tactic
stringlengths 1
5.59k
| name
stringlengths 1
85
| haveDraft
stringlengths 1
44.5k
| goal
stringlengths 8
62.2k
|
---|---|---|---|
obtain rfl := (ite_ne_right_iff.mp (ne_of_eq_of_ne hm.symm hu)).1
|
refine_1
|
mulSingle k u * mulSingle m v = mulSingle m u * mulSingle n v →
(((if True then u else 1) * if k = m then v else 1) = (if k = m then u else 1) * if k = n then v else 1) →
(((if m = k then u else 1) * if True then v else 1) = (if m = m then u else 1) * if m = n then v else 1) →
((if True then u else 1) = if m = m then v else 1) →
(((if n = m then u else 1) * if True then v else 1) = (if n = k then u else 1) * if n = m then v else 1) →
k = m ∧ m = n ∨ u = v ∧ k = n ∧ m = m ∨ u * v = 1 ∧ k = m ∧ m = n
|
I : Type u
inst✝¹ : DecidableEq I
M : Type u_4
inst✝ : CommMonoid M
k l m n : I
u v : M
hu : u ≠ 1
hv : v ≠ 1
h : mulSingle k u * mulSingle l v = mulSingle m u * mulSingle n v
hk : ((if True then u else 1) * if k = l then v else 1) = (if k = m then u else 1) * if k = n then v else 1
hl : ((if l = k then u else 1) * if True then v else 1) = (if l = m then u else 1) * if l = n then v else 1
hm : (if True then u else 1) = if m = l then v else 1
hn : ((if n = m then u else 1) * if True then v else 1) = (if n = k then u else 1) * if n = l then v else 1
hkm : k ≠ m
hmn : m ≠ n
⊢ k = m ∧ l = n ∨ u = v ∧ k = n ∧ l = m ∨ u * v = 1 ∧ k = l ∧ m = n
|
rw [if_neg hkm, if_neg hkm, one_mul, mul_one] at hk
|
refine_1
|
((if n = m then u else 1) * if True then v else 1) = (if n = k then u else 1) * if n = m then v else 1
|
I : Type u
inst✝¹ : DecidableEq I
M : Type u_4
inst✝ : CommMonoid M
k m n : I
u v : M
hu : u ≠ 1
hv : v ≠ 1
hkm : k ≠ m
hmn : m ≠ n
h : mulSingle k u * mulSingle m v = mulSingle m u * mulSingle n v
hk : ((if True then u else 1) * if k = m then v else 1) = (if k = m then u else 1) * if k = n then v else 1
hl : ((if m = k then u else 1) * if True then v else 1) = (if m = m then u else 1) * if m = n then v else 1
hm : (if True then u else 1) = if m = m then v else 1
hn : ((if n = m then u else 1) * if True then v else 1) = (if n = k then u else 1) * if n = m then v else 1
⊢ k = m ∧ m = n ∨ u = v ∧ k = n ∧ m = m ∨ u * v = 1 ∧ k = m ∧ m = n
|
rw [if_neg hkm, if_neg hkm, one_mul, mul_one] at hk
|
refine_1
|
(if True then u else 1) = if m = m then v else 1
|
I : Type u
inst✝¹ : DecidableEq I
M : Type u_4
inst✝ : CommMonoid M
k m n : I
u v : M
hu : u ≠ 1
hv : v ≠ 1
hkm : k ≠ m
hmn : m ≠ n
h : mulSingle k u * mulSingle m v = mulSingle m u * mulSingle n v
hk : ((if True then u else 1) * if k = m then v else 1) = (if k = m then u else 1) * if k = n then v else 1
hl : ((if m = k then u else 1) * if True then v else 1) = (if m = m then u else 1) * if m = n then v else 1
hm : (if True then u else 1) = if m = m then v else 1
hn : ((if n = m then u else 1) * if True then v else 1) = (if n = k then u else 1) * if n = m then v else 1
⊢ k = m ∧ m = n ∨ u = v ∧ k = n ∧ m = m ∨ u * v = 1 ∧ k = m ∧ m = n
|
rw [if_neg hkm, if_neg hkm, one_mul, mul_one] at hk
|
refine_1
|
((if m = k then u else 1) * if True then v else 1) = (if m = m then u else 1) * if m = n then v else 1
|
I : Type u
inst✝¹ : DecidableEq I
M : Type u_4
inst✝ : CommMonoid M
k m n : I
u v : M
hu : u ≠ 1
hv : v ≠ 1
hkm : k ≠ m
hmn : m ≠ n
h : mulSingle k u * mulSingle m v = mulSingle m u * mulSingle n v
hk : ((if True then u else 1) * if k = m then v else 1) = (if k = m then u else 1) * if k = n then v else 1
hl : ((if m = k then u else 1) * if True then v else 1) = (if m = m then u else 1) * if m = n then v else 1
hm : (if True then u else 1) = if m = m then v else 1
