' : B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inr;
{ toRingHom := __src, commutes' := β― }
this : Algebra R (β(pushoutCocone R A B).pt : Type u) :=
let_fun this := inferInstance;
this
β’ ofHom Algebra.TensorProduct.includeRight.toRingHom β« ofHom (Algebra.TensorProduct.productMap f' g').toRingHom = s.inr
|
change h (algebraMap R A r ββ[R] 1) = s.inl (algebraMap R A r)
|
change
|
(ConcreteCategory.hom h : (β(pushoutCocone R A B).pt : Type u) β (βs.pt : Type u))
((algebraMap R A : R β A) r ββ[R] 1) =
(ConcreteCategory.hom s.inl : (β(of A) : Type u) β (βs.pt : Type u)) ((algebraMap R A : R β A) r)
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
thisβ : Algebra R (βs.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra
f' : A ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inl;
{ toRingHom := __src, commutes' := β― }
g' : B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inr;
{ toRingHom := __src, commutes' := β― }
this : Algebra R (β(pushoutCocone R A B).pt : Type u) :=
let_fun this := inferInstance;
this
h : (pushoutCocone R A B).pt βΆ s.pt
eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom β« h = s.inl
eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom β« h = s.inr
r : R
β’ (β(β(Hom.hom h) : (β(pushoutCocone R A B).pt : Type u) β* (βs.pt : Type u)) :
OneHom (β(pushoutCocone R A B).pt : Type u) (βs.pt : Type u)).toFun
((algebraMap R (A β[R] B) : R β A β[R] B) r) =
(algebraMap R (βs.pt : Type u) : R β (βs.pt : Type u)) r
|
rw [β eq1]
|
rw
|
(ConcreteCategory.hom h : (β(pushoutCocone R A B).pt : Type u) β (βs.pt : Type u))
((algebraMap R A : R β A) r ββ[R] 1) =
(ConcreteCategory.hom (ofHom Algebra.TensorProduct.includeLeftRingHom β« h) : (β(of A) : Type u) β (βs.pt : Type u))
((algebraMap R A : R β A) r)
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
thisβ : Algebra R (βs.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra
f' : A ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inl;
{ toRingHom := __src, commutes' := β― }
g' : B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inr;
{ toRingHom := __src, commutes' := β― }
this : Algebra R (β(pushoutCocone R A B).pt : Type u) :=
let_fun this := inferInstance;
this
h : (pushoutCocone R A B).pt βΆ s.pt
eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom β« h = s.inl
eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom β« h = s.inr
r : R
β’ (ConcreteCategory.hom h : (β(pushoutCocone R A B).pt : Type u) β (βs.pt : Type u))
((algebraMap R A : R β A) r ββ[R] 1) =
(ConcreteCategory.hom s.inl : (β(of A) : Type u) β (βs.pt : Type u)) ((algebraMap R A : R β A) r)
|
β eq1
|
eq1
|
(ConcreteCategory.hom h : (β(pushoutCocone R A B).pt : Type u) β (βs.pt : Type u))
((algebraMap R A : R β A) r ββ[R] 1) =
(ConcreteCategory.hom (ofHom Algebra.TensorProduct.includeLeftRingHom β« h) : (β(of A) : Type u) β (βs.pt : Type u))
((algebraMap R A : R β A) r)
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
thisβ : Algebra R (βs.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra
f' : A ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inl;
{ toRingHom := __src, commutes' := β― }
g' : B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inr;
{ toRingHom := __src, commutes' := β― }
this : Algebra R (β(pushoutCocone R A B).pt : Type u) :=
let_fun this := inferInstance;
this
h : (pushoutCocone R A B).pt βΆ s.pt
eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom β« h = s.inl
eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom β« h = s.inr
r : R
β’ (ConcreteCategory.hom h : (β(pushoutCocone R A B).pt : Type u) β (βs.pt : Type u))
((algebraMap R A : R β A) r ββ[R] 1) =
(ConcreteCategory.hom s.inl : (β(of A) : Type u) β (βs.pt : Type u)) ((algebraMap R A : R β A) r)
|
simp only [pushoutCocone_pt, coe_of, AlgHom.toRingHom_eq_coe]
|
simp
|
(ConcreteCategory.hom h : A β[R] B β (βs.pt : Type u)) ((algebraMap R A : R β A) r ββ[R] 1) =
(ConcreteCategory.hom (ofHom Algebra.TensorProduct.includeLeftRingHom β« h) : A β (βs.pt : Type u))
((algebraMap R A : R β A) r)
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
thisβ : Algebra R (βs.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra
f' : A ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inl;
{ toRingHom := __src, commutes' := β― }
g' : B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inr;
{ toRingHom := __src, commutes' := β― }
this : Algebra R (β(pushoutCocone R A B).pt : Type u) :=
let_fun this := inferInstance;
this
h : (pushoutCocone R A B).pt βΆ s.pt
eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom β« h = s.inl
eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom β« h = s.inr
r : R
β’ (ConcreteCategory.hom h : (β(pushoutCocone R A B).pt : Type u) β (βs.pt : Type u))
((algebraMap R A : R β A) r ββ[R] 1) =
(ConcreteCategory.hom (ofHom Algebra.TensorProduct.includeLeftRingHom β« h) : (β(of A) : Type u) β (βs.pt : Type u))
((algebraMap R A : R β A) r)
|
suffices h' = Algebra.TensorProduct.productMap f' g' by
ext x
change h' x = Algebra.TensorProduct.productMap f' g' x
rw [this]
|
property
|
h' = Algebra.TensorProduct.productMap f' g'
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
thisβ : Algebra R (βs.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra
f' : A ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inl;
{ toRingHom := __src, commutes' := β― }
g' : B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inr;
{ toRingHom := __src, commutes' := β― }
this : Algebra R (β(pushoutCocone R A B).pt : Type u) :=
let_fun this := inferInstance;
this
h : (pushoutCocone R A B).pt βΆ s.pt
eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom β« h = s.inl
eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom β« h = s.inr
h' : A β[R] B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom h;
{ toRingHom := __src, commutes' := β― }
β’ h = ofHom (Algebra.TensorProduct.productMap f' g').toRingHom
|
ext x
|
hf
|
(Hom.hom h : (β(pushoutCocone R A B).pt : Type u) β (βs.pt : Type u)) x =
(Hom.hom (ofHom (Algebra.TensorProduct.productMap f' g').toRingHom) :
