Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
#
|
2 |
import gradio as gr
|
3 |
import time
|
4 |
import logging
|
@@ -7,267 +7,770 @@ import re
|
|
7 |
from datetime import datetime
|
8 |
import numpy as np
|
9 |
import pandas as pd
|
10 |
-
|
11 |
-
import
|
12 |
-
import torch
|
13 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
14 |
import PyPDF2
|
15 |
import io
|
16 |
-
import
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
#
|
19 |
logging.basicConfig(
|
20 |
level=logging.INFO,
|
21 |
-
format='%(asctime)s - %(levelname)s - %(message)s',
|
22 |
handlers=[logging.StreamHandler()]
|
23 |
)
|
24 |
-
logger = logging.getLogger('
|
25 |
|
26 |
# Check for GPU availability
|
27 |
has_gpu = torch.cuda.is_available()
|
28 |
logger.info(f"GPU available: {has_gpu}")
|
29 |
|
30 |
-
# Define the Vision2030Assistant class
|
31 |
class Vision2030Assistant:
|
32 |
def __init__(self):
|
33 |
-
"""Initialize the Vision 2030 Assistant with
|
34 |
logger.info("Initializing Vision 2030 Assistant...")
|
|
|
|
|
35 |
self.load_embedding_models()
|
36 |
-
|
|
|
37 |
self._create_knowledge_base()
|
38 |
self._create_indices()
|
|
|
|
|
39 |
self._create_sample_eval_data()
|
40 |
-
|
41 |
-
|
42 |
-
self.
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
def load_embedding_models(self):
|
46 |
-
"""Load
|
|
|
|
|
47 |
try:
|
|
|
48 |
self.arabic_embedder = SentenceTransformer('CAMeL-Lab/bert-base-arabic-camelbert-ca')
|
49 |
self.english_embedder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
logger.info("Embedding models loaded successfully")
|
52 |
except Exception as e:
|
53 |
-
logger.error(f"
|
54 |
-
self.
|
55 |
|
56 |
-
def
|
57 |
-
"""
|
58 |
-
logger.warning("Using fallback embedding
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
class SimpleEmbedder:
|
60 |
-
def
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
return
|
|
|
65 |
self.arabic_embedder = SimpleEmbedder()
|
66 |
self.english_embedder = SimpleEmbedder()
|
67 |
|
68 |
-
def load_language_model(self):
|
69 |
-
"""Load the DistilGPT-2 language model on CPU."""
|
70 |
-
try:
|
71 |
-
self.tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
72 |
-
self.model = AutoModelForCausalLM.from_pretrained("distilgpt2")
|
73 |
-
self.generator = pipeline(
|
74 |
-
'text-generation',
|
75 |
-
model=self.model,
|
76 |
-
tokenizer=self.tokenizer,
|
77 |
-
device=-1 # CPU
|
78 |
-
)
|
79 |
-
logger.info("Language model loaded successfully")
|
80 |
-
except Exception as e:
|
81 |
-
logger.error(f"Failed to load language model: {e}")
|
82 |
-
self.generator = None
|
83 |
-
|
84 |
def _create_knowledge_base(self):
|
85 |
-
"""
|
|
|
|
|
|
|
86 |
self.english_texts = [
|
87 |
"Vision 2030 is Saudi Arabia's strategic framework to reduce dependence on oil, diversify the economy, and develop public sectors.",
|
88 |
"The key pillars of Vision 2030 are a vibrant society, a thriving economy, and an ambitious nation.",
|
89 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
]
|
|
|
|
|
91 |
self.arabic_texts = [
|
92 |
-
"رؤية 2030 هي
|
93 |
"الركائز الرئيسية لرؤية 2030 هي مجتمع حيوي، واقتصاد مزدهر، ووطن طموح.",
|
94 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
]
|
|
|
|
|
96 |
self.pdf_english_texts = []
|
97 |
self.pdf_arabic_texts = []
|
|
|
|
|
98 |
|
|
|
99 |
def _create_indices(self):
|
100 |
-
"""Create FAISS indices for
|
|
|
|
|
101 |
try:
|
102 |
-
# English
|
103 |
-
english_vectors = [
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
except Exception as e:
|
118 |
-
logger.error(f"Error creating indices: {e}")
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
def _create_sample_eval_data(self):
|
121 |
-
"""Create sample evaluation data
|
122 |
self.eval_data = [
|
123 |
-
{
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
]
|
|
|
130 |
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
133 |
try:
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
if lang == "ar":
|
140 |
-
if
|
141 |
-
|
142 |
-
|
143 |
else:
|
144 |
-
|
145 |
-
|
|
|
|
|
146 |
else:
|
147 |
-
if
|
148 |
-
|
149 |
-
|
150 |
else:
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
|
|
|
|
157 |
except Exception as e:
|
158 |
-
logger.error(f"
|
159 |
-
return "
|
160 |
-
|
161 |
-
@spaces.GPU
|
162 |
-
def generate_response(self, query, session_id):
|
163 |
-
"""Generate a response using GPU resources when available."""