hn : ((if n = m then u else 1) * if True then v else 1) = (if n = k then u else 1) * if n = m then v else 1
⊢ k = m ∧ m = n ∨ u = v ∧ k = n ∧ m = m ∨ u * v = 1 ∧ k = m ∧ m = n
|
rw [if_neg hkm, if_neg hkm, one_mul, mul_one] at hk
|
refine_1
|
(if True then u else 1) = if k = n then v else 1
|
I : Type u
inst✝¹ : DecidableEq I
M : Type u_4
inst✝ : CommMonoid M
k m n : I
u v : M
hu : u ≠ 1
hv : v ≠ 1
hkm : k ≠ m
hmn : m ≠ n
h : mulSingle k u * mulSingle m v = mulSingle m u * mulSingle n v
hk : ((if True then u else 1) * if k = m then v else 1) = (if k = m then u else 1) * if k = n then v else 1
hl : ((if m = k then u else 1) * if True then v else 1) = (if m = m then u else 1) * if m = n then v else 1
hm : (if True then u else 1) = if m = m then v else 1
hn : ((if n = m then u else 1) * if True then v else 1) = (if n = k then u else 1) * if n = m then v else 1
⊢ k = m ∧ m = n ∨ u = v ∧ k = n ∧ m = m ∨ u * v = 1 ∧ k = m ∧ m = n
|
if_neg hkm,
|
refine_1
|
((if n = m then u else 1) * if True then v else 1) = (if n = k then u else 1) * if n = m then v else 1
|
I : Type u
inst✝¹ : DecidableEq I
M : Type u_4
inst✝ : CommMonoid M
k m n : I
u v : M
hu : u ≠ 1
hv : v ≠ 1
hkm : k ≠ m
hmn : m ≠ n
h : mulSingle k u * mulSingle m v = mulSingle m u * mulSingle n v
hk : ((if True then u else 1) * if k = m then v else 1) = (if k = m then u else 1) * if k = n then v else 1
hl : ((if m = k then u else 1) * if True then v else 1) = (if m = m then u else 1) * if m = n then v else 1
hm : (if True then u else 1) = if m = m then v else 1
hn : ((if n = m then u else 1) * if True then v else 1) = (if n = k then u else 1) * if n = m then v else 1
⊢ k = m ∧ m = n ∨ u = v ∧ k = n ∧ m = m ∨ u * v = 1 ∧ k = m ∧ m = n
|
if_neg hkm,
|
refine_1
|
(if True then u else 1) = if m = m then v else 1
|
I : Type u
inst✝¹ : DecidableEq I
M : Type u_4
inst✝ : CommMonoid M
k m n : I
u v : M
hu : u ≠ 1
hv : v ≠ 1
hkm : k ≠ m
hmn : m ≠ n
h : mulSingle k u * mulSingle m v = mulSingle m u * mulSingle n v
hk : ((if True then u else 1) * if k = m then v else 1) = (if k = m then u else 1) * if k = n then v else 1
hl : ((if m = k then u else 1) * if True then v else 1) = (if m = m then u else 1) * if m = n then v else 1
hm : (if True then u else 1) = if m = m then v else 1
hn : ((if n = m then u else 1) * if True then v else 1) = (if n = k then u else 1) * if n = m then v else 1
⊢ k = m ∧ m = n ∨ u = v ∧ k = n ∧ m = m ∨ u * v = 1 ∧ k = m ∧ m = n
|
if_neg hkm,
|
refine_1
|
((if m = k then u else 1) * if True then v else 1) = (if m = m then u else 1) * if m = n then v else 1
|
I : Type u
inst✝¹ : DecidableEq I
M : Type u_4
inst✝ : CommMonoid M
k m n : I
u v : M
hu : u ≠ 1
hv : v ≠ 1
hkm : k ≠ m
hmn : m ≠ n
h : mulSingle k u * mulSingle m v = mulSingle m u * mulSingle n v
hk : ((if True then u else 1) * if k = m then v else 1) = (if k = m then u else 1) * if k = n then v else 1
hl : ((if m = k then u else 1) * if True then v else 1) = (if m = m then u else 1) * if m = n then v else 1
hm : (if True then u else 1) = if m = m then v else 1
hn : ((if n = m then u else 1) * if True then v else 1) = (if n = k then u else 1) * if n = m then v else 1
⊢ k = m ∧ m = n ∨ u = v ∧ k = n ∧ m = m ∨ u * v = 1 ∧ k = m ∧ m = n
|
if_neg hkm,
|
refine_1
|
(if True then u else 1) * 1 = (if k = m then u else 1) * if k = n then v else 1
|
I : Type u
inst✝¹ : DecidableEq I
M : Type u_4
inst✝ : CommMonoid M
k m n : I
u v : M
hu : u ≠ 1
hv : v ≠ 1
hkm : k ≠ m
hmn : m ≠ n
h : mulSingle k u * mulSingle m v = mulSingle m u * mulSingle n v