(β(pushoutCocone R A B).pt : Type u) β (βs.pt : Type u))
x
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
thisβΒΉ : Algebra R (βs.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra
f' : A ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inl;
{ toRingHom := __src, commutes' := β― }
g' : B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inr;
{ toRingHom := __src, commutes' := β― }
thisβ : Algebra R (β(pushoutCocone R A B).pt : Type u) :=
let_fun this := inferInstance;
this
h : (pushoutCocone R A B).pt βΆ s.pt
eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom β« h = s.inl
eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom β« h = s.inr
h' : A β[R] B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom h;
{ toRingHom := __src, commutes' := β― }
this : h' = Algebra.TensorProduct.productMap f' g'
β’ h = ofHom (Algebra.TensorProduct.productMap f' g').toRingHom
|
change h' x = Algebra.TensorProduct.productMap f' g' x
|
hf
|
(h' : A β[R] B β (βs.pt : Type u)) x = (Algebra.TensorProduct.productMap f' g' : A β[R] B β (βs.pt : Type u)) x
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
thisβΒΉ : Algebra R (βs.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra
f' : A ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inl;
{ toRingHom := __src, commutes' := β― }
g' : B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inr;
{ toRingHom := __src, commutes' := β― }
thisβ : Algebra R (β(pushoutCocone R A B).pt : Type u) :=
let_fun this := inferInstance;
this
h : (pushoutCocone R A B).pt βΆ s.pt
eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom β« h = s.inl
eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom β« h = s.inr
h' : A β[R] B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom h;
{ toRingHom := __src, commutes' := β― }
this : h' = Algebra.TensorProduct.productMap f' g'
x : (β(pushoutCocone R A B).pt : Type u)
β’ (Hom.hom h : (β(pushoutCocone R A B).pt : Type u) β (βs.pt : Type u)) x =
(Hom.hom (ofHom (Algebra.TensorProduct.productMap f' g').toRingHom) :
(β(pushoutCocone R A B).pt : Type u) β (βs.pt : Type u))
x
|
this
|
hf
|
(Algebra.TensorProduct.productMap f' g' : A β[R] B β (βs.pt : Type u)) x =
(Algebra.TensorProduct.productMap f' g' : A β[R] B β (βs.pt : Type u)) x
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
thisβΒΉ : Algebra R (βs.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra
f' : A ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inl;
{ toRingHom := __src, commutes' := β― }
g' : B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inr;
{ toRingHom := __src, commutes' := β― }
thisβ : Algebra R (β(pushoutCocone R A B).pt : Type u) :=
let_fun this := inferInstance;
this
h : (pushoutCocone R A B).pt βΆ s.pt
eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom β« h = s.inl
eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom β« h = s.inr
h' : A β[R] B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom h;
{ toRingHom := __src, commutes' := β― }
this : h' = Algebra.TensorProduct.productMap f' g'
x : (β(pushoutCocone R A B).pt : Type u)
β’ (h' : A β[R] B β (βs.pt : Type u)) x = (Algebra.TensorProduct.productMap f' g' : A β[R] B β (βs.pt : Type u)) x
|
apply Algebra.TensorProduct.ext'
|
property
|
β (a : A) (b : B),
(h' : A β[R] B β (βs.pt : Type u)) (a ββ[R] b) =
(Algebra.TensorProduct.productMap f' g' : A β[R] B β (βs.pt : Type u)) (a ββ[R] b)
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
thisβ : Algebra R (βs.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra
f' : A ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inl;
{ toRingHom := __src, commutes' := β― }
g' : B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inr;
{ toRingHom := __src, commutes' := β― }
this : Algebra R (β(pushoutCocone R A B).pt : Type u) :=
let_fun this := inferInstance;
this
h : (pushoutCocone R A B).pt βΆ s.pt
eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom β« h = s.inl
eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom β« h = s.inr
h' : A β[R] B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom h;
{ toRingHom := __src, commutes' := β― }
β’ h' = Algebra.TensorProduct.productMap f' g'
|
simp only [f', g', β eq1, pushoutCocone_pt, β eq2, AlgHom.toRingHom_eq_coe,
Algebra.TensorProduct.productMap_apply_tmul, AlgHom.coe_mk]
|
property
|
(h' : A β[R] B β (βs.pt : Type u)) (a ββ[R] b) =
(Hom.hom (ofHom Algebra.TensorProduct.includeLeftRingHom β« h) : A β (βs.pt : Type u)) a *
(Hom.hom (ofHom (βAlgebra.TensorProduct.includeRight : B β+* A β[R] B) β« h) : B β (βs.pt : Type u)) b
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
thisβ : Algebra R (βs.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra
f' : A ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inl;
{ toRingHom := __src, commutes' := β― }
g' : B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inr;
{ toRingHom := __src, commutes' := β― }
this : Algebra R (β(pushoutCocone R A B).pt : Type u) :=
let_fun this := inferInstance;
this
h : (pushoutCocone R A B).pt βΆ s.pt
eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom β« h = s.inl
eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom β« h = s.inr
h' : A β[R] B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom h;
{ toRingHom := __src, commutes' := β― }
a : A
b : B
β’ (h' : A β[R] B β (βs.pt : Type u)) (a ββ[R] b) =
(Algebra.TensorProduct.productMap f' g' : A β[R] B β (βs.pt : Type u)) (a ββ[R] b)
|
change _ = h (a ββ 1) * h (1 ββ b)
|
property
|
(h' : A β[R] B β (βs.pt : Type u)) (a ββ[R] b) =
(ConcreteCategory.hom h : (β(pushoutCocone R A B).pt : Type u) β (βs.pt : Type u)) (a ββ[R] 1) *
(ConcreteCategory.hom h : (β(pushoutCocone R A B).pt : Type u) β (βs.pt : Type u)) (1 ββ[R] b)
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
thisβ : Algebra R (βs.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra
f' : A ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inl;
{ toRingHom := __src, commutes' := β― }
g' : B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inr;