|
164 |
-
if not query.strip():
|
165 |
-
return "Please enter a valid question."
|
166 |
|
|
|
|
|
|
|
|
|
|
|
167 |
start_time = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
try:
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
return reply
|
|
|
188 |
except Exception as e:
|
189 |
-
logger.error(f"
|
190 |
-
return
|
191 |
|
192 |
def evaluate_factual_accuracy(self, response, reference):
|
193 |
-
"""
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
@spaces.GPU
|
205 |
-
def
|
206 |
-
"""
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
-
|
241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
except Exception as e:
|
243 |
-
logger.error(f"
|
244 |
-
return f"Error processing PDF: {e}"
|
245 |
|
246 |
# Create the Gradio interface
|
247 |
def create_interface():
|
248 |
-
|
249 |
assistant = Vision2030Assistant()
|
250 |
-
|
251 |
-
def chat(
|
252 |
-
|
253 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
return history, ""
|
255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
with gr.Blocks() as demo:
|
257 |
-
gr.Markdown("# Vision 2030 Virtual Assistant")
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
return demo
|
269 |
|
270 |
-
# Launch the
|
271 |
-
|
272 |
-
|
273 |
-
demo.launch()
|
|
|
1 |
+
# Minimal working Vision 2030 Virtual Assistant
|
2 |
import gradio as gr
|
3 |
import time
|
4 |
import logging
|
|
|
7 |
from datetime import datetime
|
8 |
import numpy as np
|
9 |
import pandas as pd
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
from sklearn.metrics import precision_recall_fscore_support, accuracy_score
|
|
|
|
|
12 |
import PyPDF2
|
13 |
import io
|
14 |
+
import json
|
15 |
+
from langdetect import detect
|
16 |
+
from sentence_transformers import SentenceTransformer
|
17 |
+
import faiss
|
18 |
+
import torch
|
19 |
+
import spaces
|
20 |
|
21 |
+
# Configure logging
|
22 |
logging.basicConfig(
|
23 |
level=logging.INFO,
|
24 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
25 |
handlers=[logging.StreamHandler()]
|
26 |
)
|
27 |
+
logger = logging.getLogger('vision2030_assistant')
|
28 |
|
29 |
# Check for GPU availability
|
30 |
has_gpu = torch.cuda.is_available()
|
31 |
logger.info(f"GPU available: {has_gpu}")
|
32 |
|
|
|
33 |
class Vision2030Assistant:
|
34 |
def __init__(self):
|
35 |
+
"""Initialize the Vision 2030 Assistant with basic knowledge"""
|
36 |
logger.info("Initializing Vision 2030 Assistant...")
|
37 |
+
|
38 |
+
# Initialize embedding models
|
39 |
self.load_embedding_models()
|
40 |
+
|
41 |
+
# Create data
|
42 |
self._create_knowledge_base()
|
43 |
self._create_indices()
|
44 |
+
|
45 |
+
# Create sample evaluation data
|
46 |
self._create_sample_eval_data()
|
47 |
+
|
48 |
+
# Initialize metrics
|
49 |
+
self.metrics = {
|
50 |
+
"response_times": [],
|
51 |
+
"user_ratings": [],
|
52 |
+
"factual_accuracy": []
|
53 |
+
}
|
54 |
+
self.response_history = []
|
55 |
+
|
56 |
+
# Flag for PDF content
|
57 |
+
self.has_pdf_content = False
|
58 |
+
|
59 |
+
logger.info("Vision 2030 Assistant initialized successfully")
|
60 |
+
|
61 |
+
@spaces.GPU
|
62 |
def load_embedding_models(self):
|
63 |
+
"""Load embedding models for retrieval"""
|
64 |
+
logger.info("Loading embedding models...")
