Spaces:
Running
on
Zero
Running
on
Zero
File size: 31,782 Bytes
f4c0f01 732ba20 3373779 8f83e1c 732ba20 84f8d41 732ba20 84f8d41 732ba20 84f8d41 732ba20 84f8d41 732ba20 3373779 732ba20 3373779 732ba20 3373779 732ba20 6750126 732ba20 84f8d41 732ba20 3373779 84f8d41 732ba20 84f8d41 732ba20 3373779 732ba20 84f8d41 732ba20 84f8d41 732ba20 c8b0d13 732ba20 ea4bdbe 732ba20 ea4bdbe 3373779 732ba20 3373779 732ba20 531fbee 732ba20 260ec72 732ba20 64f3706 732ba20 6750126 732ba20 8f83e1c 732ba20 ea4bdbe 732ba20 8607988 84f8d41 732ba20 84f8d41 732ba20 84f8d41 732ba20 84f8d41 732ba20 84f8d41 732ba20 5224f4e 8f83e1c 732ba20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 |
import os
import re
import json
import torch
import numpy as np
import pandas as pd
from tqdm import tqdm
from pathlib import Path
import spaces
# PDF processing
import PyPDF2
# LLM and embeddings
from transformers import AutoTokenizer, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer
# RAG components
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.schema import Document
from langchain.embeddings import HuggingFaceEmbeddings
# Arabic text processing
import arabic_reshaper
from bidi.algorithm import get_display
# Evaluation
from rouge_score import rouge_scorer
import sacrebleu
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
import matplotlib.pyplot as plt
import seaborn as sns
from collections import defaultdict
# Gradio for the interface
import gradio as gr
# Helper functions
def safe_tokenize(text):
"""Pure regex tokenizer with no NLTK dependency"""
if not text:
return []
# Replace punctuation with spaces around them
text = re.sub(r'([.,!?;:()\[\]{}"\'/\\])', r' \1 ', text)
# Split on whitespace and filter empty strings
return [token for token in re.split(r'\s+', text.lower()) if token]
def detect_language(text):
"""Detect if text is primarily Arabic or English"""
# Simple heuristic: count Arabic characters
arabic_chars = re.findall(r'[\u0600-\u06FF]', text)
is_arabic = len(arabic_chars) > len(text) * 0.5
return "arabic" if is_arabic else "english"
# Evaluation metrics
def calculate_bleu(prediction, reference):
"""Calculate BLEU score without any NLTK dependency"""
# Tokenize texts using our own tokenizer
pred_tokens = safe_tokenize(prediction.lower())
ref_tokens = [safe_tokenize(reference.lower())]
# If either is empty, return 0
if not pred_tokens or not ref_tokens[0]:
return {"bleu_1": 0, "bleu_2": 0, "bleu_4": 0}
# Get n-grams function
def get_ngrams(tokens, n):
return [tuple(tokens[i:i+n]) for i in range(len(tokens) - n + 1)]
# Calculate precision for each n-gram level
precisions = []
for n in range(1, 5): # 1-gram to 4-gram
if len(pred_tokens) < n:
precisions.append(0)
continue
pred_ngrams = get_ngrams(pred_tokens, n)
ref_ngrams = get_ngrams(ref_tokens[0], n)
# Count matches
matches = sum(1 for ng in pred_ngrams if ng in ref_ngrams)
# Calculate precision
if pred_ngrams:
precisions.append(matches / len(pred_ngrams))
else:
precisions.append(0)
# Return BLEU scores
return {
"bleu_1": precisions[0],
"bleu_2": (precisions[0] * precisions[1]) ** 0.5 if len(precisions) > 1 else 0,
"bleu_4": (precisions[0] * precisions[1] * precisions[2] * precisions[3]) ** 0.25 if len(precisions) > 3 else 0
}
def calculate_meteor(prediction, reference):
"""Simple word overlap metric as METEOR alternative"""
# Tokenize with our custom tokenizer
pred_tokens = set(safe_tokenize(prediction.lower()))
ref_tokens = set(safe_tokenize(reference.lower()))
# Calculate Jaccard similarity as METEOR alternative
if not pred_tokens or not ref_tokens:
return 0
intersection = len(pred_tokens.intersection(ref_tokens))
union = len(pred_tokens.union(ref_tokens))
return intersection / union if union > 0 else 0
def calculate_f1_precision_recall(prediction, reference):