{ toRingHom := __src, commutes' := β― }
this : Algebra R (β(pushoutCocone R A B).pt : Type u) :=
let_fun this := inferInstance;
this
h : (pushoutCocone R A B).pt βΆ s.pt
eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom β« h = s.inl
eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom β« h = s.inr
h' : A β[R] B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom h;
{ toRingHom := __src, commutes' := β― }
a : A
b : B
β’ (h' : A β[R] B β (βs.pt : Type u)) (a ββ[R] b) =
(Hom.hom (ofHom Algebra.TensorProduct.includeLeftRingHom β« h) : A β (βs.pt : Type u)) a *
(Hom.hom (ofHom (βAlgebra.TensorProduct.includeRight : B β+* A β[R] B) β« h) : B β (βs.pt : Type u)) b
|
rw [β h.hom.map_mul, Algebra.TensorProduct.tmul_mul_tmul, mul_one, one_mul]
|
property
|
(h' : A β[R] B β (βs.pt : Type u)) (a ββ[R] b) =
(Hom.hom h : (β(pushoutCocone R A B).pt : Type u) β (βs.pt : Type u)) (a ββ[R] b)
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
thisβ : Algebra R (βs.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra
f' : A ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inl;
{ toRingHom := __src, commutes' := β― }
g' : B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inr;
{ toRingHom := __src, commutes' := β― }
this : Algebra R (β(pushoutCocone R A B).pt : Type u) :=
let_fun this := inferInstance;
this
h : (pushoutCocone R A B).pt βΆ s.pt
eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom β« h = s.inl
eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom β« h = s.inr
h' : A β[R] B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom h;
{ toRingHom := __src, commutes' := β― }
a : A
b : B
β’ (h' : A β[R] B β (βs.pt : Type u)) (a ββ[R] b) =
(ConcreteCategory.hom h : (β(pushoutCocone R A B).pt : Type u) β (βs.pt : Type u)) (a ββ[R] 1) *
(ConcreteCategory.hom h : (β(pushoutCocone R A B).pt : Type u) β (βs.pt : Type u)) (1 ββ[R] b)
|
β h.hom.map_mul,
|
property
|
(h' : A β[R] B β (βs.pt : Type u)) (a ββ[R] b) =
(Hom.hom h : (β(pushoutCocone R A B).pt : Type u) β (βs.pt : Type u)) (a ββ[R] 1 * 1 ββ[R] b)
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
thisβ : Algebra R (βs.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra
f' : A ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inl;
{ toRingHom := __src, commutes' := β― }
g' : B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inr;
{ toRingHom := __src, commutes' := β― }
this : Algebra R (β(pushoutCocone R A B).pt : Type u) :=
let_fun this := inferInstance;
this
h : (pushoutCocone R A B).pt βΆ s.pt
eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom β« h = s.inl
eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom β« h = s.inr
h' : A β[R] B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom h;
{ toRingHom := __src, commutes' := β― }
a : A
b : B
β’ (h' : A β[R] B β (βs.pt : Type u)) (a ββ[R] b) =
(ConcreteCategory.hom h : (β(pushoutCocone R A B).pt : Type u) β (βs.pt : Type u)) (a ββ[R] 1) *
(ConcreteCategory.hom h : (β(pushoutCocone R A B).pt : Type u) β (βs.pt : Type u)) (1 ββ[R] b)
|
Algebra.TensorProduct.tmul_mul_tmul,
|
property
|
(h' : A β[R] B β (βs.pt : Type u)) (a ββ[R] b) =
(Hom.hom h : (β(pushoutCocone R A B).pt : Type u) β (βs.pt : Type u)) ((a * 1) ββ[R] (1 * b))
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
thisβ : Algebra R (βs.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra
f' : A ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inl;
{ toRingHom := __src, commutes' := β― }
g' : B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inr;
{ toRingHom := __src, commutes' := β― }
this : Algebra R (β(pushoutCocone R A B).pt : Type u) :=
let_fun this := inferInstance;
this
h : (pushoutCocone R A B).pt βΆ s.pt
eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom β« h = s.inl
eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom β« h = s.inr
h' : A β[R] B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom h;
{ toRingHom := __src, commutes' := β― }
a : A
b : B
β’ (h' : A β[R] B β (βs.pt : Type u)) (a ββ[R] b) =
(Hom.hom h : (β(pushoutCocone R A B).pt : Type u) β (βs.pt : Type u)) (a ββ[R] 1 * 1 ββ[R] b)
|
mul_one,
|
property
|
(h' : A β[R] B β (βs.pt : Type u)) (a ββ[R] b) =
(Hom.hom h : (β(pushoutCocone R A B).pt : Type u) β (βs.pt : Type u)) (a ββ[R] (1 * b))
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
thisβ : Algebra R (βs.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra
f' : A ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inl;
{ toRingHom := __src, commutes' := β― }
g' : B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inr;
{ toRingHom := __src, commutes' := β― }
this : Algebra R (β(pushoutCocone R A B).pt : Type u) :=
let_fun this := inferInstance;
this
h : (pushoutCocone R A B).pt βΆ s.pt
eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom β« h = s.inl
eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom β« h = s.inr
h' : A β[R] B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom h;
{ toRingHom := __src, commutes' := β― }
a : A
b : B
β’ (h' : A β[R] B β (βs.pt : Type u)) (a ββ[R] b) =
(Hom.hom h : (β(pushoutCocone R A B).pt : Type u) β (βs.pt : Type u)) ((a * 1) ββ[R] (1 * b))
|
one_mul
|
property
|
(h' : A β[R] B β (βs.pt : Type u)) (a ββ[R] b) =
(Hom.hom h : (β(pushoutCocone R A B).pt : Type u) β (βs.pt : Type u)) (a ββ[R] b)
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
s : PushoutCocone (ofHom (algebraMap R A)) (ofHom (algebraMap R B))
thisβ : Algebra R (βs.pt : Type u) := ((Hom.hom s.inl).comp (algebraMap R A)).toAlgebra
f' : A ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inl;
{ toRingHom := __src, commutes' := β― }
g' : B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom s.inr;
{ toRingHom := __src, commutes' := β― }
this : Algebra R (β(pushoutCocone R A B).pt : Type u) :=
let_fun this := inferInstance;
this
h : (pushoutCocone R A B).pt βΆ s.pt
eq1 : ofHom Algebra.TensorProduct.includeLeftRingHom β« h = s.inl
eq2 : ofHom Algebra.TensorProduct.includeRight.toRingHom β« h = s.inr
h' : A β[R] B ββ[R] (βs.pt : Type u) :=
let __src := Hom.hom h;