|
65 |
+
|
66 |
try:
|
67 |
+
# Load embedding models
|
68 |
self.arabic_embedder = SentenceTransformer('CAMeL-Lab/bert-base-arabic-camelbert-ca')
|
69 |
self.english_embedder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
70 |
+
|
71 |
+
# Move to GPU if available
|
72 |
+
if has_gpu:
|
73 |
+
self.arabic_embedder = self.arabic_embedder.to('cuda')
|
74 |
+
self.english_embedder = self.english_embedder.to('cuda')
|
75 |
+
logger.info("Models moved to GPU")
|
76 |
+
|
77 |
logger.info("Embedding models loaded successfully")
|
78 |
except Exception as e:
|
79 |
+
logger.error(f"Error loading embedding models: {str(e)}")
|
80 |
+
self._create_fallback_embedders()
|
81 |
|
82 |
+
def _create_fallback_embedders(self):
|
83 |
+
"""Create fallback embedding methods if model loading fails"""
|
84 |
+
logger.warning("Using fallback embedding methods")
|
85 |
+
|
86 |
+
# Simple fallback using character-level encoding
|
87 |
+
def simple_encode(text, dim=384):
|
88 |
+
import hashlib
|
89 |
+
# Create a hash of the text
|
90 |
+
hash_object = hashlib.md5(text.encode())
|
91 |
+
# Use the hash to seed a random number generator
|
92 |
+
np.random.seed(int(hash_object.hexdigest(), 16) % 2**32)
|
93 |
+
# Generate a random vector
|
94 |
+
return np.random.randn(dim).astype(np.float32)
|
95 |
+
|
96 |
+
# Create embedding function objects
|
97 |
class SimpleEmbedder:
|
98 |
+
def __init__(self, dim=384):
|
99 |
+
self.dim = dim
|
100 |
+
|
101 |
+
def encode(self, text):
|
102 |
+
return simple_encode(text, self.dim)
|
103 |
+
|
104 |
self.arabic_embedder = SimpleEmbedder()
|
105 |
self.english_embedder = SimpleEmbedder()
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
def _create_knowledge_base(self):
|
108 |
+
"""Create knowledge base with Vision 2030 information"""
|
109 |
+
logger.info("Creating Vision 2030 knowledge base")
|
110 |
+
|
111 |
+
# English texts
|
112 |
self.english_texts = [
|
113 |
"Vision 2030 is Saudi Arabia's strategic framework to reduce dependence on oil, diversify the economy, and develop public sectors.",
|
114 |
"The key pillars of Vision 2030 are a vibrant society, a thriving economy, and an ambitious nation.",
|
115 |
+
"Vision 2030 targets increasing the private sector's contribution to GDP from 40% to 65%.",
|
116 |
+
"NEOM is a planned cross-border smart city in the Tabuk Province of northwestern Saudi Arabia, a key project of Vision 2030.",
|
117 |
+
"Vision 2030 aims to increase women's participation in the workforce from 22% to 30%.",
|
118 |
+
"The Red Sea Project is a Vision 2030 initiative to develop luxury tourism destinations across 50 islands off Saudi Arabia's Red Sea coast.",
|
119 |
+
"Qiddiya is an entertainment mega-project being built in Riyadh as part of Vision 2030.",
|
120 |
+
"The real wealth of Saudi Arabia, as emphasized in Vision 2030, is its people, particularly the youth.",
|
121 |
+
"Saudi Arabia aims to strengthen its position as a global gateway by leveraging its strategic location between Asia, Europe, and Africa.",
|
122 |
+
"Vision 2030 aims to have at least five Saudi universities among the top 200 universities in international rankings.",
|
123 |
+
"Vision 2030 sets a target of having at least 10 Saudi sites registered on the UNESCO World Heritage List.",
|
124 |
+
"Vision 2030 aims to increase the capacity to welcome Umrah visitors from 8 million to 30 million annually.",
|
125 |
+
"Vision 2030 includes multiple initiatives to strengthen Saudi national identity including cultural programs and heritage preservation.",
|
126 |
+
"Vision 2030 aims to increase non-oil government revenue from SAR 163 billion to SAR 1 trillion."
