Spaces:
Running
on
Zero
Running
on
Zero
Revert "fix: refactor"
Browse filesThis reverts commit b1c28de92515add5f0b6debbd169c837aa7b9be6.
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
from typing import Dict, Generator, List, Optional
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
import spaces
|
@@ -10,150 +9,86 @@ from transformers import (
|
|
10 |
)
|
11 |
from threading import Thread
|
12 |
|
13 |
-
# Configuration
|
14 |
MODEL_ID = "speakleash/Bielik-11B-v2.3-Instruct"
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
"
|
19 |
-
"
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
def __init__(self, model_id: str):
|
28 |
-
self.device = self._get_device()
|
29 |
-
self.quantization_config = BitsAndBytesConfig(
|
30 |
-
load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16
|
31 |
-
)
|
32 |
-
self.tokenizer = self._load_tokenizer(model_id)
|
33 |
-
self.model = self._load_model(model_id)
|
34 |
-
|
35 |
-
def _get_device(self) -> torch.device:
|
36 |
-
"""Determine and return the appropriate device"""
|
37 |
-
if torch.cuda.is_available():
|
38 |
-
device = torch.device("cuda")
|
39 |
-
print(f"Using GPU: {torch.cuda.get_device_name(0)}")
|
40 |
-
else:
|
41 |
-
device = torch.device("cpu")
|
42 |
-
print("CUDA is not available. Using CPU.")
|
43 |
-
return device
|
44 |
-
|
45 |
-
def _load_tokenizer(self, model_id: str) -> AutoTokenizer:
|
46 |
-
"""Load and configure the tokenizer"""
|
47 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
48 |
-
tokenizer.pad_token = tokenizer.eos_token
|
49 |
-
return tokenizer
|
50 |
-
|
51 |
-
def _load_model(self, model_id: str) -> AutoModelForCausalLM:
|
52 |
-
"""Load and configure the model"""
|
53 |
-
return AutoModelForCausalLM.from_pretrained(
|
54 |
-
model_id,
|
55 |
-
torch_dtype=torch.bfloat16,
|
56 |
-
quantization_config=self.quantization_config,
|
57 |
-
low_cpu_mem_usage=True,
|
58 |
-
device_map="auto",
|
59 |
-
)
|
60 |
-
|
61 |
-
|
62 |
-
class ChatInterface:
|
63 |
-
"""Handles chat interactions and response generation"""
|
64 |
-
|
65 |
-
def __init__(self, model_loader: ModelLoader):
|
66 |
-
self.model = model_loader.model
|
67 |
-
self.tokenizer = model_loader.tokenizer
|
68 |
-
self.device = model_loader.device
|
69 |
-
|
70 |
-
@spaces.GPU
|
71 |
-
def generate_response(
|
72 |
-
self, prompt: str, system_prompt: Optional[str] = None
|
73 |
-
) -> Generator[str, None, None]:
|
74 |
-
"""Generate streaming response for the given prompt"""
|
75 |
-
generation_params = DEFAULT_GENERATION_PARAMS.copy()
|
76 |
-
streamer = TextIteratorStreamer(
|
77 |
-
self.tokenizer, skip_prompt=True, skip_special_tokens=True
|
78 |
-
)
|
79 |
-
|
80 |
-
messages = self._build_messages(prompt, system_prompt or SYSTEM_PROMPT)
|
81 |
-
tokenizer_output = self._prepare_inputs(messages)
|
82 |
-
|
83 |
-
generate_kwargs = {
|
84 |
-
**generation_params,
|
85 |
-
**tokenizer_output,
|
86 |
-
"streamer": streamer,
|
87 |
-
"do_sample": bool(generation_params["temperature"]),
|
88 |
-
}
|
89 |
-
|
90 |
-
self._start_generation_thread(generate_kwargs)
|
91 |
-
yield from self._stream_response(streamer)
|
92 |
-
|
93 |
-
def _build_messages(self, prompt: str, system_prompt: str) -> List[Dict[str, str]]:
|
94 |
-
"""Build the message structure for the model"""
|
95 |
-
messages = [{"role": "system", "content": system_prompt}]
|
96 |
-
messages.append({"role": "user", "content": prompt})
|
97 |
-
return messages
|
98 |
-
|
99 |
-
def _prepare_inputs(
|
100 |
-
self, messages: List[Dict[str, str]]
|
101 |
-
) -> Dict[str, torch.Tensor]:
|
102 |
-
"""Prepare model inputs from messages"""
|
103 |
-
tokenizer_output = self.tokenizer.apply_chat_template(
|
104 |
-
messages, return_tensors="pt", return_dict=True
|
105 |
-
)
|
106 |
-
|
107 |
-
# Ensure all tensors are on the correct device
|
108 |
-
inputs = {
|
109 |
-
"input_ids": tokenizer_output.input_ids.to(self.device),
|
110 |
-
"attention_mask": tokenizer_output.attention_mask.to(self.device),
|
111 |
-
}
|
112 |
-
|
113 |
-
# Move model to device if not already there
|
114 |
-
if self.model.device != self.device:
|
115 |
-
self.model.to(self.device)
|
116 |
-
|
117 |
-
return inputs
|
118 |
-
|
119 |
-
def _start_generation_thread(self, generate_kwargs: Dict):
|
120 |
-
"""Start model generation in a separate thread"""
|
121 |
-
t = Thread(target=self.model.generate, kwargs=generate_kwargs)
|
122 |
-
t.start()
|
123 |
-
|
124 |
-
def _stream_response(
|
125 |
-
self, streamer: TextIteratorStreamer
|
126 |
-
) -> Generator[str, None, None]:
|
127 |
-
"""Stream the response token by token"""
|
128 |
-
partial_response = ""
|
129 |
-
for new_token in streamer:
|
130 |
-
partial_response += new_token
|
131 |
-
if any(
|
132 |
-
stop_token in partial_response
|
133 |
-
for stop_token in ["<|im_end|>", "<|endoftext|>"]
|
134 |
-
):
|
135 |
-
break
|
136 |
-
yield partial_response
|
137 |
-
|
138 |
-
|
139 |
-
def create_gradio_interface(chat_interface: ChatInterface) -> gr.Interface:
|
140 |
-
"""Create and configure the Gradio interface"""
|
141 |
-
return gr.Interface(
|
142 |
-
fn=chat_interface.generate_response,
|
143 |
-
inputs=gr.Textbox(
|
144 |
-
label="Your question", placeholder="Type your question here..."