{ toRingHom := __src, commutes' := β― }
a : A
b : B
β’ (h' : A β[R] B β (βs.pt : Type u)) (a ββ[R] b) =
(Hom.hom h : (β(pushoutCocone R A B).pt : Type u) β (βs.pt : Type u)) (a ββ[R] (1 * b))
|
ext
|
hf
|
(Hom.hom (ofHom (algebraMap R A) β« ofHom Algebra.TensorProduct.includeLeftRingHom) :
(β(of R) : Type u) β (β(of (A β[R] B)) : Type u))
xβ =
(Hom.hom (ofHom (algebraMap R B) β« ofHom Algebra.TensorProduct.includeRight.toRingHom) :
(β(of R) : Type u) β (β(of (A β[R] B)) : Type u))
xβ
|
R A B : Type u
instββ΄ : CommRing R
instβΒ³ : CommRing A
instβΒ² : CommRing B
instβΒΉ : Algebra R A
instβ : Algebra R B
β’ ofHom (algebraMap R A) β« ofHom Algebra.TensorProduct.includeLeftRingHom =
ofHom (algebraMap R B) β« ofHom Algebra.TensorProduct.includeRight.toRingHom
|
ext
|
hf
|
(Hom.hom
(ofHom Algebra.TensorProduct.includeLeftRingHom β«
(Algebra.IsPushout.equiv R S A B).toRingEquiv.toCommRingCatIso.hom) :
(β(of S) : Type u) β (β(of B) : Type u))
xβ =
(Hom.hom ((Iso.refl (of S)).hom β« ofHom (algebraMap S B)) : (β(of S) : Type u) β (β(of B) : Type u)) xβ
|
R S A B : Type u
instβΒΉΒΉ : CommRing R
instβΒΉβ° : CommRing S
instββΉ : CommRing A
instββΈ : CommRing B
instββ· : Algebra R S
instββΆ : Algebra S B
instββ΅ : Algebra R A
instββ΄ : Algebra A B
instβΒ³ : Algebra R B
instβΒ² : IsScalarTower R A B
instβΒΉ : IsScalarTower R S B
instβ : Algebra.IsPushout R S A B
β’ ofHom Algebra.TensorProduct.includeLeftRingHom β« (Algebra.IsPushout.equiv R S A B).toRingEquiv.toCommRingCatIso.hom =
(Iso.refl (of S)).hom β« ofHom (algebraMap S B)
|
ext
|
hf
|
(Hom.hom
(ofHom Algebra.TensorProduct.includeRight.toRingHom β«
(Algebra.IsPushout.equiv R S A B).toRingEquiv.toCommRingCatIso.hom) :
(β(of A) : Type u) β (β(of B) : Type u))
xβ =
(Hom.hom ((Iso.refl (of A)).hom β« ofHom (algebraMap A B)) : (β(of A) : Type u) β (β(of B) : Type u)) xβ
|
R S A B : Type u
instβΒΉΒΉ : CommRing R
instβΒΉβ° : CommRing S
instββΉ : CommRing A
instββΈ : CommRing B
instββ· : Algebra R S
instββΆ : Algebra S B
instββ΅ : Algebra R A
instββ΄ : Algebra A B
instβΒ³ : Algebra R B
instβΒ² : IsScalarTower R A B
instβΒΉ : IsScalarTower R S B
instβ : Algebra.IsPushout R S A B
β’ ofHom Algebra.TensorProduct.includeRight.toRingHom β«
(Algebra.IsPushout.equiv R S A B).toRingEquiv.toCommRingCatIso.hom =
(Iso.refl (of A)).hom β« ofHom (algebraMap A B)
|
cases j <;> ext a
|
left
|
(Hom.hom
((A.coproductCocone B).ΞΉ.app { as := WalkingPair.left } β«
ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom sorry).toRingHom) :
(β((pair A B).obj { as := WalkingPair.left }) : Type u) β (βs.pt : Type u))
a =
(Hom.hom (s.ΞΉ.app { as := WalkingPair.left }) :
(β((pair A B).obj { as := WalkingPair.left }) : Type u) β (βs.pt : Type u))
a
|
A B : CommRingCat
s : BinaryCofan A B
xβ : Discrete WalkingPair
j : WalkingPair
β’ (A.coproductCocone B).ΞΉ.app { as := j } β«
ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β―).toRingHom =
s.ΞΉ.app { as := j }
|
cases j <;> ext a
|
right
|
(Hom.hom
((A.coproductCocone B).ΞΉ.app { as := WalkingPair.right } β«
ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom sorry).toRingHom) :
(β((pair A B).obj { as := WalkingPair.right }) : Type u) β (βs.pt : Type u))
a =
(Hom.hom (s.ΞΉ.app { as := WalkingPair.right }) :
(β((pair A B).obj { as := WalkingPair.right }) : Type u) β (βs.pt : Type u))
a
|
A B : CommRingCat
s : BinaryCofan A B
xβ : Discrete WalkingPair
j : WalkingPair
left : (Hom.hom
((A.coproductCocone B).ΞΉ.app { as := WalkingPair.left } β«
ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β―).toRingHom) :
(β((pair A B).obj { as := WalkingPair.left }) : Type u) β (βs.pt : Type u))
_fvar.97312 =
(Hom.hom (s.ΞΉ.app { as := WalkingPair.left }) :
(β((pair A B).obj { as := WalkingPair.left }) : Type u) β (βs.pt : Type u))
_fvar.97312
β’ (A.coproductCocone B).ΞΉ.app { as := j } β«
ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β―).toRingHom =
s.ΞΉ.app { as := j }
|
cases j
|
left
|
(A.coproductCocone B).ΞΉ.app { as := WalkingPair.left } β«
ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom sorry).toRingHom =
s.ΞΉ.app { as := WalkingPair.left }
|
A B : CommRingCat
s : BinaryCofan A B
xβ : Discrete WalkingPair
j : WalkingPair
β’ (A.coproductCocone B).ΞΉ.app { as := j } β«
ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β―).toRingHom =
s.ΞΉ.app { as := j }
|
cases j
|
right
|
(A.coproductCocone B).ΞΉ.app { as := WalkingPair.right } β«
ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom sorry).toRingHom =
s.ΞΉ.app { as := WalkingPair.right }
|
A B : CommRingCat
s : BinaryCofan A B
xβ : Discrete WalkingPair
j : WalkingPair
left : (A.coproductCocone B).ΞΉ.app { as := WalkingPair.left } β«
ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β―).toRingHom =
s.ΞΉ.app { as := WalkingPair.left }
β’ (A.coproductCocone B).ΞΉ.app { as := j } β«
ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β―).toRingHom =
s.ΞΉ.app { as := j }
|
ext a
|
left
|
(Hom.hom
((A.coproductCocone B).ΞΉ.app { as := WalkingPair.left } β«
ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom sorry).toRingHom) :
(β((pair A B).obj { as := WalkingPair.left }) : Type u) β (βs.pt : Type u))
a =
(Hom.hom (s.ΞΉ.app { as := WalkingPair.left }) :
(β((pair A B).obj { as := WalkingPair.left }) : Type u) β (βs.pt : Type u))
a
|
A B : CommRingCat
s : BinaryCofan A B
xβ : Discrete WalkingPair
β’ (A.coproductCocone B).ΞΉ.app { as := WalkingPair.left } β«
ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β―).toRingHom =
s.ΞΉ.app { as := WalkingPair.left }
|
ext a
|
right
|
(Hom.hom
((A.coproductCocone B).ΞΉ.app { as := WalkingPair.right } β«
ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom sorry).toRingHom) :
(β((pair A B).obj { as := WalkingPair.right }) : Type u) β (βs.pt : Type u))
a =
(Hom.hom (s.ΞΉ.app { as := WalkingPair.right }) :
(β((pair A B).obj { as := WalkingPair.right }) : Type u) β (βs.pt : Type u))
a
|
A B : CommRingCat
s : BinaryCofan A B
xβ : Discrete WalkingPair
β’ (A.coproductCocone B).ΞΉ.app { as := WalkingPair.right } β«
ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β―).toRingHom =