"""Calculate word-level F1, precision, and recall with custom tokenizer"""
# Tokenize with our custom tokenizer
pred_tokens = set(safe_tokenize(prediction.lower()))
ref_tokens = set(safe_tokenize(reference.lower()))
# Calculate overlap
common = pred_tokens.intersection(ref_tokens)
# Calculate precision, recall, F1
precision = len(common) / len(pred_tokens) if pred_tokens else 0
recall = len(common) / len(ref_tokens) if ref_tokens else 0
f1 = 2 * precision * recall / (precision + recall) if (precision + recall) else 0
return {'precision': precision, 'recall': recall, 'f1': f1}
def evaluate_retrieval_quality(contexts, query, language):
"""Evaluate the quality of retrieved contexts"""
# This is a placeholder function
return {
'language_match_ratio': 1.0,
'source_diversity': len(set([ctx.get('source', '') for ctx in contexts])) / max(1, len(contexts)),
'mrr': 1.0
}
# PDF Processing and Vector Store
def simple_process_pdfs(pdf_paths):
"""Process PDF documents and return document objects"""
documents = []
print(f"Processing PDFs: {pdf_paths}")
for pdf_path in pdf_paths:
try:
if not os.path.exists(pdf_path):
print(f"Warning: {pdf_path} does not exist")
continue
print(f"Processing {pdf_path}...")
text = ""
with open(pdf_path, 'rb') as file:
reader = PyPDF2.PdfReader(file)
for page in reader.pages:
page_text = page.extract_text()
if page_text: # If we got text from this page
text += page_text + "\n\n"
if text.strip(): # If we got some text
doc = Document(
page_content=text,
metadata={"source": pdf_path, "filename": os.path.basename(pdf_path)}
)
documents.append(doc)
print(f"Successfully processed: {pdf_path}")
else:
print(f"Warning: No text extracted from {pdf_path}")
except Exception as e:
print(f"Error processing {pdf_path}: {e}")
import traceback
traceback.print_exc()
print(f"Processed {len(documents)} PDF documents")
return documents
def create_vector_store(documents):
"""Split documents into chunks and create a FAISS vector store"""
# Text splitter for breaking documents into chunks
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=50,
separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""]
)
# Split documents into chunks
chunks = []
for doc in documents:
doc_chunks = text_splitter.split_text(doc.page_content)
# Preserve metadata for each chunk
chunks.extend([
Document(page_content=chunk, metadata=doc.metadata)
for chunk in doc_chunks
])
print(f"Created {len(chunks)} chunks from {len(documents)} documents")
# Create a proper embedding function for LangChain
embedding_function = HuggingFaceEmbeddings(
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
)
# Create FAISS index
vector_store = FAISS.from_documents(
chunks,
embedding_function
)
return vector_store
# Model Loading and RAG System - Improved to handle SentencePiece issues
@spaces.GPU
def load_model_and_tokenizer():
"""Load the ALLaM-7B model and tokenizer with error handling"""
model_name = "ALLaM-AI/ALLaM-7B-Instruct-preview"
print(f"Loading model: {model_name}")
try:
# Check if sentencepiece is installed
try:
import sentencepiece
print("SentencePiece is installed")
except ImportError:
print("Warning: SentencePiece is not installed. Attempting to proceed with AutoTokenizer only.")
# First attempt with AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True,
use_fast=False
)
# Load model with appropriate settings for ALLaM
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto",
)
print("Model loaded successfully with AutoTokenizer!")
return model, tokenizer
except Exception as e:
print(f"First loading attempt failed: {e}")
# If SentencePiece error, provide helpful message
if "SentencePiece" in str(e):
raise ImportError(
"The model requires SentencePiece library which is missing. "
"Add 'sentencepiece>=0.1.95' to your requirements.txt file."