|
127 |
]
|
128 |
+
|
129 |
+
# Arabic texts
|
130 |
self.arabic_texts = [
|
131 |
+
"رؤية 2030 هي الإطار الاستراتيجي للمملكة العربية السعودية للحد من الاعتماد على النفط وتنويع الاقتصاد وتطوير القطاعات العامة.",
|
132 |
"الركائز الرئيسية لرؤية 2030 هي مجتمع حيوي، واقتصاد مزدهر، ووطن طموح.",
|
133 |
+
"تستهدف رؤية 2030 زيادة مساهمة القطاع الخاص في الناتج المحلي الإجمالي من 40٪ إلى 65٪.",
|
134 |
+
"نيوم هي مدينة ذكية مخططة عبر الحدود في مقاطعة تبوك شمال غرب المملكة العربية السعودية، وهي مشروع رئيسي من رؤية 2030.",
|
135 |
+
"تهدف رؤية 2030 إلى زيادة مشاركة المرأة في القوى العاملة من 22٪ إلى 30٪.",
|
136 |
+
"مشروع البحر الأحمر هو مبادرة رؤية 2030 لتطوير وجهات سياحية فاخرة عبر 50 جزيرة قبالة ساحل البحر الأحمر السعودي.",
|
137 |
+
"القدية هي مشروع ترفيهي ضخم يتم بناؤه في الرياض كجزء من رؤية 2030.",
|
138 |
+
"الثروة الحقيقية للمملكة العربية السعودية، كما أكدت رؤية 2030، هي شعبها، وخاصة الشباب.",
|
139 |
+
"تهدف المملكة العربية السعودية إلى تعزيز مكانتها كبوابة عالمية من خلال الاستفادة من موقعها الاستراتيجي بين آسيا وأوروبا وأفريقيا.",
|
140 |
+
"تهدف رؤية 2030 إلى أن تكون خمس جامعات سعودية على الأقل ضمن أفضل 200 جامعة في التصنيفات الد��لية.",
|
141 |
+
"تضع رؤية 2030 هدفًا بتسجيل ما لا يقل عن 10 مواقع سعودية في قائمة التراث العالمي لليونسكو.",
|
142 |
+
"تهدف رؤية 2030 إلى زيادة القدرة على استقبال المعتمرين من 8 ملايين إلى 30 مليون معتمر سنويًا.",
|
143 |
+
"تتضمن رؤية 2030 مبادرات متعددة لتعزيز الهوية الوطنية السعودية بما في ذلك البرامج الثقافية والحفاظ على التراث.",
|
144 |
+
"تهدف رؤية 2030 إلى زيادة الإيرادات الحكومية غير النفطية من 163 مليار ريال سعودي إلى 1 تريليون ريال سعودي."
|
145 |
]
|
146 |
+
|
147 |
+
# Initialize PDF content containers
|
148 |
self.pdf_english_texts = []
|
149 |
self.pdf_arabic_texts = []
|
150 |
+
|
151 |
+
logger.info(f"Created knowledge base: {len(self.english_texts)} English, {len(self.arabic_texts)} Arabic texts")
|
152 |
|
153 |
+
@spaces.GPU
|
154 |
def _create_indices(self):
|
155 |
+
"""Create FAISS indices for text retrieval"""
|
156 |
+
logger.info("Creating FAISS indices for text retrieval")
|
157 |
+
|
158 |
try:
|
159 |
+
# Process and embed English texts
|
160 |
+
self.english_vectors = []
|
161 |
+
for text in self.english_texts:
|
162 |
+
try:
|
163 |
+
if has_gpu and hasattr(self.english_embedder, 'to'):
|
164 |
+
with torch.no_grad():
|
165 |
+
vec = self.english_embedder.encode(text)
|
166 |
+
else:
|
167 |
+
vec = self.english_embedder.encode(text)
|
168 |
+
self.english_vectors.append(vec)
|
169 |
+
except Exception as e:
|
170 |
+
logger.error(f"Error encoding English text: {str(e)}")
|
171 |
+
# Use a random vector as fallback
|
172 |
+
self.english_vectors.append(np.random.randn(384).astype(np.float32))
|
173 |
+
|
174 |
+
# Create English index
|
175 |
+
if self.english_vectors:
|
176 |
+
self.english_index = faiss.IndexFlatL2(len(self.english_vectors[0]))
|
177 |
+
self.english_index.add(np.array(self.english_vectors))
|
178 |
+
logger.info(f"Created English index with {len(self.english_vectors)} vectors")
|
179 |
+
else:
|
180 |
+
logger.warning("No English texts to index")
|
181 |
+
|
182 |
+
# Process and embed Arabic texts
|
183 |
+
self.arabic_vectors = []
|
184 |
+
for text in self.arabic_texts:
|
185 |
+
try:
|
186 |
+
if has_gpu and hasattr(self.arabic_embedder, 'to'):
|
187 |
+
with torch.no_grad():
|
188 |
+
vec = self.arabic_embedder.encode(text)
|
189 |
+
else:
|
190 |
+
vec = self.arabic_embedder.encode(text)
|
191 |
+
self.arabic_vectors.append(vec)
|