s.ΞΉ.app { as := WalkingPair.right }
|
apply CommRingCat.hom_ext
|
_private
|
{ hom' := m }.hom =
Hom.hom (ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom sorry).toRingHom)
|
A B : CommRingCat
s : BinaryCofan A B
m : (βA : Type u) β[β€] (βB : Type u) β+* (βs.pt : Type u)
hm : β (j : Discrete WalkingPair), (A.coproductCocone B).ΞΉ.app j β« { hom' := m } = s.ΞΉ.app j
β’ { hom' := m } = ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β―).toRingHom
|
apply RingHom.toIntAlgHom_injective
|
_private
|
{ hom' := m }.hom.toIntAlgHom =
(Hom.hom
(ofHom
(Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom
sorry).toRingHom)).toIntAlgHom
|
A B : CommRingCat
s : BinaryCofan A B
m : (βA : Type u) β[β€] (βB : Type u) β+* (βs.pt : Type u)
hm : β (j : Discrete WalkingPair), (A.coproductCocone B).ΞΉ.app j β« { hom' := m } = s.ΞΉ.app j
β’ { hom' := m }.hom =
Hom.hom (ofHom (Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β―).toRingHom)
|
apply Algebra.TensorProduct.liftEquiv.symm.injective
|
_private
|
(Algebra.TensorProduct.liftEquiv.symm :
((βA : Type u) β[β€] (βB : Type u) ββ[β€] (βs.pt : Type u)) β
{ fg //
β (x : (βA : Type u)) (y : (βB : Type u)),
Commute ((fg.1 : (βA : Type u) β (βs.pt : Type u)) x) ((fg.2 : (βB : Type u) β (βs.pt : Type u)) y) })
{ hom' := m }.hom.toIntAlgHom =
(Algebra.TensorProduct.liftEquiv.symm :
((βA : Type u) β[β€] (βB : Type u) ββ[β€] (βs.pt : Type u)) β
{ fg //
β (x : (βA : Type u)) (y : (βB : Type u)),
Commute ((fg.1 : (βA : Type u) β (βs.pt : Type u)) x) ((fg.2 : (βB : Type u) β (βs.pt : Type u)) y) })
(Hom.hom
(ofHom
(Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom
sorry).toRingHom)).toIntAlgHom
|
A B : CommRingCat
s : BinaryCofan A B
m : (βA : Type u) β[β€] (βB : Type u) β+* (βs.pt : Type u)
hm : β (j : Discrete WalkingPair), (A.coproductCocone B).ΞΉ.app j β« { hom' := m } = s.ΞΉ.app j
β’ { hom' := m }.hom.toIntAlgHom =
(Hom.hom
(ofHom
(Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom β―).toRingHom)).toIntAlgHom
|
apply Subtype.ext
|
_private
|
(β((Algebra.TensorProduct.liftEquiv.symm :
((βA : Type u) β[β€] (βB : Type u) ββ[β€] (βs.pt : Type u)) β
{ fg //
β (x : (βA : Type u)) (y : (βB : Type u)),
Commute ((fg.1 : (βA : Type u) β (βs.pt : Type u)) x) ((fg.2 : (βB : Type u) β (βs.pt : Type u)) y) })
{ hom' := m }.hom.toIntAlgHom) :
((βA : Type u) ββ[β€] (βs.pt : Type u)) Γ ((βB : Type u) ββ[β€] (βs.pt : Type u))) =
(β((Algebra.TensorProduct.liftEquiv.symm :
((βA : Type u) β[β€] (βB : Type u) ββ[β€] (βs.pt : Type u)) β
{ fg //
β (x : (βA : Type u)) (y : (βB : Type u)),
Commute ((fg.1 : (βA : Type u) β (βs.pt : Type u)) x) ((fg.2 : (βB : Type u) β (βs.pt : Type u)) y) })
(Hom.hom
(ofHom
(Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom
sorry).toRingHom)).toIntAlgHom) :
((βA : Type u) ββ[β€] (βs.pt : Type u)) Γ ((βB : Type u) ββ[β€] (βs.pt : Type u)))
|
A B : CommRingCat
s : BinaryCofan A B
m : (βA : Type u) β[β€] (βB : Type u) β+* (βs.pt : Type u)
hm : β (j : Discrete WalkingPair), (A.coproductCocone B).ΞΉ.app j β« { hom' := m } = s.ΞΉ.app j
β’ (Algebra.TensorProduct.liftEquiv.symm :
((βA : Type u) β[β€] (βB : Type u) ββ[β€] (βs.pt : Type u)) β
{ fg //
β (x : (βA : Type u)) (y : (βB : Type u)),
Commute ((fg.1 : (βA : Type u) β (βs.pt : Type u)) x) ((fg.2 : (βB : Type u) β (βs.pt : Type u)) y) })
{ hom' := m }.hom.toIntAlgHom =
(Algebra.TensorProduct.liftEquiv.symm :
((βA : Type u) β[β€] (βB : Type u) ββ[β€] (βs.pt : Type u)) β
{ fg //
β (x : (βA : Type u)) (y : (βB : Type u)),
Commute ((fg.1 : (βA : Type u) β (βs.pt : Type u)) x) ((fg.2 : (βB : Type u) β (βs.pt : Type u)) y) })
(Hom.hom
(ofHom
(Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom
β―).toRingHom)).toIntAlgHom
|
rw [Algebra.TensorProduct.liftEquiv_symm_apply_coe, Prod.mk.injEq]
|
_private
|
{ hom' := m }.hom.toIntAlgHom.comp Algebra.TensorProduct.includeLeft =
((Algebra.TensorProduct.liftEquiv.symm :
((βA : Type u) β[β€] (βB : Type u) ββ[β€] (βs.pt : Type u)) β
{ fg //
β (x : (βA : Type u)) (y : (βB : Type u)),
Commute ((fg.1 : (βA : Type u) β (βs.pt : Type u)) x) ((fg.2 : (βB : Type u) β (βs.pt : Type u)) y) })
(Hom.hom
(ofHom
(Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom
sorry).toRingHom)).toIntAlgHom).1.1 β§
(AlgHom.restrictScalars β€ { hom' := m }.hom.toIntAlgHom).comp Algebra.TensorProduct.includeRight =
((Algebra.TensorProduct.liftEquiv.symm :
((βA : Type u) β[β€] (βB : Type u) ββ[β€] (βs.pt : Type u)) β
{ fg //
β (x : (βA : Type u)) (y : (βB : Type u)),
Commute ((fg.1 : (βA : Type u) β (βs.pt : Type u)) x) ((fg.2 : (βB : Type u) β (βs.pt : Type u)) y) })
(Hom.hom
(ofHom
(Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom
sorry).toRingHom)).toIntAlgHom).1.2
|
A B : CommRingCat
s : BinaryCofan A B
m : (βA : Type u) β[β€] (βB : Type u) β+* (βs.pt : Type u)
hm : β (j : Discrete WalkingPair), (A.coproductCocone B).ΞΉ.app j β« { hom' := m } = s.ΞΉ.app j
β’ (β((Algebra.TensorProduct.liftEquiv.symm :
((βA : Type u) β[β€] (βB : Type u) ββ[β€] (βs.pt : Type u)) β
{ fg //
β (x : (βA : Type u)) (y : (βB : Type u)),
Commute ((fg.1 : (βA : Type u) β (βs.pt : Type u)) x) ((fg.2 : (βB : Type u) β (βs.pt : Type u)) y) })
{ hom' := m }.hom.toIntAlgHom) :
((βA : Type u) ββ[β€] (βs.pt : Type u)) Γ ((βB : Type u) ββ[β€] (βs.pt : Type u))) =
(β((Algebra.TensorProduct.liftEquiv.symm :
((βA : Type u) β[β€] (βB : Type u) ββ[β€] (βs.pt : Type u)) β
{ fg //
β (x : (βA : Type u)) (y : (βB : Type u)),
Commute ((fg.1 : (βA : Type u) β (βs.pt : Type u)) x) ((fg.2 : (βB : Type u) β (βs.pt : Type u)) y) })
(Hom.hom
(ofHom
(Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom
β―).toRingHom)).toIntAlgHom) :
((βA : Type u) ββ[β€] (βs.pt : Type u)) Γ ((βB : Type u) ββ[β€] (βs.pt : Type u)))
|
Prod.mk.injEq
|
_private
|
{ hom' := m }.hom.toIntAlgHom.comp Algebra.TensorProduct.includeLeft =
((Algebra.TensorProduct.liftEquiv.symm :
((βA : Type u) β[β€] (βB : Type u) ββ[β€] (βs.pt : Type u)) β
{ fg //
β (x : (βA : Type u)) (y : (βB : Type u)),