)
# Other general error
raise Exception(f"Failed to load model: {e}")
def retrieve_context(query, vector_store, top_k=5):
"""Retrieve most relevant document chunks for a given query"""
# Search the vector store using similarity search
results = vector_store.similarity_search_with_score(query, k=top_k)
# Format the retrieved contexts
contexts = []
for doc, score in results:
contexts.append({
"content": doc.page_content,
"source": doc.metadata.get("source", "Unknown"),
"relevance_score": score
})
return contexts
@spaces.GPU
def generate_response(query, contexts, model, tokenizer, language="auto"):
"""Generate a response using retrieved contexts with ALLaM-specific formatting"""
# Auto-detect language if not specified
if language == "auto":
language = detect_language(query)
# Format the prompt based on language
if language == "arabic":
instruction = (
"أنت مساعد افتراضي يهتم برؤية السعودية 2030. استخدم المعلومات التالية للإجابة على السؤال. "
"إذا لم تعرف الإجابة، فقل بأمانة إنك لا تعرف."
)
else: # english
instruction = (
"You are a virtual assistant for Saudi Vision 2030. Use the following information to answer the question. "
"If you don't know the answer, honestly say you don't know."
)
# Combine retrieved contexts
context_text = "\n\n".join([f"Document: {ctx['content']}" for ctx in contexts])
# Format the prompt for ALLaM instruction format
prompt = f"""<s>[INST] {instruction}
Context:
{context_text}
Question: {query} [/INST]</s>"""
try:
# Generate response with appropriate parameters for ALLaM
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# Generate with appropriate parameters
outputs = model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
do_sample=True,
repetition_penalty=1.1
)
# Decode the response
full_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract just the answer part (after the instruction)
response = full_output.split("[/INST]")[-1].strip()
# If response is empty for some reason, return the full output
if not response:
response = full_output
return response
except Exception as e:
print(f"Error during generation: {e}")
# Fallback response
return "I apologize, but I encountered an error while generating a response."
# Assistant Class
class Vision2030Assistant:
def __init__(self, model, tokenizer, vector_store):
self.model = model
self.tokenizer = tokenizer
self.vector_store = vector_store
self.conversation_history = []
def answer(self, user_query):
"""Process a user query and return a response with sources"""
# Detect language
language = detect_language(user_query)
# Add user query to conversation history
self.conversation_history.append({"role": "user", "content": user_query})
# Get the full conversation context
conversation_context = "\n".join([
f"{'User' if msg['role'] == 'user' else 'Assistant'}: {msg['content']}"
for msg in self.conversation_history[-6:] # Keep last 3 turns (6 messages)
])
# Enhance query with conversation context for better retrieval
enhanced_query = f"{conversation_context}\n{user_query}"
# Retrieve relevant contexts
contexts = retrieve_context(enhanced_query, self.vector_store, top_k=5)
# Generate response
response = generate_response(user_query, contexts, self.model, self.tokenizer, language)
# Add response to conversation history
self.conversation_history.append({"role": "assistant", "content": response})
# Also return sources for transparency
sources = [ctx.get("source", "Unknown") for ctx in contexts]
unique_sources = list(set(sources))
return response, unique_sources, contexts
def reset_conversation(self):
"""Reset the conversation history"""
self.conversation_history = []
return "Conversation has been reset."
# Comprehensive evaluation dataset
comprehensive_evaluation_data = [
# === Overview ===
{
"query": "ما هي رؤية السعودية 2030؟",
"reference": "رؤية السعودية 2030 هي خطة استراتيجية تهدف إلى تنويع الاقتصاد السعودي وتقليل الاعتماد على النفط مع تطوير قطاعات مختلفة مثل الصحة والتعليم والسياحة.",
"category": "overview",
"language": "arabic"
},
{
"query": "What is Saudi Vision 2030?",
"reference": "Saudi Vision 2030 is a strategic framework aiming to diversify Saudi Arabia's economy and reduce dependence on oil, while developing sectors like health, education, and tourism.",
"category": "overview",
"language": "english"
},
# === Economic Goals ===
{
"query": "ما هي الأهداف الاقتصادية لرؤية 2030؟",
"reference": "تشمل الأهداف الاقتصادية زيادة مساهمة القطاع الخاص إلى 65%، وزيادة الصادرات غير النفطية إلى 50% من الناتج المحلي غير النفطي، وخفض البطالة إلى 7%.",
"category": "economic",
"language": "arabic"
},
{
"query": "What are the economic goals of Vision 2030?",
"reference": "The economic goals of Vision 2030 include increasing private sector contribution from 40% to 65% of GDP, raising non-oil exports from 16% to 50%, reducing unemployment from 11.6% to 7%.",
"category": "economic",
"language": "english"
},
# === Social Goals ===
{
"query": "كيف تعزز رؤية 2030 الإرث الثقافي السعودي؟",
"reference": "تتضمن رؤية 2030 الحفاظ على الهوية الوطنية، تسجيل مواقع أثرية في اليونسكو، وتعزيز الفعاليات الثقافية.",
"category": "social",
"language": "arabic"
},
{
"query": "How does Vision 2030 aim to improve quality of life?",
"reference": "Vision 2030 plans to enhance quality of life by expanding sports facilities, promoting cultural activities, and boosting tourism and entertainment sectors.",
"category": "social",
"language": "english"
}
]
# Gradio Interface
def initialize_system():
"""Initialize the Vision 2030 Assistant system"""
# Define paths for PDF files in the root directory
pdf_files = ["saudi_vision203.pdf", "saudi_vision2030_ar.pdf"]
# Print available files for debugging
print("Files in current directory:", os.listdir("."))