hk : ((if True then u else 1) * if k = m then v else 1) = (if k = m then u else 1) * if k = n then v else 1
hl : ((if m = k then u else 1) * if True then v else 1) = (if m = m then u else 1) * if m = n then v else 1
hm : (if True then u else 1) = if m = m then v else 1
hn : ((if n = m then u else 1) * if True then v else 1) = (if n = k then u else 1) * if n = m then v else 1
⊢ k = m ∧ m = n ∨ u = v ∧ k = n ∧ m = m ∨ u * v = 1 ∧ k = m ∧ m = n
|
if_neg hkm,
|
refine_1
|
((if n = m then u else 1) * if True then v else 1) = (if n = k then u else 1) * if n = m then v else 1
|
I : Type u
inst✝¹ : DecidableEq I
M : Type u_4
inst✝ : CommMonoid M
k m n : I
u v : M
hu : u ≠ 1
hv : v ≠ 1
hkm : k ≠ m
hmn : m ≠ n
h : mulSingle k u * mulSingle m v = mulSingle m u * mulSingle n v
hk : (if True then u else 1) * 1 = (if k = m then u else 1) * if k = n then v else 1
hl : ((if m = k then u else 1) * if True then v else 1) = (if m = m then u else 1) * if m = n then v else 1
hm : (if True then u else 1) = if m = m then v else 1
hn : ((if n = m then u else 1) * if True then v else 1) = (if n = k then u else 1) * if n = m then v else 1
⊢ k = m ∧ m = n ∨ u = v ∧ k = n ∧ m = m ∨ u * v = 1 ∧ k = m ∧ m = n
|
if_neg hkm,
|
refine_1
|
(if True then u else 1) = if m = m then v else 1
|
I : Type u
inst✝¹ : DecidableEq I
M : Type u_4
inst✝ : CommMonoid M
k m n : I
u v : M
hu : u ≠ 1
hv : v ≠ 1
hkm : k ≠ m
hmn : m ≠ n
h : mulSingle k u * mulSingle m v = mulSingle m u * mulSingle n v
hk : (if True then u else 1) * 1 = (if k = m then u else 1) * if k = n then v else 1
hl : ((if m = k then u else 1) * if True then v else 1) = (if m = m then u else 1) * if m = n then v else 1
hm : (if True then u else 1) = if m = m then v else 1
hn : ((if n = m then u else 1) * if True then v else 1) = (if n = k then u else 1) * if n = m then v else 1
⊢ k = m ∧ m = n ∨ u = v ∧ k = n ∧ m = m ∨ u * v = 1 ∧ k = m ∧ m = n
|
if_neg hkm,
|
refine_1
|
((if m = k then u else 1) * if True then v else 1) = (if m = m then u else 1) * if m = n then v else 1
|
I : Type u
inst✝¹ : DecidableEq I
M : Type u_4
inst✝ : CommMonoid M
k m n : I
u v : M
hu : u ≠ 1
hv : v ≠ 1
hkm : k ≠ m
hmn : m ≠ n
h : mulSingle k u * mulSingle m v = mulSingle m u * mulSingle n v
hk : (if True then u else 1) * 1 = (if k = m then u else 1) * if k = n then v else 1
hl : ((if m = k then u else 1) * if True then v else 1) = (if m = m then u else 1) * if m = n then v else 1
hm : (if True then u else 1) = if m = m then v else 1
hn : ((if n = m then u else 1) * if True then v else 1) = (if n = k then u else 1) * if n = m then v else 1
⊢ k = m ∧ m = n ∨ u = v ∧ k = n ∧ m = m ∨ u * v = 1 ∧ k = m ∧ m = n
|
if_neg hkm,
|
refine_1
|
(if True then u else 1) * 1 = 1 * if k = n then v else 1
|
I : Type u
inst✝¹ : DecidableEq I
M : Type u_4
inst✝ : CommMonoid M
k m n : I
u v : M
hu : u ≠ 1
hv : v ≠ 1
hkm : k ≠ m
hmn : m ≠ n
h : mulSingle k u * mulSingle m v = mulSingle m u * mulSingle n v
hk : (if True then u else 1) * 1 = (if k = m then u else 1) * if k = n then v else 1
hl : ((if m = k then u else 1) * if True then v else 1) = (if m = m then u else 1) * if m = n then v else 1
hm : (if True then u else 1) = if m = m then v else 1
hn : ((if n = m then u else 1) * if True then v else 1) = (if n = k then u else 1) * if n = m then v else 1
⊢ k = m ∧ m = n ∨ u = v ∧ k = n ∧ m = m ∨ u * v = 1 ∧ k = m ∧ m = n
|
one_mul,
|
refine_1
|
((if n = m then u else 1) * if True then v else 1) = (if n = k then u else 1) * if n = m then v else 1
|
I : Type u
inst✝¹ : DecidableEq I
M : Type u_4
inst✝ : CommMonoid M
k m n : I
u v : M
