Spaces:
Running
on
Zero
Running
on
Zero
fix: try again
Browse files
app.py
CHANGED
@@ -1,30 +1,188 @@
|
|
1 |
-
import
|
2 |
-
import
|
|
|
|
|
|
|
3 |
import torch
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
-
@spaces.GPU
|
11 |
-
def
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
demo
|
30 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
+
from threading import Thread
|
4 |
+
|
5 |
+
import random
|
6 |
import torch
|
7 |
+
import spaces
|
8 |
+
import gradio as gr
|
9 |
+
from transformers import (
|
10 |
+
AutoModelForCausalLM,
|
11 |
+
AutoTokenizer,
|
12 |
+
BitsAndBytesConfig,
|
13 |
+
TextIteratorStreamer,
|
14 |
+
)
|
15 |
+
|
16 |
+
subprocess.run(
|
17 |
+
"pip install flash-attn --no-build-isolation",
|
18 |
+
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
19 |
+
shell=True,
|
20 |
+
)
|
21 |
+
|
22 |
+
MODEL_ID = "speakleash/Bielik-7B-Instruct-v0.1"
|
23 |
+
CHAT_TEMPLATE = "ChatML"
|
24 |
+
MODEL_NAME = MODEL_ID.split("/")[-1]
|
25 |
+
CONTEXT_LENGTH = 1024
|
26 |
+
COLOR = os.environ.get("COLOR")
|
27 |
+
EMOJI = os.environ.get("EMOJI")
|
28 |
+
DESCRIPTION = os.environ.get("DESCRIPTION")
|
29 |
|
30 |
+
# Load model
|
31 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
32 |
+
quantization_config = BitsAndBytesConfig(
|
33 |
+
load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16
|
34 |
+
)
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
36 |
+
tokenizer.pad_token = tokenizer.eos_token
|
37 |
+
model = AutoModelForCausalLM.from_pretrained(
|
38 |
+
MODEL_ID,
|
39 |
+
device_map="auto",
|
40 |
+
torch_dtype="auto",
|
41 |
+
attn_implementation="flash_attention_2",
|
42 |
+
)
|
43 |
|
44 |
|
45 |
+
@spaces.GPU()
|
46 |
+
def generate(
|
47 |
+
instruction,
|
48 |
+
stop_tokens,
|
49 |
+
temperature,
|
50 |
+
max_new_tokens,
|
51 |
+
top_k,
|
52 |
+
repetition_penalty,
|
53 |
+
top_p,
|
54 |
+
):
|
55 |
+
streamer = TextIteratorStreamer(
|
56 |
+
tokenizer, skip_prompt=True, skip_special_tokens=True
|
57 |
+
)
|
58 |
+
enc = tokenizer([instruction], return_tensors="pt", padding=True, truncation=True)
|
59 |
+
input_ids, attention_mask = enc.input_ids, enc.attention_mask
|
60 |
|
61 |
+
if input_ids.shape[1] > CONTEXT_LENGTH:
|
62 |
+
input_ids = input_ids[:, -CONTEXT_LENGTH:]
|
63 |
|
64 |
+
generate_kwargs = dict(
|
65 |
+
{
|
66 |
+
"input_ids": input_ids.to(device),
|
67 |
+
"attention_mask": attention_mask.to(device),
|
68 |
+
},
|
69 |
+
streamer=streamer,
|
70 |
+
do_sample=True if temperature else False,
|
71 |
+
temperature=temperature,
|
72 |
+
max_new_tokens=max_new_tokens,
|
73 |
+
top_k=top_k,
|
74 |
+
repetition_penalty=repetition_penalty,
|
75 |
+
top_p=top_p,
|
76 |
+
)
|
77 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
78 |
+
t.start()
|
79 |
+
outputs = []
|
80 |
+
for new_token in streamer:
|
81 |
+
outputs.append(new_token)
|
82 |
+
if new_token in stop_tokens:
|
83 |
+
break
|
84 |
+
yield "".join(outputs)
|
85 |
+
|
86 |
+
|
87 |
+
def predict(
|
88 |
+
message,
|
89 |
+
history,
|
90 |
+
system_prompt,
|
91 |
+
temperature,
|
92 |
+
max_new_tokens,
|
93 |
+
top_k,
|
94 |
+
repetition_penalty,
|
95 |
+
top_p,
|
96 |
+
):
|
97 |
+
repetition_penalty = float(repetition_penalty)
|
98 |
+
print(
|
99 |
+
"LLL",
|
100 |
+
[
|
101 |
+
message,
|
102 |
+
history,
|
103 |
+
system_prompt,
|