# Process PDFs and create vector store
vector_store_dir = "vector_stores"
os.makedirs(vector_store_dir, exist_ok=True)
if os.path.exists(os.path.join(vector_store_dir, "index.faiss")):
print("Loading existing vector store...")
embedding_function = HuggingFaceEmbeddings(
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
)
vector_store = FAISS.load_local(vector_store_dir, embedding_function)
else:
print("Creating new vector store...")
documents = simple_process_pdfs(pdf_files)
if not documents:
raise ValueError("No documents were processed successfully. Cannot continue.")
vector_store = create_vector_store(documents)
vector_store.save_local(vector_store_dir)
# Load model and tokenizer
model, tokenizer = load_model_and_tokenizer()
# Initialize assistant
assistant = Vision2030Assistant(model, tokenizer, vector_store)
return assistant
def evaluate_response(query, response, reference):
"""Evaluate a single response against a reference"""
# Calculate metrics
rouge = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
rouge_scores = rouge.score(response, reference)
bleu_scores = calculate_bleu(response, reference)
meteor = calculate_meteor(response, reference)
word_metrics = calculate_f1_precision_recall(response, reference)
# Format results
evaluation_results = {
"ROUGE-1": f"{rouge_scores['rouge1'].fmeasure:.4f}",
"ROUGE-2": f"{rouge_scores['rouge2'].fmeasure:.4f}",
"ROUGE-L": f"{rouge_scores['rougeL'].fmeasure:.4f}",
"BLEU-1": f"{bleu_scores['bleu_1']:.4f}",
"BLEU-4": f"{bleu_scores['bleu_4']:.4f}",
"METEOR": f"{meteor:.4f}",
"Word Precision": f"{word_metrics['precision']:.4f}",
"Word Recall": f"{word_metrics['recall']:.4f}",
"Word F1": f"{word_metrics['f1']:.4f}"
}
return evaluation_results
@spaces.GPU
def run_conversation(assistant, query):
"""Run a query through the assistant and return the response"""
response, sources, contexts = assistant.answer(query)
return response, sources, contexts
@spaces.GPU
def run_evaluation_on_sample(assistant, sample_index=0):
"""Run evaluation on a selected sample from the evaluation dataset"""
if sample_index < 0 or sample_index >= len(comprehensive_evaluation_data):
return "Invalid sample index", "", "", {}
# Get the sample
sample = comprehensive_evaluation_data[sample_index]
query = sample["query"]
reference = sample["reference"]
category = sample["category"]
language = sample["language"]
# Reset conversation and get response
assistant.reset_conversation()
response, sources, contexts = assistant.answer(query)
# Evaluate response
evaluation_results = evaluate_response(query, response, reference)
return query, response, reference, evaluation_results, sources, category, language
def qualitative_evaluation_interface(assistant=None):
"""Create a Gradio interface for qualitative evaluation"""
# If assistant is None, create a simplified interface
if assistant is None:
with gr.Blocks(title="Vision 2030 Assistant - Initialization Error") as interface:
gr.Markdown("# Vision 2030 Assistant - Initialization Error")
gr.Markdown("There was an error initializing the assistant. Please check the logs for details.")