192 |
+
except Exception as e:
|
193 |
+
logger.error(f"Error encoding Arabic text: {str(e)}")
|
194 |
+
# Use a random vector as fallback
|
195 |
+
self.arabic_vectors.append(np.random.randn(384).astype(np.float32))
|
196 |
+
|
197 |
+
# Create Arabic index
|
198 |
+
if self.arabic_vectors:
|
199 |
+
self.arabic_index = faiss.IndexFlatL2(len(self.arabic_vectors[0]))
|
200 |
+
self.arabic_index.add(np.array(self.arabic_vectors))
|
201 |
+
logger.info(f"Created Arabic index with {len(self.arabic_vectors)} vectors")
|
202 |
+
else:
|
203 |
+
logger.warning("No Arabic texts to index")
|
204 |
+
|
205 |
+
# Create PDF indices if PDF content exists
|
206 |
+
if hasattr(self, 'pdf_english_texts') and self.pdf_english_texts:
|
207 |
+
self._create_pdf_indices()
|
208 |
+
|
209 |
except Exception as e:
|
210 |
+
logger.error(f"Error creating FAISS indices: {str(e)}")
|
211 |
+
|
212 |
+
def _create_pdf_indices(self):
|
213 |
+
"""Create indices for PDF content"""
|
214 |
+
if not self.pdf_english_texts and not self.pdf_arabic_texts:
|
215 |
+
return
|
216 |
+
|
217 |
+
logger.info("Creating indices for PDF content")
|
218 |
+
|
219 |
+
try:
|
220 |
+
# Process and embed English PDF texts
|
221 |
+
if self.pdf_english_texts:
|
222 |
+
self.pdf_english_vectors = []
|
223 |
+
for text in self.pdf_english_texts:
|
224 |
+
try:
|
225 |
+
if has_gpu and hasattr(self.english_embedder, 'to'):
|
226 |
+
with torch.no_grad():
|
227 |
+
vec = self.english_embedder.encode(text)
|
228 |
+
else:
|
229 |
+
vec = self.english_embedder.encode(text)
|
230 |
+
self.pdf_english_vectors.append(vec)
|
231 |
+
except Exception as e:
|
232 |
+
logger.error(f"Error encoding English PDF text: {str(e)}")
|
233 |
+
continue
|
234 |
+
|
235 |
+
if self.pdf_english_vectors:
|
236 |
+
self.pdf_english_index = faiss.IndexFlatL2(len(self.pdf_english_vectors[0]))
|
237 |
+
self.pdf_english_index.add(np.array(self.pdf_english_vectors))
|
238 |
+
logger.info(f"Created English PDF index with {len(self.pdf_english_vectors)} vectors")
|
239 |
+
|
240 |
+
# Process and embed Arabic PDF texts
|
241 |
+
if self.pdf_arabic_texts:
|
242 |
+
self.pdf_arabic_vectors = []
|
243 |
+
for text in self.pdf_arabic_texts:
|
244 |
+
try:
|
245 |
+
if has_gpu and hasattr(self.arabic_embedder, 'to'):
|
246 |
+
with torch.no_grad():
|
247 |
+
vec = self.arabic_embedder.encode(text)
|
248 |
+
else:
|
249 |
+
vec = self.arabic_embedder.encode(text)
|
250 |
+
self.pdf_arabic_vectors.append(vec)
|
251 |
+
except Exception as e:
|
252 |
+
logger.error(f"Error encoding Arabic PDF text: {str(e)}")
|
253 |
+
continue
|
254 |
+
|
255 |
+
if self.pdf_arabic_vectors:
|
256 |
+
self.pdf_arabic_index = faiss.IndexFlatL2(len(self.pdf_arabic_vectors[0]))
|
257 |
+
self.pdf_arabic_index.add(np.array(self.pdf_arabic_vectors))
|
258 |
+
logger.info(f"Created Arabic PDF index with {len(self.pdf_arabic_vectors)} vectors")
|
259 |
+
|
260 |
+
# Set flag to indicate PDF content is available
|
261 |
+
self.has_pdf_content = True
|
262 |
+
|
263 |
+
except Exception as e:
|
264 |
+
logger.error(f"Error creating PDF indices: {str(e)}")
|
265 |
+
|
266 |
def _create_sample_eval_data(self):
|
267 |
+
"""Create sample evaluation data with ground truth"""
|
268 |
self.eval_data = [
|
269 |
+
{
|
270 |
+
"question": "What are the key pillars of Vision 2030?",
|
271 |
+
"lang": "en",
|
272 |
+
"reference_answer": "The key pillars of Vision 2030 are a vibrant society, a thriving economy, and an ambitious nation."
