Spaces:
Running
on
Zero
Running
on
Zero
fix: another test
Browse files
app.py
CHANGED
@@ -1,184 +1,86 @@
|
|
1 |
-
import
|
2 |
-
from threading import Thread
|
3 |
-
|
4 |
-
import random
|
5 |
import torch
|
6 |
import spaces
|
7 |
-
import gradio as gr
|
8 |
from transformers import (
|
9 |
AutoModelForCausalLM,
|
10 |
AutoTokenizer,
|
11 |
BitsAndBytesConfig,
|
12 |
-
|
13 |
)
|
14 |
|
15 |
-
subprocess.run(
|
16 |
-
"pip install flash-attn --no-build-isolation",
|
17 |
-
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
18 |
-
shell=True,
|
19 |
-
)
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
instruction,
|
44 |
-
stop_tokens,
|
45 |
-
temperature,
|
46 |
-
max_new_tokens,
|
47 |
-
top_k,
|
48 |
-
repetition_penalty,
|
49 |
-
top_p,
|
50 |
-
):
|
51 |
-
streamer = TextIteratorStreamer(
|
52 |
-
tokenizer, skip_prompt=True, skip_special_tokens=True
|
53 |
)
|
54 |
-
enc = tokenizer([instruction], return_tensors="pt", padding=True, truncation=True)
|
55 |
-
input_ids, attention_mask = enc.input_ids, enc.attention_mask
|
56 |
|
57 |
-
if
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
"attention_mask": attention_mask.to(device),
|
64 |
-
},
|
65 |
streamer=streamer,
|
|
|
66 |
do_sample=True if temperature else False,
|
67 |
temperature=temperature,
|
68 |
-
max_new_tokens=max_new_tokens,
|
69 |
top_k=top_k,
|
70 |
-
repetition_penalty=repetition_penalty,
|
71 |
top_p=top_p,
|
72 |
)
|
73 |
-
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
74 |
-
t.start()
|
75 |
-
outputs = []
|
76 |
-
for new_token in streamer:
|
77 |
-
outputs.append(new_token)
|
78 |
-
if new_token in stop_tokens:
|
79 |
-
break
|
80 |
-
yield "".join(outputs)
|
81 |
-
|
82 |
-
|
83 |
-
def predict(
|
84 |
-
message,
|
85 |
-
history,
|
86 |
-
system_prompt,
|
87 |
-
temperature,
|
88 |
-
max_new_tokens,
|
89 |
-
top_k,
|
90 |
-
repetition_penalty,
|
91 |
-
top_p,
|
92 |
-
):
|
93 |
-
repetition_penalty = float(repetition_penalty)
|
94 |
-
print(
|
95 |
-
"LLL",
|
96 |
-
[
|
97 |
-
message,
|
98 |
-
history,
|
99 |
-
system_prompt,
|
100 |
-
temperature,
|
101 |
-
max_new_tokens,
|
102 |
-
top_k,
|
103 |
-
repetition_penalty,
|
104 |
-
top_p,
|
105 |
-
],
|
106 |
-
)
|
107 |
-
# Format history with a given chat template
|
108 |
-
if CHAT_TEMPLATE == "ChatML":
|
109 |
-
stop_tokens = ["<|endoftext|>", "<|im_end|>"]
|
110 |
-
instruction = "<|im_start|>system\n" + system_prompt + "\n<|im_end|>\n"
|
111 |
-
for human, assistant in history:
|
112 |
-
instruction += (
|
113 |
-
"<|im_start|>user\n"
|
114 |
-
+ human
|
115 |
-
+ "\n<|im_end|>\n<|im_start|>assistant\n"
|
116 |
-
+ assistant
|
117 |
-
)
|
118 |
-
instruction += (
|
119 |
-
"\n<|im_start|>user\n" + message + "\n<|im_end|>\n<|im_start|>assistant\n"
|
120 |
-
)
|
121 |
-
elif CHAT_TEMPLATE == "Mistral Instruct":
|
122 |
-
stop_tokens = ["</s>", "[INST]", "[INST] ", "<s>", "[/INST]", "[/INST] "]
|
123 |
-
instruction = "<s>[INST] " + system_prompt
|
124 |
-
for human, assistant in history:
|
125 |
-
instruction += human + " [/INST] " + assistant + "</s>[INST]"
|
126 |
-
instruction += " " + message + " [/INST]"
|
127 |
-
elif CHAT_TEMPLATE == "Bielik":
|
128 |
-
stop_tokens = ["</s>"]
|
129 |
-
prompt_builder = ["<s>[INST] "]
|
130 |
-
if system_prompt:
|
131 |
-
prompt_builder.append(f"<<SYS>>\n{system_prompt}\n<</SYS>>\n\n")
|
132 |
-
for human, assistant in history:
|
133 |
-
prompt_builder.append(f"{human} [/INST] {assistant}</s>[INST] ")
|
134 |
-
prompt_builder.append(f"{message} [/INST]")
|
135 |
-
instruction = "".join(prompt_builder)
|
136 |
-
else:
|
137 |
-
raise Exception(
|
138 |
-
"Incorrect chat template, select 'ChatML' or 'Mistral Instruct'"
|
139 |
-
)
|
140 |
-
print(instruction)
|
141 |
-
|
142 |
-
for output_text in generate(
|
143 |
-
instruction,
|
144 |
-
stop_tokens,
|
145 |
-
temperature,
|
146 |
-
max_new_tokens,
|
147 |
-
top_k,
|
148 |
-
repetition_penalty,
|
149 |
-
top_p,
|
150 |
-
):
|
151 |
-
yield output_text
|
152 |
-
|
153 |
-
|
154 |
-
# Create Gradio interface
|
155 |
-
def update_examples():
|
156 |
-
exs = [["Kim jesteś?"], ["Ile to jest 9+2-1?"], ["Napisz mi coś miłego."]]