Commute ((fg.1 : (βA : Type u) β (βs.pt : Type u)) x) ((fg.2 : (βB : Type u) β (βs.pt : Type u)) y) })
(Hom.hom
(ofHom
(Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom
sorry).toRingHom)).toIntAlgHom).1.1 β§
(AlgHom.restrictScalars β€ { hom' := m }.hom.toIntAlgHom).comp Algebra.TensorProduct.includeRight =
((Algebra.TensorProduct.liftEquiv.symm :
((βA : Type u) β[β€] (βB : Type u) ββ[β€] (βs.pt : Type u)) β
{ fg //
β (x : (βA : Type u)) (y : (βB : Type u)),
Commute ((fg.1 : (βA : Type u) β (βs.pt : Type u)) x) ((fg.2 : (βB : Type u) β (βs.pt : Type u)) y) })
(Hom.hom
(ofHom
(Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom
sorry).toRingHom)).toIntAlgHom).1.2
|
A B : CommRingCat
s : BinaryCofan A B
m : (βA : Type u) β[β€] (βB : Type u) β+* (βs.pt : Type u)
hm : β (j : Discrete WalkingPair), (A.coproductCocone B).ΞΉ.app j β« { hom' := m } = s.ΞΉ.app j
β’ ({ hom' := m }.hom.toIntAlgHom.comp Algebra.TensorProduct.includeLeft,
(AlgHom.restrictScalars β€ { hom' := m }.hom.toIntAlgHom).comp Algebra.TensorProduct.includeRight) =
(β((Algebra.TensorProduct.liftEquiv.symm :
((βA : Type u) β[β€] (βB : Type u) ββ[β€] (βs.pt : Type u)) β
{ fg //
β (x : (βA : Type u)) (y : (βB : Type u)),
Commute ((fg.1 : (βA : Type u) β (βs.pt : Type u)) x) ((fg.2 : (βB : Type u) β (βs.pt : Type u)) y) })
(Hom.hom
(ofHom
(Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom
β―).toRingHom)).toIntAlgHom) :
((βA : Type u) ββ[β€] (βs.pt : Type u)) Γ ((βB : Type u) ββ[β€] (βs.pt : Type u)))
|
constructor
|
_private
|
{ hom' := m }.hom.toIntAlgHom.comp Algebra.TensorProduct.includeLeft =
((Algebra.TensorProduct.liftEquiv.symm :
((βA : Type u) β[β€] (βB : Type u) ββ[β€] (βs.pt : Type u)) β
{ fg //
β (x : (βA : Type u)) (y : (βB : Type u)),
Commute ((fg.1 : (βA : Type u) β (βs.pt : Type u)) x) ((fg.2 : (βB : Type u) β (βs.pt : Type u)) y) })
(Hom.hom
(ofHom
(Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom
sorry).toRingHom)).toIntAlgHom).1.1
|
A B : CommRingCat
s : BinaryCofan A B
m : (βA : Type u) β[β€] (βB : Type u) β+* (βs.pt : Type u)
hm : β (j : Discrete WalkingPair), (A.coproductCocone B).ΞΉ.app j β« { hom' := m } = s.ΞΉ.app j
β’ { hom' := m }.hom.toIntAlgHom.comp Algebra.TensorProduct.includeLeft =
((Algebra.TensorProduct.liftEquiv.symm :
((βA : Type u) β[β€] (βB : Type u) ββ[β€] (βs.pt : Type u)) β
{ fg //
β (x : (βA : Type u)) (y : (βB : Type u)),
Commute ((fg.1 : (βA : Type u) β (βs.pt : Type u)) x)
((fg.2 : (βB : Type u) β (βs.pt : Type u)) y) })
(Hom.hom
(ofHom
(Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom
β―).toRingHom)).toIntAlgHom).1.1 β§
(AlgHom.restrictScalars β€ { hom' := m }.hom.toIntAlgHom).comp Algebra.TensorProduct.includeRight =
((Algebra.TensorProduct.liftEquiv.symm :
((βA : Type u) β[β€] (βB : Type u) ββ[β€] (βs.pt : Type u)) β
{ fg //
β (x : (βA : Type u)) (y : (βB : Type u)),
Commute ((fg.1 : (βA : Type u) β (βs.pt : Type u)) x)
((fg.2 : (βB : Type u) β (βs.pt : Type u)) y) })
(Hom.hom
(ofHom
(Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom
β―).toRingHom)).toIntAlgHom).1.2
|
constructor
|
_private
|
(AlgHom.restrictScalars β€ { hom' := m }.hom.toIntAlgHom).comp Algebra.TensorProduct.includeRight =
((Algebra.TensorProduct.liftEquiv.symm :
((βA : Type u) β[β€] (βB : Type u) ββ[β€] (βs.pt : Type u)) β
{ fg //
β (x : (βA : Type u)) (y : (βB : Type u)),
Commute ((fg.1 : (βA : Type u) β (βs.pt : Type u)) x) ((fg.2 : (βB : Type u) β (βs.pt : Type u)) y) })
(Hom.hom
(ofHom
(Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom
sorry).toRingHom)).toIntAlgHom).1.2
|
A B : CommRingCat
s : BinaryCofan A B
m : (βA : Type u) β[β€] (βB : Type u) β+* (βs.pt : Type u)
hm : β (j : Discrete WalkingPair), (A.coproductCocone B).ΞΉ.app j β« { hom' := m } = s.ΞΉ.app j
_private : { hom' := m }.hom.toIntAlgHom.comp Algebra.TensorProduct.includeLeft =
((Algebra.TensorProduct.liftEquiv.symm :
((βA : Type u) β[β€] (βB : Type u) ββ[β€] (βs.pt : Type u)) β
{ fg //
β (x : (βA : Type u)) (y : (βB : Type u)),
Commute ((fg.1 : (βA : Type u) β (βs.pt : Type u)) x) ((fg.2 : (βB : Type u) β (βs.pt : Type u)) y) })
(Hom.hom
(ofHom
(Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom
β―).toRingHom)).toIntAlgHom).1.1
β’ { hom' := m }.hom.toIntAlgHom.comp Algebra.TensorProduct.includeLeft =
((Algebra.TensorProduct.liftEquiv.symm :
((βA : Type u) β[β€] (βB : Type u) ββ[β€] (βs.pt : Type u)) β
{ fg //
β (x : (βA : Type u)) (y : (βB : Type u)),
Commute ((fg.1 : (βA : Type u) β (βs.pt : Type u)) x)
((fg.2 : (βB : Type u) β (βs.pt : Type u)) y) })
(Hom.hom
(ofHom
(Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom
β―).toRingHom)).toIntAlgHom).1.1 β§
(AlgHom.restrictScalars β€ { hom' := m }.hom.toIntAlgHom).comp Algebra.TensorProduct.includeRight =
((Algebra.TensorProduct.liftEquiv.symm :
((βA : Type u) β[β€] (βB : Type u) ββ[β€] (βs.pt : Type u)) β
{ fg //
β (x : (βA : Type u)) (y : (βB : Type u)),
Commute ((fg.1 : (βA : Type u) β (βs.pt : Type u)) x)
((fg.2 : (βB : Type u) β (βs.pt : Type u)) y) })
(Hom.hom
(ofHom
(Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom
β―).toRingHom)).toIntAlgHom).1.2
|
ext a
|
_private
|
({ hom' := m }.hom.toIntAlgHom.comp Algebra.TensorProduct.includeLeft : (βA : Type u) β (βs.pt : Type u)) a =
(((Algebra.TensorProduct.liftEquiv.symm :
((βA : Type u) β[β€] (βB : Type u) ββ[β€] (βs.pt : Type u)) β
{ fg //
β (x : (βA : Type u)) (y : (βB : Type u)),
Commute ((fg.1 : (βA : Type u) β (βs.pt : Type u)) x)
((fg.2 : (βB : Type u) β (βs.pt : Type u)) y) })
(Hom.hom
(ofHom
(Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom
sorry).toRingHom)).toIntAlgHom).1.1 :
(βA : Type u) β (βs.pt : Type u))
a
|
A B : CommRingCat
s : BinaryCofan A B
m : (βA : Type u) β[β€] (βB : Type u) β+* (βs.pt : Type u)
hm : β (j : Discrete WalkingPair), (A.coproductCocone B).ΞΉ.app j β« { hom' := m } = s.ΞΉ.app j
β’ { hom' := m }.hom.toIntAlgHom.comp Algebra.TensorProduct.includeLeft =
((Algebra.TensorProduct.liftEquiv.symm :
((βA : Type u) β[β€] (βB : Type u) ββ[β€] (βs.pt : Type u)) β
{ fg //
β (x : (βA : Type u)) (y : (βB : Type u)),