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"question": "ما هي الركائز الرئيسية لرؤية 2030؟",
|
276 |
+
"lang": "ar",
|
277 |
+
"reference_answer": "الركائز الرئيسية لرؤية 2030 هي مجتمع حيوي، واقتصاد مزدهر، ووطن طموح."
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"question": "What is NEOM?",
|
281 |
+
"lang": "en",
|
282 |
+
"reference_answer": "NEOM is a planned cross-border smart city in the Tabuk Province of northwestern Saudi Arabia, a key project of Vision 2030."
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"question": "ما هو مشروع البحر الأحمر؟",
|
286 |
+
"lang": "ar",
|
287 |
+
"reference_answer": "مشروع البحر الأحمر هو مبادرة رؤية 2030 لتطوير وجهات سياحية فاخرة عبر 50 جزيرة قبالة ساحل البحر الأحمر السعودي."
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"question": "ما هي الثروة الحقيقية التي تعتز بها المملكة كما وردت في الرؤية؟",
|
291 |
+
"lang": "ar",
|
292 |
+
"reference_answer": "الثروة الحقيقية للمملكة العربية السعودية، كما أكدت رؤية 2030، هي شعبها، وخاصة الشباب."
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"question": "كيف تسعى المملكة إلى تعزيز مكانتها كبوابة للعالم؟",
|
296 |
+
"lang": "ar",
|
297 |
+
"reference_answer": "تهدف المملكة العربية السعودية إلى تعزيز مكانتها كبوابة عالمية من خلال الاستفادة من موقعها الاستراتيجي بين آسيا وأوروبا وأفريقيا."
|
298 |
+
}
|
299 |
]
|
300 |
+
logger.info(f"Created {len(self.eval_data)} sample evaluation examples")
|
301 |
|
302 |
+
@spaces.GPU
|
303 |
+
def retrieve_context(self, query, lang):
|
304 |
+
"""Retrieve relevant context with priority to PDF content"""
|
305 |
+
start_time = time.time()
|
306 |
+
|
307 |
try:
|
308 |
+
# First check if we have PDF content
|
309 |
+
if self.has_pdf_content:
|
310 |
+
# Try to retrieve from PDF content first
|
311 |
+
if lang == "ar" and hasattr(self, 'pdf_arabic_index') and hasattr(self, 'pdf_arabic_vectors') and len(self.pdf_arabic_vectors) > 0:
|
312 |
+
if has_gpu and hasattr(self.arabic_embedder, 'to'):
|
313 |
+
with torch.no_grad():
|
314 |
+
query_vec = self.arabic_embedder.encode(query)
|
315 |
+
else:
|
316 |
+
query_vec = self.arabic_embedder.encode(query)
|
317 |
+
|
318 |
+
D, I = self.pdf_arabic_index.search(np.array([query_vec]), k=2)
|
319 |
+
|
320 |
+
# If we found good matches in the PDF
|
321 |
+
if D[0][0] < 1.5: # Threshold for relevance
|
322 |
+
context = "\n".join([self.pdf_arabic_texts[i] for i in I[0] if i < len(self.pdf_arabic_texts) and i >= 0])
|
323 |
+
if context.strip():
|
324 |
+
logger.info("Retrieved context from PDF (Arabic)")
|
325 |
+
return context
|
326 |
+
|
327 |
+
elif lang == "en" and hasattr(self, 'pdf_english_index') and hasattr(self, 'pdf_english_vectors') and len(self.pdf_english_vectors) > 0:
|
328 |
+
if has_gpu and hasattr(self.english_embedder, 'to'):
|
329 |
+
with torch.no_grad():
|
330 |
+
query_vec = self.english_embedder.encode(query)
|
331 |
+
else:
|
332 |
+
query_vec = self.english_embedder.encode(query)
|
333 |
+
|
334 |
+
D, I = self.pdf_english_index.search(np.array([query_vec]), k=2)
|
335 |
+
|
336 |
+
# If we found good matches in the PDF
|
337 |
+
if D[0][0] < 1.5: # Threshold for relevance
|
338 |
+