hu : u ≠ 1
hv : v ≠ 1
hkm : k ≠ m
hmn : m ≠ n
h : mulSingle k u * mulSingle m v = mulSingle m u * mulSingle n v
hk : (if True then u else 1) * 1 = 1 * if k = n then v else 1
hl : ((if m = k then u else 1) * if True then v else 1) = (if m = m then u else 1) * if m = n then v else 1
hm : (if True then u else 1) = if m = m then v else 1
hn : ((if n = m then u else 1) * if True then v else 1) = (if n = k then u else 1) * if n = m then v else 1
⊢ k = m ∧ m = n ∨ u = v ∧ k = n ∧ m = m ∨ u * v = 1 ∧ k = m ∧ m = n
|
one_mul,
|
refine_1
|
(if True then u else 1) = if m = m then v else 1
|
I : Type u
inst✝¹ : DecidableEq I
M : Type u_4
inst✝ : CommMonoid M
k m n : I
u v : M
hu : u ≠ 1
hv : v ≠ 1
hkm : k ≠ m
hmn : m ≠ n
h : mulSingle k u * mulSingle m v = mulSingle m u * mulSingle n v
hk : (if True then u else 1) * 1 = 1 * if k = n then v else 1
hl : ((if m = k then u else 1) * if True then v else 1) = (if m = m then u else 1) * if m = n then v else 1
hm : (if True then u else 1) = if m = m then v else 1
hn : ((if n = m then u else 1) * if True then v else 1) = (if n = k then u else 1) * if n = m then v else 1
⊢ k = m ∧ m = n ∨ u = v ∧ k = n ∧ m = m ∨ u * v = 1 ∧ k = m ∧ m = n
|
one_mul,
|
refine_1
|
((if m = k then u else 1) * if True then v else 1) = (if m = m then u else 1) * if m = n then v else 1
|
I : Type u
inst✝¹ : DecidableEq I
M : Type u_4
inst✝ : CommMonoid M
k m n : I
u v : M
hu : u ≠ 1
hv : v ≠ 1
hkm : k ≠ m
hmn : m ≠ n
h : mulSingle k u * mulSingle m v = mulSingle m u * mulSingle n v
hk : (if True then u else 1) * 1 = 1 * if k = n then v else 1
hl : ((if m = k then u else 1) * if True then v else 1) = (if m = m then u else 1) * if m = n then v else 1
hm : (if True then u else 1) = if m = m then v else 1
hn : ((if n = m then u else 1) * if True then v else 1) = (if n = k then u else 1) * if n = m then v else 1
⊢ k = m ∧ m = n ∨ u = v ∧ k = n ∧ m = m ∨ u * v = 1 ∧ k = m ∧ m = n
|
one_mul,
|
refine_1
|
(if True then u else 1) * 1 = if k = n then v else 1
|
I : Type u
inst✝¹ : DecidableEq I
M : Type u_4
inst✝ : CommMonoid M
k m n : I
u v : M
hu : u ≠ 1
hv : v ≠ 1
hkm : k ≠ m
hmn : m ≠ n
h : mulSingle k u * mulSingle m v = mulSingle m u * mulSingle n v
hk : (if True then u else 1) * 1 = 1 * if k = n then v else 1
hl : ((if m = k then u else 1) * if True then v else 1) = (if m = m then u else 1) * if m = n then v else 1
hm : (if True then u else 1) = if m = m then v else 1
hn : ((if n = m then u else 1) * if True then v else 1) = (if n = k then u else 1) * if n = m then v else 1
⊢ k = m ∧ m = n ∨ u = v ∧ k = n ∧ m = m ∨ u * v = 1 ∧ k = m ∧ m = n
|
mul_one
|
refine_1
|
((if n = m then u else 1) * if True then v else 1) = (if n = k then u else 1) * if n = m then v else 1
|
I : Type u
inst✝¹ : DecidableEq I
M : Type u_4
inst✝ : CommMonoid M
k m n : I
u v : M
hu : u ≠ 1
hv : v ≠ 1
hkm : k ≠ m
hmn : m ≠ n
h : mulSingle k u * mulSingle m v = mulSingle m u * mulSingle n v
hk : (if True then u else 1) * 1 = if k = n then v else 1
hl : ((if m = k then u else 1) * if True then v else 1) = (if m = m then u else 1) * if m = n then v else 1
hm : (if True then u else 1) = if m = m then v else 1
hn : ((if n = m then u else 1) * if True then v else 1) = (if n = k then u else 1) * if n = m then v else 1
⊢ k = m ∧ m = n ∨ u = v ∧ k = n ∧ m = m ∨ u * v = 1 ∧ k = m ∧ m = n
|
mul_one
|
refine_1
|
(if True then u else 1) = if m = m then v else 1
|
I : Type u
inst✝¹ : DecidableEq I
M : Type u_4
inst✝ : CommMonoid M
k m n : I
u v : M
hu : u ≠ 1
hv : v ≠ 1
hkm : k ≠ m
hmn : m ≠ n
h : mulSingle k u * mulSingle m v = mulSingle m u * mulSingle n v