Commute ((fg.1 : (βA : Type u) β (βs.pt : Type u)) x) ((fg.2 : (βB : Type u) β (βs.pt : Type u)) y) })
(Hom.hom
(ofHom
(Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom
β―).toRingHom)).toIntAlgHom).1.1
|
ext b
|
_private
|
((AlgHom.restrictScalars β€ { hom' := m }.hom.toIntAlgHom).comp Algebra.TensorProduct.includeRight :
(βB : Type u) β (βs.pt : Type u))
b =
(((Algebra.TensorProduct.liftEquiv.symm :
((βA : Type u) β[β€] (βB : Type u) ββ[β€] (βs.pt : Type u)) β
{ fg //
β (x : (βA : Type u)) (y : (βB : Type u)),
Commute ((fg.1 : (βA : Type u) β (βs.pt : Type u)) x)
((fg.2 : (βB : Type u) β (βs.pt : Type u)) y) })
(Hom.hom
(ofHom
(Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom
sorry).toRingHom)).toIntAlgHom).1.2 :
(βB : Type u) β (βs.pt : Type u))
b
|
A B : CommRingCat
s : BinaryCofan A B
m : (βA : Type u) β[β€] (βB : Type u) β+* (βs.pt : Type u)
hm : β (j : Discrete WalkingPair), (A.coproductCocone B).ΞΉ.app j β« { hom' := m } = s.ΞΉ.app j
β’ (AlgHom.restrictScalars β€ { hom' := m }.hom.toIntAlgHom).comp Algebra.TensorProduct.includeRight =
((Algebra.TensorProduct.liftEquiv.symm :
((βA : Type u) β[β€] (βB : Type u) ββ[β€] (βs.pt : Type u)) β
{ fg //
β (x : (βA : Type u)) (y : (βB : Type u)),
Commute ((fg.1 : (βA : Type u) β (βs.pt : Type u)) x) ((fg.2 : (βB : Type u) β (βs.pt : Type u)) y) })
(Hom.hom
(ofHom
(Algebra.TensorProduct.lift (Hom.hom s.inl).toIntAlgHom (Hom.hom s.inr).toIntAlgHom
β―).toRingHom)).toIntAlgHom).1.2
|
apply hasStrictTerminalObjects_of_terminal_is_strict (CommRingCat.of PUnit)
|
apply
|
β (A : CommRingCat) (f : of PUnit.{u + 1} βΆ A), IsIso f
|
β’ HasStrictTerminalObjects CommRingCat
|
refine β¨ofHom β¨1, rfl, by simpβ©, ?_, ?_β©
|
refine_1
|
f β« ofHom { toMonoidHom := 1, map_zero' := sorry, map_add' := sorry } = π (of PUnit.{u + 1})
|
X : CommRingCat
f : of PUnit.{u + 1} βΆ X
β’ IsIso f
|
refine β¨ofHom β¨1, rfl, by simpβ©, ?_, ?_β©
|
refine_2
|
ofHom { toMonoidHom := 1, map_zero' := sorry, map_add' := sorry } β« f = π X
|
X : CommRingCat
f : of PUnit.{u + 1} βΆ X
refine_1 : f β« ofHom { toMonoidHom := 1, map_zero' := β―, map_add' := β― } = π (of PUnit.{u + 1})
β’ IsIso f
|
ext x
|
refine_2
|
(Hom.hom (ofHom { toMonoidHom := 1, map_zero' := sorry, map_add' := sorry } β« f) : (βX : Type u) β (βX : Type u)) x =
(Hom.hom (π X) : (βX : Type u) β (βX : Type u)) x
|
X : CommRingCat
f : of PUnit.{u + 1} βΆ X
β’ ofHom { toMonoidHom := 1, map_zero' := β―, map_add' := β― } β« f = π X
|
have e : (0 : X) = 1 := by
rw [β f.hom.map_one, β f.hom.map_zero]
|
refine_2
|
0 = 1
|
X : CommRingCat
f : of PUnit.{u + 1} βΆ X
x : (βX : Type u)
β’ (Hom.hom (ofHom { toMonoidHom := 1, map_zero' := β―, map_add' := β― } β« f) : (βX : Type u) β (βX : Type u)) x =
(Hom.hom (π X) : (βX : Type u) β (βX : Type u)) x
|
β f.hom.map_one,
|
this
|
0 = (Hom.hom f : (β(of PUnit.{u + 1}) : Type u) β (βX : Type u)) 1
|
X : CommRingCat
f : of PUnit.{u + 1} βΆ X
x : (βX : Type u)
β’ 0 = 1
|
β f.hom.map_zero
|
this
|
(Hom.hom f : (β(of PUnit.{u + 1}) : Type u) β (βX : Type u)) 0 =
(Hom.hom f : (β(of PUnit.{u + 1}) : Type u) β (βX : Type u)) 1
|
X : CommRingCat
f : of PUnit.{u + 1} βΆ X
x : (βX : Type u)
β’ 0 = (Hom.hom f : (β(of PUnit.{u + 1}) : Type u) β (βX : Type u)) 1
|
replace e : 0 * x = 1 * x := congr_arg (Β· * x) e
|
refine_2
|
0 * x = 1 * x
|
X : CommRingCat
f : of PUnit.{u + 1} βΆ X
x : (βX : Type u)
e : 0 = 1
β’ (Hom.hom (ofHom { toMonoidHom := 1, map_zero' := β―, map_add' := β― } β« f) : (βX : Type u) β (βX : Type u)) x =
(Hom.hom (π X) : (βX : Type u) β (βX : Type u)) x
|
rw [one_mul, zero_mul, β f.hom.map_zero] at e
|
refine_2
|
(Hom.hom f : (β(of PUnit.{u + 1}) : Type u) β (βX : Type u)) 0 = x
|
X : CommRingCat
f : of PUnit.{u + 1} βΆ X
x : (βX : Type u)
e : 0 * x = 1 * x
β’ (Hom.hom (ofHom { toMonoidHom := 1, map_zero' := β―, map_add' := β― } β« f) : (βX : Type u) β (βX : Type u)) x =
(Hom.hom (π X) : (βX : Type u) β (βX : Type u)) x
|
one_mul,
|
refine_2
|
0 * x = x
|
X : CommRingCat
f : of PUnit.{u + 1} βΆ X
x : (βX : Type u)
e : 0 * x = 1 * x
β’ (Hom.hom (ofHom { toMonoidHom := 1, map_zero' := β―, map_add' := β― } β« f) : (βX : Type u) β (βX : Type u)) x =
(Hom.hom (π X) : (βX : Type u) β (βX : Type u)) x
|
zero_mul,
|
refine_2
|
0 = x
|
X : CommRingCat
f : of PUnit.{u + 1} βΆ X
x : (βX : Type u)
e : 0 * x = x
β’ (Hom.hom (ofHom { toMonoidHom := 1, map_zero' := β―, map_add' := β― } β« f) : (βX : Type u) β (βX : Type u)) x =
(Hom.hom (π X) : (βX : Type u) β (βX : Type u)) x
|
β f.hom.map_zero
|
refine_2
|
(Hom.hom f : (β(of PUnit.{u + 1}) : Type u) β (βX : Type u)) 0 = x
|
X : CommRingCat
f : of PUnit.{u + 1} βΆ X
x : (βX : Type u)
e : 0 = x
β’ (Hom.hom (ofHom { toMonoidHom := 1, map_zero' := β―, map_add' := β― } β« f) : (βX : Type u) β (βX : Type u)) x =
(Hom.hom (π X) : (βX : Type u) β (βX : Type u)) x
|
ext : 1
|
hf
|
Hom.hom xβ = Hom.hom default
|
R : CommRingCat
xβ : of (ULift.{u, 0} β€) βΆ R
β’ xβ = default
|
rw [β RingHom.cancel_right (f := (ULift.ringEquiv.{0, u} (R := β€)).symm.toRingHom)
(hf := ULift.ringEquiv.symm.surjective)]
|
hf
|
(Hom.hom xβ).comp ULift.ringEquiv.symm.toRingHom = (Hom.hom default).comp ULift.ringEquiv.symm.toRingHom
|
R : CommRingCat
xβ : of (ULift.{u, 0} β€) βΆ R
β’ Hom.hom xβ = Hom.hom default
|
β RingHom.cancel_right (f := (ULift.ringEquiv.{0, u} (R := β€)).symm.toRingHom)
(hf := ULift.ringEquiv.symm.surjective)
|
hf
|
(Hom.hom xβ).comp ULift.ringEquiv.symm.toRingHom = (Hom.hom default).comp ULift.ringEquiv.symm.toRingHom
|
R : CommRingCat
xβ : of (ULift.{u, 0} β€) βΆ R
β’ Hom.hom xβ = Hom.hom default
|
ext
|
hf
|
(Hom.hom
(ofHom ((Hom.hom (c.Ο.app { as := WalkingPair.left })).prod (Hom.hom (c.Ο.app { as := WalkingPair.right }))) β«
(A.prodFan B).Ο.app j) :
(βc.pt : Type u) β (β((pair A B).obj j) : Type u))
xβ =
(Hom.hom (c.Ο.app j) : (βc.pt : Type u) β (β((pair A B).obj j) : Type u)) xβ
|
A B : CommRingCat
c : Cone (pair A B)
j : Discrete WalkingPair
β’ ofHom ((Hom.hom (c.Ο.app { as := WalkingPair.left })).prod (Hom.hom (c.Ο.app { as := WalkingPair.right }))) β«
(A.prodFan B).Ο.app j =
c.Ο.app j
|
rcases j with β¨β¨β©β© <;>