|
157 |
-
random.shuffle(exs)
|
158 |
-
return gr.Dataset(samples=exs)
|
159 |
-
|
160 |
-
|
161 |
-
with gr.Blocks() as demo:
|
162 |
-
chatbot = gr.Chatbot(label="Chatbot", render=False)
|
163 |
-
chat = gr.ChatInterface(
|
164 |
-
predict,
|
165 |
-
chatbot=chatbot,
|
166 |
-
title="Online chat demo",
|
167 |
-
description="Opis testowy",
|
168 |
-
examples=[["Kim jesteś?"], ["Ile to jest 9+2-1?"], ["Napisz mi coś miłego."]],
|
169 |
-
additional_inputs_accordion=gr.Accordion(
|
170 |
-
label="⚙️ Parameters", open=False, render=False
|
171 |
-
),
|
172 |
-
additional_inputs=[
|
173 |
-
gr.Textbox("", label="System prompt", render=False),
|
174 |
-
gr.Slider(0, 1, 0.6, label="Temperature", render=False),
|
175 |
-
gr.Slider(128, 4096, 1024, label="Max new tokens", render=False),
|
176 |
-
gr.Slider(1, 80, 40, step=1, label="Top K sampling", render=False),
|
177 |
-
gr.Slider(0, 2, 1.1, label="Repetition penalty", render=False),
|
178 |
-
gr.Slider(0, 1, 0.95, label="Top P sampling", render=False),
|
179 |
-
],
|
180 |
-
theme=gr.themes.Soft(),
|
181 |
-
)
|
182 |
-
demo.load(update_examples, None, chat.examples_handler.dataset)
|
183 |
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
|
|
|
|
|
|
2 |
import torch
|
3 |
import spaces
|
|
|
4 |
from transformers import (
|
5 |
AutoModelForCausalLM,
|
6 |
AutoTokenizer,
|
7 |
BitsAndBytesConfig,
|
8 |
+
TextStreamer,
|
9 |
)
|
10 |
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
@spaces.GPU
|
13 |
+
def test():
|
14 |
+
if torch.cuda.is_available():
|
15 |
+
device = torch.device("cuda")
|
16 |
+
print("Using GPU:", torch.cuda.get_device_name(0))
|
17 |
+
else:
|
18 |
+
device = torch.device("cpu")
|
19 |
+
print("CUDA is not available. Using CPU.")
|
20 |
|
21 |
+
device = "cuda"
|
22 |
+
model_name = "speakleash/Bielik-11B-v2.3-Instruct"
|
23 |
+
|
24 |
+
max_tokens = 5000
|
25 |
+
temperature = 0
|
26 |
+
top_k = 0
|
27 |
+
top_p = 0
|
28 |
+
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
30 |
+
tokenizer.pad_token = tokenizer.eos_token
|
31 |
+
|
32 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
33 |
+
|
34 |
+
quantization_config = BitsAndBytesConfig(
|
35 |
+
load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16
|
36 |
+
)
|
37 |
+
|
38 |
+
model = AutoModelForCausalLM.from_pretrained(
|
39 |
+
model_name,
|
40 |
+
torch_dtype=torch.bfloat16,
|
41 |
+
quantization_config=quantization_config,
|
42 |
+
low_cpu_mem_usage=True,
|
43 |
+
)
|
44 |
+
|
45 |
+
model.generation_config.pad_token_id = tokenizer.pad_token_id
|
46 |
+
|
47 |
+
prompt = "Kim jesteś?"
|
48 |
+
system = "Jesteś chatboem udzielającym odpowiedzi na pytania w języku polskim"
|
49 |
+
messages = []
|
50 |
+
|
51 |
+
if system:
|
52 |
+
messages.append({"role": "system", "content": system})
|
53 |
|
54 |
+
messages.append({"role": "user", "content": prompt})
|
55 |
|
56 |
+
tokenizer_output = tokenizer.apply_chat_template(
|
57 |
+
messages, return_tensors="pt", return_dict=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
)
|
|
|
|
|
59 |
|
60 |
+
if torch.cuda.is_available():
|
61 |
+
model_input_ids = tokenizer_output.input_ids.to(device)
|
62 |
+
|
63 |
+
model_attention_mask = tokenizer_output.attention_mask.to(device)
|
64 |
+
|
65 |
+
else:
|
66 |
+
model_input_ids = tokenizer_output.input_ids
|
67 |
+
model_attention_mask = tokenizer_output.attention_mask
|
68 |
|
69 |
+
outputs = model.generate(
|
70 |
+
model_input_ids,
|
71 |
+
attention_mask=model_attention_mask,
|
|
|
|
|
72 |
streamer=streamer,
|
73 |
+
max_new_tokens=max_tokens,
|
74 |
do_sample=True if temperature else False,
|
75 |
temperature=temperature,
|
|
|
76 |
top_k=top_k,
|
|
|
77 |
top_p=top_p,
|
78 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
answer = tokenizer.batch_decode(outputs, skip_special_tokens=False)
|
81 |
+
|
82 |
+
return answer
|
83 |
+
|
84 |
+
|
85 |
+
demo = gr.Interface(fn=test, inputs=None, outputs=gr.Text())
|
86 |
+
demo.launch()
|