hk : (if True then u else 1) * 1 = if k = n then v else 1
hl : ((if m = k then u else 1) * if True then v else 1) = (if m = m then u else 1) * if m = n then v else 1
hm : (if True then u else 1) = if m = m then v else 1
hn : ((if n = m then u else 1) * if True then v else 1) = (if n = k then u else 1) * if n = m then v else 1
⊢ k = m ∧ m = n ∨ u = v ∧ k = n ∧ m = m ∨ u * v = 1 ∧ k = m ∧ m = n
|
mul_one
|
refine_1
|
((if m = k then u else 1) * if True then v else 1) = (if m = m then u else 1) * if m = n then v else 1
|
I : Type u
inst✝¹ : DecidableEq I
M : Type u_4
inst✝ : CommMonoid M
k m n : I
u v : M
hu : u ≠ 1
hv : v ≠ 1
hkm : k ≠ m
hmn : m ≠ n
h : mulSingle k u * mulSingle m v = mulSingle m u * mulSingle n v
hk : (if True then u else 1) * 1 = if k = n then v else 1
hl : ((if m = k then u else 1) * if True then v else 1) = (if m = m then u else 1) * if m = n then v else 1
hm : (if True then u else 1) = if m = m then v else 1
hn : ((if n = m then u else 1) * if True then v else 1) = (if n = k then u else 1) * if n = m then v else 1
⊢ k = m ∧ m = n ∨ u = v ∧ k = n ∧ m = m ∨ u * v = 1 ∧ k = m ∧ m = n
|
mul_one
|
refine_1
|
(if True then u else 1) = if k = n then v else 1
|
I : Type u
inst✝¹ : DecidableEq I
M : Type u_4
inst✝ : CommMonoid M
k m n : I
u v : M
hu : u ≠ 1
hv : v ≠ 1
hkm : k ≠ m
hmn : m ≠ n
h : mulSingle k u * mulSingle m v = mulSingle m u * mulSingle n v
hk : (if True then u else 1) * 1 = if k = n then v else 1
hl : ((if m = k then u else 1) * if True then v else 1) = (if m = m then u else 1) * if m = n then v else 1
hm : (if True then u else 1) = if m = m then v else 1
hn : ((if n = m then u else 1) * if True then v else 1) = (if n = k then u else 1) * if n = m then v else 1
⊢ k = m ∧ m = n ∨ u = v ∧ k = n ∧ m = m ∨ u * v = 1 ∧ k = m ∧ m = n
|
obtain rfl := (ite_ne_right_iff.mp (ne_of_eq_of_ne hk.symm hu)).1
|
refine_1
|
m ≠ k →
mulSingle k u * mulSingle m v = mulSingle m u * mulSingle k v →
((if True then u else 1) = if k = k then v else 1) →
(((if m = k then u else 1) * if True then v else 1) = (if m = m then u else 1) * if m = k then v else 1) →
(((if k = m then u else 1) * if True then v else 1) = (if k = k then u else 1) * if k = m then v else 1) →
k = m ∧ m = k ∨ u = v ∧ k = k ∧ m = m ∨ u * v = 1 ∧ k = m ∧ m = k
|
I : Type u
inst✝¹ : DecidableEq I
M : Type u_4
inst✝ : CommMonoid M
k m n : I
u v : M
hu : u ≠ 1
hv : v ≠ 1
hkm : k ≠ m
hmn : m ≠ n
h : mulSingle k u * mulSingle m v = mulSingle m u * mulSingle n v
hk : (if True then u else 1) = if k = n then v else 1
hl : ((if m = k then u else 1) * if True then v else 1) = (if m = m then u else 1) * if m = n then v else 1
hm : (if True then u else 1) = if m = m then v else 1
hn : ((if n = m then u else 1) * if True then v else 1) = (if n = k then u else 1) * if n = m then v else 1
⊢ k = m ∧ m = n ∨ u = v ∧ k = n ∧ m = m ∨ u * v = 1 ∧ k = m ∧ m = n
|
ext x
|
h
|
(mulSingle i x✝ ∘ (⇑σ : n → m)) x = mulSingle ((σ.symm : m → n) i) x✝ x
|
α : Type u_2
m : Type u_4
n : Type u_5
inst✝² : DecidableEq n
inst✝¹ : DecidableEq m
inst✝ : One α
σ : n ≃ m
i : m
x : α
⊢ mulSingle i x ∘ (⇑σ : n → m) = mulSingle ((σ.symm : m → n) i) x
|
← curry_mulSingle ⟨a, b⟩,
|
curry_mulSingle
|
uncurry (curry (Pi.mulSingle ⟨a, b⟩ x)) = Pi.mulSingle ⟨a, b⟩ x
|
α : Type u_4
β : α → Type u_5
γ : (a : α) → β a → Type u_6
inst✝² : DecidableEq α
inst✝¹ : (a : α) → DecidableEq (β a)
inst✝ : (a : α) → (b : β a) → One (γ a b)
a : α
b : β a
x : γ a b
⊢ uncurry (Pi.mulSingle a (Pi.mulSingle b x)) = Pi.mulSingle ⟨a, b⟩ x
|
uncurry_curry
|
uncurry_curry