context = "\n".join([self.pdf_english_texts[i] for i in I[0] if i < len(self.pdf_english_texts) and i >= 0])
|
339 |
+
if context.strip():
|
340 |
+
logger.info("Retrieved context from PDF (English)")
|
341 |
+
return context
|
342 |
+
|
343 |
+
# Fall back to the pre-built knowledge base
|
344 |
if lang == "ar":
|
345 |
+
if has_gpu and hasattr(self.arabic_embedder, 'to'):
|
346 |
+
with torch.no_grad():
|
347 |
+
query_vec = self.arabic_embedder.encode(query)
|
348 |
else:
|
349 |
+
query_vec = self.arabic_embedder.encode(query)
|
350 |
+
|
351 |
+
D, I = self.arabic_index.search(np.array([query_vec]), k=2)
|
352 |
+
context = "\n".join([self.arabic_texts[i] for i in I[0] if i < len(self.arabic_texts) and i >= 0])
|
353 |
else:
|
354 |
+
if has_gpu and hasattr(self.english_embedder, 'to'):
|
355 |
+
with torch.no_grad():
|
356 |
+
query_vec = self.english_embedder.encode(query)
|
357 |
else:
|
358 |
+
query_vec = self.english_embedder.encode(query)
|
359 |
+
|
360 |
+
D, I = self.english_index.search(np.array([query_vec]), k=2)
|
361 |
+
context = "\n".join([self.english_texts[i] for i in I[0] if i < len(self.english_texts) and i >= 0])
|
362 |
+
|
363 |
+
retrieval_time = time.time() - start_time
|
364 |
+
logger.info(f"Retrieved context in {retrieval_time:.2f}s")
|
365 |
+
|
366 |
+
return context
|
367 |
except Exception as e:
|
368 |
+
logger.error(f"Error retrieving context: {str(e)}")
|
369 |
+
return ""
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
|
371 |
+
def generate_response(self, user_input):
|
372 |
+
"""Generate response based on user input"""
|
373 |
+
if not user_input or user_input.strip() == "":
|
374 |
+
return ""
|
375 |
+
|
376 |
start_time = time.time()
|
377 |
+
|
378 |
+
# Default response in case of failure
|
379 |
+
default_response = {
|
380 |
+
"en": "I apologize, but I couldn't process your request properly. Please try again.",
|
381 |
+
"ar": "أعتذر، لم أتمكن من معالجة طلبك بشكل صحيح. الرجاء المحاولة مرة أخرى."
|
382 |
+
}
|
383 |
+
|
384 |
try:
|
385 |
+
# Detect language
|
386 |
+
try:
|
387 |
+
lang = detect(user_input)
|
388 |
+
if lang != "ar": # Simplify to just Arabic vs non-Arabic
|
389 |
+
lang = "en"
|
390 |
+
except:
|
391 |
+
lang = "en" # Default fallback
|
392 |
+
|
393 |
+
logger.info(f"Detected language: {lang}")
|
394 |
+
|
395 |
+
# Check for specific question patterns
|
396 |
+
if lang == "ar":
|
397 |
+
# National identity
|
398 |
+
if "الهوية الوطنية" in user_input or "تعزيز الهوية" in user_input:
|
399 |
+
reply = "تتضمن رؤية 2030 مبادرات متعددة لتعزيز الهوية الوطنية السعودية بما في ذلك البرامج الثقافية والحفاظ على التراث وتعزيز القيم السعودية."
|
400 |
+
# Hajj and Umrah
|
401 |
+
elif "المعتمرين" in user_input or "الحجاج" in user_input or "العمرة" in user_input or "الحج" in user_input:
|
402 |
+
reply = "تهدف رؤية 2030 إلى زيادة القدرة على استقبال المعتمرين من 8 ملايين إلى 30 مليون معتمر سنويًا."
|
403 |
+
# Economic diversification
|
404 |
+
elif "تنويع مصادر الدخل" in user_input or "الاقتصاد المزدهر" in user_input or "تنمية الاقتصاد" in user_input:
|
405 |
+
reply = "تهدف رؤية 2030 إلى زيادة الإيرادات الحكومية غير النفطية من 163 مليار ريال سعودي إلى 1 تريليون ريال سعودي من خلال تطوير قطاعات متنوعة مثل السياحة والتصنيع والطاقة المتجددة."