gr.Textbox(label="Status", value="System initialization failed")
return interface
sample_options = [f"{i+1}. {item['query'][:50]}..." for i, item in enumerate(comprehensive_evaluation_data)]
with gr.Blocks(title="Vision 2030 Assistant - Qualitative Evaluation") as interface:
gr.Markdown("# Vision 2030 Assistant - Qualitative Evaluation")
gr.Markdown("This interface allows you to evaluate the Vision 2030 Assistant on predefined samples or your own queries.")
with gr.Tab("Sample Evaluation"):
gr.Markdown("### Evaluate the assistant on predefined samples")
sample_dropdown = gr.Dropdown(
choices=sample_options,
label="Select a sample query",
value=sample_options[0] if sample_options else None
)
eval_button = gr.Button("Evaluate Sample")
with gr.Row():
with gr.Column():
sample_query = gr.Textbox(label="Query")
sample_category = gr.Textbox(label="Category")
sample_language = gr.Textbox(label="Language")
with gr.Column():
sample_response = gr.Textbox(label="Assistant Response")
sample_reference = gr.Textbox(label="Reference Answer")
sample_sources = gr.Textbox(label="Sources Used")
with gr.Row():
metrics_display = gr.JSON(label="Evaluation Metrics")
with gr.Tab("Custom Evaluation"):
gr.Markdown("### Evaluate the assistant on your own query")
custom_query = gr.Textbox(
lines=3,
placeholder="Enter your question about Saudi Vision 2030...",
label="Your Query"
)
custom_reference = gr.Textbox(
lines=3,
placeholder="Enter a reference answer (optional)...",
label="Reference Answer (Optional)"
)
custom_eval_button = gr.Button("Get Response and Evaluate")
custom_response = gr.Textbox(label="Assistant Response")
custom_sources = gr.Textbox(label="Sources Used")
custom_metrics = gr.JSON(
label="Evaluation Metrics (if reference provided)",
visible=True
)
with gr.Tab("Conversation Mode"):
gr.Markdown("### Have a conversation with the Vision 2030 Assistant")
chatbot = gr.Chatbot(label="Conversation")
conv_input = gr.Textbox(
placeholder="Ask about Saudi Vision 2030...",
label="Your message"
)
with gr.Row():
conv_button = gr.Button("Send")
reset_button = gr.Button("Reset Conversation")
conv_sources = gr.Textbox(label="Sources Used")
# Sample evaluation event handlers
def handle_sample_selection(selection):
if not selection:
return "", "", "", "", "", "", ""
# Extract index from the selection string
try:
index = int(selection.split(".")[0]) - 1
query, response, reference, metrics, sources, category, language = run_evaluation_on_sample(assistant, index)
sources_str = ", ".join(sources)
return query, response, reference, metrics, sources_str, category, language
except Exception as e:
print(f"Error in handle_sample_selection: {e}")
import traceback
traceback.print_exc()
return f"Error processing selection: {e}", "", "", {}, "", "", ""
eval_button.click(
handle_sample_selection,
inputs=[sample_dropdown],
outputs=[sample_query, sample_response, sample_reference, metrics_display,
sample_sources, sample_category, sample_language]
)
sample_dropdown.change(
handle_sample_selection,
inputs=[sample_dropdown],
outputs=[sample_query, sample_response, sample_reference, metrics_display,
sample_sources, sample_category, sample_language]
)
# Custom evaluation event handlers
@spaces.GPU
def handle_custom_evaluation(query, reference):
if not query:
return "Please enter a query", "", {}
# Reset conversation to ensure clean state
assistant.reset_conversation()
# Get response
response, sources, _ = assistant.answer(query)
sources_str = ", ".join(sources)
# Evaluate if reference is provided
metrics = {}
if reference:
metrics = evaluate_response(query, response, reference)
return response, sources_str, metrics
custom_eval_button.click(
handle_custom_evaluation,
inputs=[custom_query, custom_reference],
outputs=[custom_response, custom_sources, custom_metrics]
)
# Conversation mode event handlers
@spaces.GPU
def handle_conversation(message, history):
if not message:
return history, "", ""
# Get response
response, sources, _ = assistant.answer(message)
sources_str = ", ".join(sources)
# Update history
history = history + [[message, response]]
return history, "", sources_str
def reset_conv():
result = assistant.reset_conversation()
return [], result, ""
conv_button.click(
handle_conversation,
inputs=[conv_input, chatbot],
outputs=[chatbot, conv_input, conv_sources]
)
reset_button.click(
reset_conv,
inputs=[],
outputs=[chatbot, conv_input, conv_sources]
)
return interface
# Main function to run in Hugging Face Space
def main():
# Start with a debugging report
print("=" * 50)
print("SYSTEM INITIALIZATION")
print("=" * 50)
print("Current directory:", os.getcwd())
print("Files in directory:", os.listdir("."))
print("=" * 50)
# Check for SentencePiece
try:
import sentencepiece
print("SentencePiece is installed: ✓")
except ImportError:
print("WARNING: SentencePiece is NOT installed! This will cause errors with the tokenizer.")