|
Pi.mulSingle ⟨a, b⟩ x = Pi.mulSingle ⟨a, b⟩ x
|
α : Type u_4
β : α → Type u_5
γ : (a : α) → β a → Type u_6
inst✝² : DecidableEq α
inst✝¹ : (a : α) → DecidableEq (β a)
inst✝ : (a : α) → (b : β a) → One (γ a b)
a : α
b : β a
x : γ a b
⊢ uncurry (curry (Pi.mulSingle ⟨a, b⟩ x)) = Pi.mulSingle ⟨a, b⟩ x
|
obtain h|h := hy.lt_or_lt
|
intro
|
y < 1
|
α : Type u
inst✝³ : CommGroup α
inst✝² : LinearOrder α
inst✝¹ : IsOrderedMonoid α
inst✝ : Nontrivial α
y : α
hy : y ≠ 1
⊢ ∃ a, 1 < a
|
obtain h|h := hy.lt_or_lt
|
intro
|
1 < y
|
α : Type u
inst✝³ : CommGroup α
inst✝² : LinearOrder α
inst✝¹ : IsOrderedMonoid α
inst✝ : Nontrivial α
y : α
hy : y ≠ 1
h : y < 1
⊢ ∃ a, 1 < a
|
induction ha using closure_induction with
| mem r hr => exact AddSubmonoid.mem_closure.mpr fun y hy => hy (mul_mem hr hb)
| one => simp only [zero_mul, zero_mem _]
| mul r s _ _ hr hs => simpa only [add_mul] using add_mem hr hs
|
mem
|
r ∈ (↑S : Set R) → r * b ∈ closure (↑S : Set R)
|
M : Type u_1
R : Type u_2
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
a b : R
ha : a ∈ closure (↑S : Set R)
hb : b ∈ S
⊢ a * b ∈ closure (↑S : Set R)
|
induction ha using closure_induction with
| mem r hr => exact AddSubmonoid.mem_closure.mpr fun y hy => hy (mul_mem hr hb)
| one => simp only [zero_mul, zero_mem _]
| mul r s _ _ hr hs => simpa only [add_mul] using add_mem hr hs
|
one
|
0 * b ∈ closure (↑S : Set R)
|
M : Type u_1
R : Type u_2
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
a b : R
ha : a ∈ closure (↑S : Set R)
hb : b ∈ S
mem : _fvar.884 ∈ (↑S : Set R) → _fvar.884 * b ∈ closure (↑S : Set R)
⊢ a * b ∈ closure (↑S : Set R)
|
induction ha using closure_induction with
| mem r hr => exact AddSubmonoid.mem_closure.mpr fun y hy => hy (mul_mem hr hb)
| one => simp only [zero_mul, zero_mem _]
| mul r s _ _ hr hs => simpa only [add_mul] using add_mem hr hs
|
mul
|
r ∈ closure (↑S : Set R) →
s ∈ closure (↑S : Set R) →
r * b ∈ closure (↑S : Set R) → s * b ∈ closure (↑S : Set R) → (r + s) * b ∈ closure (↑S : Set R)
|
M : Type u_1
R : Type u_2
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
a b : R
ha : a ∈ closure (↑S : Set R)
hb : b ∈ S
mem : _fvar.884 ∈ (↑S : Set R) → _fvar.884 * b ∈ closure (↑S : Set R)
one : 0 * b ∈ closure (↑S : Set R)
⊢ a * b ∈ closure (↑S : Set R)
|
| mem r hr =>
|
one
|
0 * b ∈ closure (↑S : Set R)
|
M : Type u_1
R : Type u_2
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
a b : R
hb : b ∈ S
r : R
hr : r ∈ (↑S : Set R)
⊢ r * b ∈ closure (↑S : Set R)
|
| mem r hr =>
|
mul
|
r ∈ closure (↑S : Set R) →
s ∈ closure (↑S : Set R) →
r * b ∈ closure (↑S : Set R) → s * b ∈ closure (↑S : Set R) → (r + s) * b ∈ closure (↑S : Set R)
|
M : Type u_1
R : Type u_2
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
a b : R
hb : b ∈ S
r : R
hr : r ∈ (↑S : Set R)
one : 0 * b ∈ closure (↑S : Set R)
⊢ r * b ∈ closure (↑S : Set R)
|
| one =>
|
mem
|
r ∈ (↑S : Set R) → r * b ∈ closure (↑S : Set R)
|
M : Type u_1
R : Type u_2
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
a b : R
hb : b ∈ S
⊢ 0 * b ∈ closure (↑S : Set R)
|
| one =>
|
mul
|
r ∈ closure (↑S : Set R) →
s ∈ closure (↑S : Set R) →
r * b ∈ closure (↑S : Set R) → s * b ∈ closure (↑S : Set R) → (r + s) * b ∈ closure (↑S : Set R)
|
M : Type u_1
R : Type u_2
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
a b : R
hb : b ∈ S
mem : _fvar.884 ∈ (↑S : Set R) → _fvar.884 * b ∈ closure (↑S : Set R)
⊢ 0 * b ∈ closure (↑S : Set R)
|
| mul r s _ _ hr hs =>
|
mem
|
r ∈ (↑S : Set R) → r * b ∈ closure (↑S : Set R)
|
M : Type u_1
R : Type u_2