104 |
+
temperature,
|
105 |
+
max_new_tokens,
|
106 |
+
top_k,
|
107 |
+
repetition_penalty,
|
108 |
+
top_p,
|
109 |
+
],
|
110 |
+
)
|
111 |
+
# Format history with a given chat template
|
112 |
+
if CHAT_TEMPLATE == "ChatML":
|
113 |
+
stop_tokens = ["<|endoftext|>", "<|im_end|>"]
|
114 |
+
instruction = "<|im_start|>system\n" + system_prompt + "\n<|im_end|>\n"
|
115 |
+
for human, assistant in history:
|
116 |
+
instruction += (
|
117 |
+
"<|im_start|>user\n"
|
118 |
+
+ human
|
119 |
+
+ "\n<|im_end|>\n<|im_start|>assistant\n"
|
120 |
+
+ assistant
|
121 |
+
)
|
122 |
+
instruction += (
|
123 |
+
"\n<|im_start|>user\n" + message + "\n<|im_end|>\n<|im_start|>assistant\n"
|
124 |
+
)
|
125 |
+
elif CHAT_TEMPLATE == "Mistral Instruct":
|
126 |
+
stop_tokens = ["</s>", "[INST]", "[INST] ", "<s>", "[/INST]", "[/INST] "]
|
127 |
+
instruction = "<s>[INST] " + system_prompt
|
128 |
+
for human, assistant in history:
|
129 |
+
instruction += human + " [/INST] " + assistant + "</s>[INST]"
|
130 |
+
instruction += " " + message + " [/INST]"
|
131 |
+
elif CHAT_TEMPLATE == "Bielik":
|
132 |
+
stop_tokens = ["</s>"]
|
133 |
+
prompt_builder = ["<s>[INST] "]
|
134 |
+
if system_prompt:
|
135 |
+
prompt_builder.append(f"<<SYS>>\n{system_prompt}\n<</SYS>>\n\n")
|
136 |
+
for human, assistant in history:
|
137 |
+
prompt_builder.append(f"{human} [/INST] {assistant}</s>[INST] ")
|
138 |
+
prompt_builder.append(f"{message} [/INST]")
|
139 |
+
instruction = "".join(prompt_builder)
|
140 |
+
else:
|
141 |
+
raise Exception(
|
142 |
+
"Incorrect chat template, select 'ChatML' or 'Mistral Instruct'"
|
143 |
)
|
144 |
+
print(instruction)
|
145 |
+
|
146 |
+
for output_text in generate(
|
147 |
+
instruction,
|
148 |
+
stop_tokens,
|
149 |
+
temperature,
|
150 |
+
max_new_tokens,
|
151 |
+
top_k,
|
152 |
+
repetition_penalty,
|
153 |
+
top_p,
|
154 |
+
):
|
155 |
+
yield output_text
|
156 |
+
|
157 |
+
|
158 |
+
# Create Gradio interface
|
159 |
+
def update_examples():
|
160 |
+
exs = [["Kim jesteś?"], ["Ile to jest 9+2-1?"], ["Napisz mi coś miłego."]]
|
161 |
+
random.shuffle(exs)
|
162 |
+
return gr.Dataset(samples=exs)
|
163 |
|
|
|
164 |
|
165 |
+
with gr.Blocks() as demo:
|
166 |
+
chatbot = gr.Chatbot(label="Chatbot", likeable=True, render=False)
|
167 |
+
chat = gr.ChatInterface(
|
168 |
+
predict,
|
169 |
+
chatbot=chatbot,
|
170 |
+
title=EMOJI + " " + MODEL_NAME + " - online chat demo",
|
171 |
+
description=DESCRIPTION,
|
172 |
+
examples=[["Kim jesteś?"], ["Ile to jest 9+2-1?"], ["Napisz mi coś miłego."]],
|
173 |
+
additional_inputs_accordion=gr.Accordion(
|
174 |
+
label="⚙️ Parameters", open=False, render=False
|
175 |
+
),
|
176 |
+
additional_inputs=[
|
177 |
+
gr.Textbox("", label="System prompt", render=False),
|
178 |
+
gr.Slider(0, 1, 0.6, label="Temperature", render=False),
|
179 |
+
gr.Slider(128, 4096, 1024, label="Max new tokens", render=False),
|
180 |
+
gr.Slider(1, 80, 40, step=1, label="Top K sampling", render=False),
|
181 |
+
gr.Slider(0, 2, 1.1, label="Repetition penalty", render=False),
|
182 |
+
gr.Slider(0, 1, 0.95, label="Top P sampling", render=False),
|
183 |
+
],
|
184 |
+
theme=gr.themes.Soft(primary_hue=COLOR),
|
185 |
+
)
|
186 |
+
demo.load(update_examples, None, chat.examples_handler.dataset)
|
187 |
|
188 |
+
demo.queue(max_size=20).launch()
|
|