File size: 3,450 Bytes
daeec09
36704dc
524b722
 
 
 
 
4631bc7
524b722
4631bc7
524b722
16d3aa3
7d2afe0
 
 
 
 
 
 
 
 
 
a23d50e
 
7d2afe0
 
 
 
 
 
 
 
 
 
 
a23d50e
 
 
 
 
 
 
 
 
 
 
849151a
7d2afe0
daeec09
7d2afe0
 
a2ced42
7d2afe0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a23d50e
7d2afe0
a23d50e
7d2afe0
 
 
 
 
 
 
 
 
 
 
 
 
 
e955a84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d2afe0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import gradio as gr
import torch
import spaces
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    TextIteratorStreamer,
)
from threading import Thread

MODEL_ID = "speakleash/Bielik-11B-v2.3-Instruct"
MODEL_NAME = MODEL_ID.split("/")[-1]

if torch.cuda.is_available():
    device = torch.device("cuda")
    print("Using GPU:", torch.cuda.get_device_name(0))
else:
    device = torch.device("cpu")
    print("CUDA is not available. Using CPU.")

quantization_config = BitsAndBytesConfig(
    load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID,
    torch_dtype=torch.bfloat16,
    quantization_config=quantization_config,
    low_cpu_mem_usage=True,
)


@spaces.GPU
def generate(
    prompt,
    temperature,
    max_tokens,
    top_k,
    repetition_penalty,
    top_p,
):
    streamer = TextIteratorStreamer(
        tokenizer, skip_prompt=True, skip_special_tokens=True
    )
    system = "Jesteś chatbotem udzielającym odpowiedzi na pytania w języku polskim"
    messages = []

    if system:
        messages.append({"role": "system", "content": system})

    messages.append({"role": "user", "content": prompt})

    tokenizer_output = tokenizer.apply_chat_template(
        messages, return_tensors="pt", return_dict=True
    )

    if torch.cuda.is_available():
        model_input_ids = tokenizer_output.input_ids.to(device)
        model_attention_mask = tokenizer_output.attention_mask.to(device)
    else:
        model_input_ids = tokenizer_output.input_ids
        model_attention_mask = tokenizer_output.attention_mask

    generate_kwargs = {
        "input_ids": model_input_ids,
        "attention_mask": model_attention_mask,
        "streamer": streamer,
        "do_sample": True if temperature else False,
        "temperature": temperature,
        "max_new_tokens": max_tokens,
        "top_k": top_k,
        "repetition_penalty": repetition_penalty,
        "top_p": top_p,
    }

    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    partial_response = ""
    for new_token in streamer:
        partial_response += new_token
        if "<|im_end|>" in partial_response or "<|endoftext|>" in partial_response:
            break
        yield partial_response


with gr.Blocks() as demo:
    gr.Markdown("# Bielik Tools - narzędzia dla modelu Bielik v2.3")
    gr.Markdown("Bielik czeka na Twoje pytanie - zadaj je śmiało i otrzymaj odpowiedź!")

    with gr.Row():
        prompt = gr.Textbox(
            label="Twoje pytanie", placeholder="Zadaj swoje pytanie tutaj...", lines=10
        )
        output = gr.Textbox(label="Answer", lines=10)

    btn = gr.Button("Generuj odpowiedź")

    with gr.Accordion("⚙️ Parametry", open=False):
        temperature = gr.Slider(0, 1, 0.3, step=0.1, label="Temperatura")
        max_tokens = gr.Slider(128, 4096, 1024, label="Maksymalna długość odpowiedzi")
        top_k = gr.Slider(1, 80, 40, step=1, label="Top K")
        repetition_penalty = gr.Slider(0, 2, 0, step=0.1, label="Penalizacja powtórzeń")
        top_p = gr.Slider(0, 1, 1, step=0.1, label="Top P")
    btn.click(
        generate,
        inputs=[prompt, temperature, max_tokens, top_k, repetition_penalty, top_p],
        outputs=output,
    )

demo.launch()