# Initialize the system with simplified error handling
try:
# First create a very simple Gradio interface to show we're starting
with gr.Blocks(title="Vision 2030 Assistant - Starting") as loading_interface:
gr.Markdown("# Vision 2030 Assistant")
gr.Markdown("System is initializing. This may take a few minutes...")
status = gr.Textbox(value="Loading resources...", label="Status")
with gr.Blocks(title="Vision 2030 Assistant - Model Loading") as model_interface:
gr.Markdown("# Vision 2030 Assistant - Loading Model")
gr.Markdown("The system is now loading the ALLaM-7B model. This may take several minutes.")
status = gr.Textbox(value="Loading model...", label="Status")
# Now try the actual initialization
try:
print("Starting system initialization...")
assistant = initialize_system()
print("Creating interface...")
interface = qualitative_evaluation_interface(assistant)
print("Launching interface...")
return interface
except ImportError as e:
print(f"Import error during initialization: {e}")
# Create a simple error interface specifically for SentencePiece errors
if "SentencePiece" in str(e):
with gr.Blocks(title="Vision 2030 Assistant - SentencePiece Error") as sp_error:
gr.Markdown("# Vision 2030 Assistant - SentencePiece Error")
gr.Markdown("The model requires the SentencePiece library which is missing.")
gr.Markdown("""
## How to Fix:
Add these lines to your `requirements.txt` file:
```
sentencepiece>=0.1.95
protobuf>=3.20.0
```
Then rebuild your Hugging Face Space.
""")
return sp_error
else:
# For other import errors
with gr.Blocks(title="Vision 2030 Assistant - Import Error") as import_error:
gr.Markdown("# Vision 2030 Assistant - Import Error")
gr.Markdown(f"An import error occurred: {str(e)}")
# Display possible solutions
gr.Markdown("""
## Possible solutions:
Check your `requirements.txt` file for missing dependencies.
""")
return import_error
except Exception as e:
print(f"Error during initialization: {e}")
import traceback
traceback.print_exc()
# Create a general error interface
with gr.Blocks(title="Vision 2030 Assistant - Error") as debug_interface:
gr.Markdown("# Vision 2030 Assistant - Initialization Error")
gr.Markdown("There was an error initializing the assistant.")
# Display error details
gr.Textbox(
value=f"Error: {str(e)}",
label="Error Details",
lines=5
)
# Show file system status
files_list = "\n".join(os.listdir("."))
gr.Textbox(
value=files_list,
label="Files in Directory",
lines=10
)
# Add a button to check PDFs
def check_pdfs():
result = []
for pdf_file in ["saudi_vision203.pdf", "saudi_vision2030_ar.pdf"]:
if os.path.exists(pdf_file):
size = os.path.getsize(pdf_file) / (1024 * 1024) # Size in MB
result.append(f"{pdf_file}: Found ({size:.2f} MB)")
else:
result.append(f"{pdf_file}: Not found")
return "\n".join(result)
check_btn = gr.Button("Check PDF Files")
pdf_status = gr.Textbox(label="PDF Status", lines=3)
check_btn.click(check_pdfs, inputs=[], outputs=[pdf_status])
return debug_interface
except Exception as e:
print(f"Critical error: {e}")
with gr.Blocks(title="Vision 2030 Assistant - Critical Error") as critical_error:
gr.Markdown("# Vision 2030 Assistant - Critical Error")
gr.Markdown(f"A critical error occurred: {str(e)}")
# Display stacktrace
import traceback
trace = traceback.format_exc()
gr.Textbox(
value=trace,
label="Error Traceback",
lines=15
)
return critical_error
if __name__ == "__main__":
demo = main()
demo.launch() |