|
145 |
-
),
|
146 |
-
outputs=gr.Textbox(label="Answer", lines=5),
|
147 |
-
title="Polish Chatbot",
|
148 |
-
description="Ask questions in Polish to the Bielik-11B-v2.3-Instruct model",
|
149 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
|
|
|
|
|
|
151 |
|
152 |
-
if
|
153 |
-
|
154 |
-
model_loader = ModelLoader(MODEL_ID)
|
155 |
-
chat_interface = ChatInterface(model_loader)
|
156 |
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import spaces
|
|
|
9 |
)
|
10 |
from threading import Thread
|
11 |
|
|
|
12 |
MODEL_ID = "speakleash/Bielik-11B-v2.3-Instruct"
|
13 |
+
MODEL_NAME = MODEL_ID.split("/")[-1]
|
14 |
+
|
15 |
+
if torch.cuda.is_available():
|
16 |
+
device = torch.device("cuda")
|
17 |
+
print("Using GPU:", torch.cuda.get_device_name(0))
|
18 |
+
else:
|
19 |
+
device = torch.device("cpu")
|
20 |
+
print("CUDA is not available. Using CPU.")
|
21 |
+
|
22 |
+
quantization_config = BitsAndBytesConfig(
|
23 |
+
load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
)
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
26 |
+
tokenizer.pad_token = tokenizer.eos_token
|
27 |
+
model = AutoModelForCausalLM.from_pretrained(
|
28 |
+
MODEL_ID,
|
29 |
+
torch_dtype=torch.bfloat16,
|
30 |
+
quantization_config=quantization_config,
|
31 |
+
low_cpu_mem_usage=True,
|
32 |
+
)
|
33 |
+
|
34 |
+
|
35 |
+
@spaces.GPU
|
36 |
+
def test(prompt):
|
37 |
+
max_tokens = 5000
|
38 |
+
temperature = 0
|
39 |
+
top_k = 0
|
40 |
+
top_p = 0
|
41 |
|
42 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
43 |
+
system = "Jesteś chatboem udzielającym odpowiedzi na pytania w języku polskim"
|
44 |
+
messages = []
|
45 |
|
46 |
+
if system:
|
47 |
+
messages.append({"role": "system", "content": system})
|
|
|
|
|
48 |
|
49 |
+
messages.append({"role": "user", "content": prompt})
|
50 |
+
|
51 |
+
tokenizer_output = tokenizer.apply_chat_template(
|
52 |
+
messages, return_tensors="pt", return_dict=True
|
53 |
+
)
|
54 |
+
|
55 |
+
if torch.cuda.is_available():
|
56 |
+
model_input_ids = tokenizer_output.input_ids.to(device)
|
57 |
+
|
58 |
+
model_attention_mask = tokenizer_output.attention_mask.to(device)
|
59 |
+
|
60 |
+
else:
|
61 |
+
model_input_ids = tokenizer_output.input_ids
|
62 |
+
model_attention_mask = tokenizer_output.attention_mask
|
63 |
+
|
64 |
+
generate_kwargs = {
|
65 |
+
"input_ids": model_input_ids,
|
66 |
+
"attention_mask": model_attention_mask,
|
67 |
+
"streamer": streamer,
|
68 |
+
"max_new_tokens": max_tokens,
|
69 |
+
"do_sample": True if temperature else False,
|
70 |
+
"temperature": temperature,
|
71 |
+
"top_k": top_k,
|
72 |
+
"top_p": top_p,
|
73 |
+
}
|
74 |
+
|
75 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
76 |
+
t.start()
|
77 |
+
|
78 |
+
partial_response = ""
|
79 |
+
for new_token in streamer:
|
80 |
+
partial_response += new_token
|
81 |
+
# Stop if we hit any of the special tokens
|
82 |
+
if "<|im_end|>" in partial_response or "<|endoftext|>" in partial_response:
|
83 |
+
break
|
84 |
+
yield partial_response
|
85 |
+
|
86 |
+
|
87 |
+
demo = gr.Interface(
|
88 |
+
fn=test,
|
89 |
+
inputs=gr.Textbox(label="Your question", placeholder="Type your question here..."),
|
90 |
+
outputs=gr.Textbox(label="Answer", lines=5),
|
91 |
+
title="Polish Chatbot",
|
92 |
+
description="Ask questions in Polish to the Bielik-11B-v2.3-Instruct model"
|
93 |
+
)
|
94 |
+
demo.launch()
|