janbanot commited on
Commit
36704dc
·
1 Parent(s): d5bee47

feat: another simple approach

Browse files
Files changed (1) hide show
  1. app.py +18 -24
app.py CHANGED
@@ -1,33 +1,27 @@
1
  import gradio as gr
2
  import spaces
3
- from transformers import pipeline
4
- import logging
5
-
6
- # Configure logging
7
- logging.basicConfig(level=logging.INFO)
8
-
9
- # Load model and tokenizer using pipeline
10
- logging.info("Loading model and tokenizer...")
11
- model_name = "speakleash/Bielik-11B-v2.3-Instruct"
12
- pipe = pipeline("text-generation", model=model_name)
13
 
14
 
15
  @spaces.GPU
16
- def process_text(input_text):
17
- messages = [{"role": "user", "content": input_text}]
18
- outputs = pipe(messages)
19
- # Process outputs as needed
20
- return outputs
 
 
 
 
21
 
 
 
 
 
22
 
23
- def generate(text):
24
- hardcoded_prompt = "Stwórz zwięzłe podsumowanie tekstu, zachowując kluczowe punkty. Maksymalnie 3 zdania"
25
- combined_text = hardcoded_prompt + text
26
- return process_text(combined_text)
27
 
28
 
29
- gr.Interface(
30
- fn=generate,
31
- inputs=gr.Text(),
32
- outputs=gr.Text(),
33
- ).launch()
 
1
  import gradio as gr
2
  import spaces
3
+ import torch
4
+ from transformers import AutoTokenizer, AutoModelForCausalLM
 
 
 
 
 
 
 
 
5
 
6
 
7
  @spaces.GPU
8
+ def test():
9
+ device = torch.device("cuda")
10
+ tokenizer = AutoTokenizer.from_pretrained("speakleash/Bielik-7B-Instruct-v0.1")
11
+ model = AutoModelForCausalLM.from_pretrained(
12
+ "speakleash/Bielik-7B-Instruct-v0.1-GGUF",
13
+ model_file="bielik-7b-instruct-v0.1.Q4_K_M.gguf",
14
+ model_type="mistral", gpu_layers=50, hf=True).to(device)
15
+
16
+ inputs = tokenizer("Cześć Bielik, jak się masz?", return_tensors="pt").to(device)
17
 
18
+ with torch.no_grad():
19
+ outputs = model.generate(
20
+ **inputs, max_new_tokens=128, pad_token_id=tokenizer.eos_token_id
21
+ )
22
 
23
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
 
 
 
24
 
25
 
26
+ demo = gr.Interface(fn=test, inputs=None, outputs=gr.Text())
27
+ demo.launch()