simp only [pair_obj_left, prodFan_pt, BinaryFan.Ο_app_left, BinaryFan.Ο_app_right,
FunctorToTypes.map_comp_apply, forget_map, coe_of, RingHom.prod_apply]
|
hf
|
(Hom.hom (ofHom ((Hom.hom (BinaryFan.fst c)).prod (Hom.hom (BinaryFan.snd c))) β« (A.prodFan B).fst) :
(βc.pt : Type u) β (βA : Type u))
xβ =
(Hom.hom (BinaryFan.fst c) : (βc.pt : Type u) β (βA : Type u)) xβ
|
A B : CommRingCat
c : Cone (pair A B)
j : Discrete WalkingPair
xβ : (βc.pt : Type u)
β’ (Hom.hom
(ofHom ((Hom.hom (c.Ο.app { as := WalkingPair.left })).prod (Hom.hom (c.Ο.app { as := WalkingPair.right }))) β«
(A.prodFan B).Ο.app j) :
(βc.pt : Type u) β (β((pair A B).obj j) : Type u))
xβ =
(Hom.hom (c.Ο.app j) : (βc.pt : Type u) β (β((pair A B).obj j) : Type u)) xβ
|
rcases j with β¨β¨β©β© <;>
simp only [pair_obj_left, prodFan_pt, BinaryFan.Ο_app_left, BinaryFan.Ο_app_right,
FunctorToTypes.map_comp_apply, forget_map, coe_of, RingHom.prod_apply]
|
hf
|
(Hom.hom (ofHom ((Hom.hom (BinaryFan.fst c)).prod (Hom.hom (BinaryFan.snd c))) β« (A.prodFan B).snd) :
(βc.pt : Type u) β (β((pair A B).obj { as := WalkingPair.right }) : Type u))
xβ =
(Hom.hom (BinaryFan.snd c) : (βc.pt : Type u) β (β((pair A B).obj { as := WalkingPair.right }) : Type u)) xβ
|
A B : CommRingCat
c : Cone (pair A B)
j : Discrete WalkingPair
xβ : (βc.pt : Type u)
hf : (Hom.hom (ofHom ((Hom.hom (BinaryFan.fst c)).prod (Hom.hom (BinaryFan.snd c))) β« (A.prodFan B).fst) :
(βc.pt : Type u) β (βA : Type u))
xβ =
(Hom.hom (BinaryFan.fst c) : (βc.pt : Type u) β (βA : Type u)) xβ
β’ (Hom.hom
(ofHom ((Hom.hom (c.Ο.app { as := WalkingPair.left })).prod (Hom.hom (c.Ο.app { as := WalkingPair.right }))) β«
(A.prodFan B).Ο.app j) :
(βc.pt : Type u) β (β((pair A B).obj j) : Type u))
xβ =
(Hom.hom (c.Ο.app j) : (βc.pt : Type u) β (β((pair A B).obj j) : Type u)) xβ
|
rcases j with β¨β¨β©β©
|
hf
|
(Hom.hom
(ofHom ((Hom.hom (c.Ο.app { as := WalkingPair.left })).prod (Hom.hom (c.Ο.app { as := WalkingPair.right }))) β«
(A.prodFan B).Ο.app { as := WalkingPair.left }) :
(βc.pt : Type u) β (β((pair A B).obj { as := WalkingPair.left }) : Type u))
xβ =
(Hom.hom (c.Ο.app { as := WalkingPair.left }) :
(βc.pt : Type u) β (β((pair A B).obj { as := WalkingPair.left }) : Type u))
xβ
|
A B : CommRingCat
c : Cone (pair A B)
j : Discrete WalkingPair
xβ : (βc.pt : Type u)
β’ (Hom.hom
(ofHom ((Hom.hom (c.Ο.app { as := WalkingPair.left })).prod (Hom.hom (c.Ο.app { as := WalkingPair.right }))) β«
(A.prodFan B).Ο.app j) :
(βc.pt : Type u) β (β((pair A B).obj j) : Type u))
xβ =
(Hom.hom (c.Ο.app j) : (βc.pt : Type u) β (β((pair A B).obj j) : Type u)) xβ
|
rcases j with β¨β¨β©β©
|
hf
|
(Hom.hom
(ofHom ((Hom.hom (c.Ο.app { as := WalkingPair.left })).prod (Hom.hom (c.Ο.app { as := WalkingPair.right }))) β«
(A.prodFan B).Ο.app { as := WalkingPair.right }) :
(βc.pt : Type u) β (β((pair A B).obj { as := WalkingPair.right }) : Type u))
xβ =
(Hom.hom (c.Ο.app { as := WalkingPair.right }) :
(βc.pt : Type u) β (β((pair A B).obj { as := WalkingPair.right }) : Type u))
xβ
|
A B : CommRingCat
c : Cone (pair A B)
j : Discrete WalkingPair
xβ : (βc.pt : Type u)
hf : (Hom.hom
(ofHom ((Hom.hom (c.Ο.app { as := WalkingPair.left })).prod (Hom.hom (c.Ο.app { as := WalkingPair.right }))) β«
(A.prodFan B).Ο.app { as := WalkingPair.left }) :
(βc.pt : Type u) β (β((pair A B).obj { as := WalkingPair.left }) : Type u))
xβ =
(Hom.hom (c.Ο.app { as := WalkingPair.left }) :
(βc.pt : Type u) β (β((pair A B).obj { as := WalkingPair.left }) : Type u))
xβ
β’ (Hom.hom
(ofHom ((Hom.hom (c.Ο.app { as := WalkingPair.left })).prod (Hom.hom (c.Ο.app { as := WalkingPair.right }))) β«
(A.prodFan B).Ο.app j) :
(βc.pt : Type u) β (β((pair A B).obj j) : Type u))
xβ =
(Hom.hom (c.Ο.app j) : (βc.pt : Type u) β (β((pair A B).obj j) : Type u)) xβ
|
simp only [pair_obj_left, prodFan_pt, BinaryFan.Ο_app_left, BinaryFan.Ο_app_right,
FunctorToTypes.map_comp_apply, forget_map, coe_of, RingHom.prod_apply]
|
hf
|
(Hom.hom (ofHom ((Hom.hom (BinaryFan.fst c)).prod (Hom.hom (BinaryFan.snd c))) β« (A.prodFan B).fst) :
(βc.pt : Type u) β (βA : Type u))
xβ =
(Hom.hom (BinaryFan.fst c) : (βc.pt : Type u) β (βA : Type u)) xβ
|
A B : CommRingCat
c : Cone (pair A B)
xβ : (βc.pt : Type u)
β’ (Hom.hom
(ofHom ((Hom.hom (c.Ο.app { as := WalkingPair.left })).prod (Hom.hom (c.Ο.app { as := WalkingPair.right }))) β«
(A.prodFan B).Ο.app { as := WalkingPair.left }) :
(βc.pt : Type u) β (β((pair A B).obj { as := WalkingPair.left }) : Type u))
xβ =
(Hom.hom (c.Ο.app { as := WalkingPair.left }) :
(βc.pt : Type u) β (β((pair A B).obj { as := WalkingPair.left }) : Type u))
xβ
|
simp only [pair_obj_left, prodFan_pt, BinaryFan.Ο_app_left, BinaryFan.Ο_app_right,
FunctorToTypes.map_comp_apply, forget_map, coe_of, RingHom.prod_apply]
|
hf
|
(Hom.hom (ofHom ((Hom.hom (BinaryFan.fst c)).prod (Hom.hom (BinaryFan.snd c))) β« (A.prodFan B).snd) :
(βc.pt : Type u) β (β((pair A B).obj { as := WalkingPair.right }) : Type u))
xβ =
(Hom.hom (BinaryFan.snd c) : (βc.pt : Type u) β (β((pair A B).obj { as := WalkingPair.right }) : Type u)) xβ
|
A B : CommRingCat
c : Cone (pair A B)
xβ : (βc.pt : Type u)
β’ (Hom.hom
(ofHom ((Hom.hom (c.Ο.app { as := WalkingPair.left })).prod (Hom.hom (c.Ο.app { as := WalkingPair.right }))) β«
(A.prodFan B).Ο.app { as := WalkingPair.right }) :
(βc.pt : Type u) β (β((pair A B).obj { as := WalkingPair.right }) : Type u))
xβ =
(Hom.hom (c.Ο.app { as := WalkingPair.right }) :
(βc.pt : Type u) β (β((pair A B).obj { as := WalkingPair.right }) : Type u))
xβ
|
ext x
|
hf
|
(Hom.hom m : (βs.pt : Type u) β (β(A.prodFan B).pt : Type u)) x =
(Hom.hom
(ofHom ((Hom.hom (s.Ο.app { as := WalkingPair.left })).prod (Hom.hom (s.Ο.app { as := WalkingPair.right })))) :
(βs.pt : Type u) β (β(A.prodFan B).pt : Type u))
x
|
A B : CommRingCat
s : Cone (pair A B)
m : s.pt βΆ (A.prodFan B).pt
h : β (j : Discrete WalkingPair), m β« (A.prodFan B).Ο.app j = s.Ο.app j
β’ m = ofHom ((Hom.hom (s.Ο.app { as := WalkingPair.left })).prod (Hom.hom (s.Ο.app { as := WalkingPair.right })))
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.