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
a b : R
hb : b ∈ S
r s : R
hx✝ : r ∈ closure (↑S : Set R)
hy✝ : s ∈ closure (↑S : Set R)
hr : r * b ∈ closure (↑S : Set R)
hs : s * b ∈ closure (↑S : Set R)
⊢ (r + s) * b ∈ closure (↑S : Set R)
|
| mul r s _ _ hr hs =>
|
one
|
0 * b ∈ closure (↑S : Set R)
|
M : Type u_1
R : Type u_2
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
a b : R
hb : b ∈ S
r s : R
hx✝ : r ∈ closure (↑S : Set R)
hy✝ : s ∈ closure (↑S : Set R)
hr : r * b ∈ closure (↑S : Set R)
hs : s * b ∈ closure (↑S : Set R)
mem : _fvar.884 ∈ (↑S : Set R) → _fvar.884 * b ∈ closure (↑S : Set R)
⊢ (r + s) * b ∈ closure (↑S : Set R)
|
induction hb using closure_induction with
| mem r hr => exact MulMemClass.mul_right_mem_add_closure ha hr
| one => simp only [mul_zero, zero_mem _]
| mul r s _ _ hr hs => simpa only [mul_add] using add_mem hr hs
|
mem
|
r ∈ (↑S : Set R) → a * r ∈ closure (↑S : Set R)
|
M : Type u_1
R : Type u_2
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
a b : R
ha : a ∈ closure (↑S : Set R)
hb : b ∈ closure (↑S : Set R)
⊢ a * b ∈ closure (↑S : Set R)
|
induction hb using closure_induction with
| mem r hr => exact MulMemClass.mul_right_mem_add_closure ha hr
| one => simp only [mul_zero, zero_mem _]
| mul r s _ _ hr hs => simpa only [mul_add] using add_mem hr hs
|
one
|
a * 0 ∈ closure (↑S : Set R)
|
M : Type u_1
R : Type u_2
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
a b : R
ha : a ∈ closure (↑S : Set R)
hb : b ∈ closure (↑S : Set R)
mem : _fvar.2592 ∈ (↑S : Set R) → a * _fvar.2592 ∈ closure (↑S : Set R)
⊢ a * b ∈ closure (↑S : Set R)
|
induction hb using closure_induction with
| mem r hr => exact MulMemClass.mul_right_mem_add_closure ha hr
| one => simp only [mul_zero, zero_mem _]
| mul r s _ _ hr hs => simpa only [mul_add] using add_mem hr hs
|
mul
|
r ∈ closure (↑S : Set R) →
s ∈ closure (↑S : Set R) →
a * r ∈ closure (↑S : Set R) → a * s ∈ closure (↑S : Set R) → a * (r + s) ∈ closure (↑S : Set R)
|
M : Type u_1
R : Type u_2
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
a b : R
ha : a ∈ closure (↑S : Set R)
hb : b ∈ closure (↑S : Set R)
mem : _fvar.2592 ∈ (↑S : Set R) → a * _fvar.2592 ∈ closure (↑S : Set R)
one : a * 0 ∈ closure (↑S : Set R)
⊢ a * b ∈ closure (↑S : Set R)
|
| mem r hr =>
|
one
|
a * 0 ∈ closure (↑S : Set R)
|
M : Type u_1
R : Type u_2
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
a b : R
ha : a ∈ closure (↑S : Set R)
r : R
hr : r ∈ (↑S : Set R)
⊢ a * r ∈ closure (↑S : Set R)
|
| mem r hr =>
|
mul
|
r ∈ closure (↑S : Set R) →
s ∈ closure (↑S : Set R) →
a * r ∈ closure (↑S : Set R) → a * s ∈ closure (↑S : Set R) → a * (r + s) ∈ closure (↑S : Set R)
|
M : Type u_1
R : Type u_2
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
a b : R
ha : a ∈ closure (↑S : Set R)
r : R
hr : r ∈ (↑S : Set R)
one : a * 0 ∈ closure (↑S : Set R)
⊢ a * r ∈ closure (↑S : Set R)
|
| one =>
|
mem
|
r ∈ (↑S : Set R) → a * r ∈ closure (↑S : Set R)
|
M : Type u_1
R : Type u_2
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
a b : R
ha : a ∈ closure (↑S : Set R)
⊢ a * 0 ∈ closure (↑S : Set R)
|
| one =>
|
mul
|
r ∈ closure (↑S : Set R) →
s ∈ closure (↑S : Set R) →
a * r ∈ closure (↑S : Set R) → a * s ∈ closure (↑S : Set R) → a * (r + s) ∈ closure (↑S : Set R)
|
M : Type u_1
R : Type u_2
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
a b : R
ha : a ∈ closure (↑S : Set R)
mem : _fvar.2592 ∈ (↑S : Set R) → a * _fvar.2592 ∈ closure (↑S : Set R)
⊢ a * 0 ∈ closure (↑S : Set R)
|
| mul r s _ _ hr hs =>
|
mem
|
r ∈ (↑S : Set R) → a * r ∈ closure (↑S : Set R)
|
M : Type u_1
R : Type u_2
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
a b : R
ha : a ∈ closure (↑S : Set R)
r s : R
hx✝ : r ∈ closure (↑S : Set R)
hy✝ : s ∈ closure (↑S : Set R)
hr : a * r ∈ closure (↑S : Set R)
hs : a * s ∈ closure (↑S : Set R)
⊢ a * (r + s) ∈ closure (↑S : Set R)
|
| mul r s _ _ hr hs =>
|
one
|
a * 0 ∈ closure (↑S : Set R)
|
M : Type u_1
R : Type u_2
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
a b : R
ha : a ∈ closure (↑S : Set R)
r s : R
hx✝ : r ∈ closure (↑S : Set R)
hy✝ : s ∈ closure (↑S : Set R)
hr : a * r ∈ closure (↑S : Set R)
hs : a * s ∈ closure (↑S : Set R)
mem : _fvar.2592 ∈ (↑S : Set R) → a * _fvar.2592 ∈ closure (↑S : Set R)
⊢ a * (r + s) ∈ closure (↑S : Set R)
|
simp only [ShortComplex.exact_iff_isZero_homology] at hS ⊢
|
simp
|
(∀ (i : ι), IsZero (S.map (eval C c i)).homology) → IsZero S.homology
|
C : Type u_1
ι : Type u_2
c : ComplexShape ι
inst✝¹ : Category.{u_3, u_1} C
inst✝ : Abelian C
S : ShortComplex (HomologicalComplex C c)
hS : ∀ (i : ι), (S.map (eval C c i)).Exact
⊢ S.Exact
|
rw [IsZero.iff_id_eq_zero]
|
rw
|
𝟙 S.homology = 0
|
C : Type u_1
ι : Type u_2
c : ComplexShape ι
inst✝¹ : Category.{u_3, u_1} C
inst✝ : Abelian C
S : ShortComplex (HomologicalComplex C c)
hS : ∀ (i : ι), IsZero (S.map (eval C c i)).homology
⊢ IsZero S.homology
|
IsZero.iff_id_eq_zero
|
this
|
𝟙 S.homology = 0
|
C : Type u_1
ι : Type u_2
c : ComplexShape ι
inst✝¹ : Category.{u_3, u_1} C
inst✝ : Abelian C
S : ShortComplex (HomologicalComplex C c)
hS : ∀ (i : ι), IsZero (S.map (eval C c i)).homology
⊢ IsZero S.homology
|
ext i
|
h
|
(𝟙 S.homology).f i = Hom.f 0 i
|
C : Type u_1
ι : Type u_2
c : ComplexShape ι
inst✝¹ : Category.{u_3, u_1} C
inst✝ : Abelian C
S : ShortComplex (HomologicalComplex C c)
hS : ∀ (i : ι), IsZero (S.map (eval C c i)).homology
⊢ 𝟙 S.homology = 0
|
constructor
|
mp
|
S.Exact → ∀ (i : ι), (S.map (eval C c i)).Exact
|
C : Type u_1
ι : Type u_2
c : ComplexShape ι
inst✝¹ : Category.{u_3, u_1} C
inst✝ : Abelian C
S : ShortComplex (HomologicalComplex C c)
⊢ S.Exact ↔ ∀ (i : ι), (S.map (eval C c i)).Exact
|
constructor
|
mpr
|
(∀ (i : ι), (S.map (eval C c i)).Exact) → S.Exact
|
C : Type u_1
ι : Type u_2
c : ComplexShape ι
inst✝¹ : Category.{u_3, u_1} C
inst✝ : Abelian C
S : ShortComplex (HomologicalComplex C c)
mp : S.Exact → ∀ (i : ι), (S.map (eval C c i)).Exact
⊢ S.Exact ↔ ∀ (i : ι), (S.map (eval C c i)).Exact
|
constructor
|
mp
|
S.ShortExact → ∀ (i : ι), (S.map (eval C c i)).ShortExact
|
C : Type u_1
ι : Type u_2
c : ComplexShape ι
inst✝¹ : Category.{u_3, u_1} C
inst✝ : Abelian C
S : ShortComplex (HomologicalComplex C c)
⊢ S.ShortExact ↔ ∀ (i : ι), (S.map (eval C c i)).ShortExact
|
constructor
|
mpr
|
(∀ (i : ι), (S.map (eval C c i)).ShortExact) → S.ShortExact
|
C : Type u_1
ι : Type u_2
c : ComplexShape ι
inst✝¹ : Category.{u_3, u_1} C
inst✝ : Abelian C
S : ShortComplex (HomologicalComplex C c)
mp : S.ShortExact → ∀ (i : ι), (S.map (eval C c i)).ShortExact
⊢ S.ShortExact ↔ ∀ (i : ι), (S.map (eval C c i)).ShortExact
|
have := hS.mono_f
|
mp
|
Mono S.f
|
C : Type u_1
ι : Type u_2
c : ComplexShape ι
inst✝¹ : Category.{u_3, u_1} C
inst✝ : Abelian C
S : ShortComplex (HomologicalComplex C c)
hS : S.ShortExact
i : ι
⊢ (S.map (eval C c i)).ShortExact
|
have := hS.epi_g
|
mp
|
Epi S.g
|
C : Type u_1
ι : Type u_2
c : ComplexShape ι
inst✝¹ : Category.{u_3, u_1} C
inst✝ : Abelian C
S : ShortComplex (HomologicalComplex C c)
hS : S.ShortExact
i : ι
this : Mono S.f
⊢ (S.map (eval C c i)).ShortExact
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.