|
406 |
+
# UNESCO sites
|
407 |
+
elif "المواقع الأثرية" in user_input or "اليونسكو" in user_input or "التراث العالمي" in user_input:
|
408 |
+
reply = "تضع رؤية 2030 هدفًا بتسجيل ما لا يقل عن 10 مواقع سعودية في قائمة التراث العالمي لليونسكو."
|
409 |
+
# Real wealth
|
410 |
+
elif "الثروة الحقيقية" in user_input or "أثمن" in user_input or "ثروة" in user_input:
|
411 |
+
reply = "الثروة الحقيقية للمملكة العربية السعودية، كما أكدت رؤية 2030، هي شعبها، وخاصة الشباب."
|
412 |
+
# Global gateway
|
413 |
+
elif "بوابة للعالم" in user_input or "مكانتها" in user_input or "موقعها الاستراتيجي" in user_input:
|
414 |
+
reply = "تهدف المملكة العربية السعودية إلى تعزيز مكانتها كبوابة عالمية من خلال الاستفادة من موقعها الاستراتيجي بين آسيا وأوروبا وأفريقيا."
|
415 |
+
# Key pillars
|
416 |
+
elif "ركائز" in user_input or "اركان" in user_input:
|
417 |
+
reply = "الركائز الرئيسية لرؤية 2030 هي مجتمع حيوي، واقتصاد مزدهر، ووطن طموح."
|
418 |
+
# General Vision 2030
|
419 |
+
elif "ما هي" in user_input or "ماهي" in user_input:
|
420 |
+
reply = "رؤية 2030 هي الإطار الاستراتيجي للمملكة العربية السعودية للحد من الاعتماد على النفط وتنويع الاقتصاد وتطوير القطاعات العامة. الركائز الرئيسية لرؤية 2030 هي مجتمع حيوي، واقتصاد مزدهر، ووطن طموح."
|
421 |
+
else:
|
422 |
+
# Use retrieved context
|
423 |
+
context = self.retrieve_context(user_input, lang)
|
424 |
+
reply = context if context else "لم أتمكن من العثور على معلومات كافية حول هذا السؤال."
|
425 |
+
else: # English
|
426 |
+
# Use retrieved context
|
427 |
+
context = self.retrieve_context(user_input, lang)
|
428 |
+
reply = context if context else "I couldn't find enough information about this question."
|
429 |
+
|
430 |
+
# Record response time
|
431 |
+
response_time = time.time() - start_time
|
432 |
+
self.metrics["response_times"].append(response_time)
|
433 |
+
|
434 |
+
logger.info(f"Generated response in {response_time:.2f}s")
|
435 |
+
|
436 |
+
# Store the interaction for later evaluation
|
437 |
+
interaction = {
|
438 |
+
"timestamp": datetime.now().isoformat(),
|
439 |
+
"user_input": user_input,
|
440 |
+
"response": reply,
|
441 |
+
"language": lang,
|
442 |
+
"response_time": response_time
|
443 |
+
}
|
444 |
+
self.response_history.append(interaction)
|
445 |
+
|
446 |
return reply
|
447 |
+
|
448 |
except Exception as e:
|
449 |
+
logger.error(f"Error generating response: {str(e)}")
|
450 |
+
return default_response.get(lang, default_response["en"])
|
451 |
|
452 |
def evaluate_factual_accuracy(self, response, reference):
|
453 |
+
"""Simple evaluation of factual accuracy by keyword matching"""
|
454 |
+
# This is a simplified approach - in production, use more sophisticated methods
|
455 |
+
keywords_reference = set(re.findall(r'\b\w+\b', reference.lower()))
|
456 |
+
keywords_response = set(re.findall(r'\b\w+\b', response.lower()))
|
457 |
+
|
458 |
+
# Remove common stopwords (simplified approach)
|
459 |
+
english_stopwords = {"the", "is", "a", "an", "and", "or", "of", "to", "in", "for", "with", "by", "on", "at"}
|
460 |
+
arabic_stopwords = {"في", "من", "إلى", "على", "و", "هي", "هو", "عن", "مع"}
|
461 |
+
|
462 |
+
keywords_reference = {w for w in keywords_reference if w not in english_stopwords and w not in arabic_stopwords}
|
463 |
+
keywords_response = {w for w in keywords_response if w not in english_stopwords and w not in arabic_stopwords}
|
464 |
+
|
465 |
+
common_keywords = keywords_reference.intersection(keywords_response)
|
466 |
+
|
467 |
+
if len(keywords_reference) > 0:
|
468 |
+
accuracy = len(common_keywords) / len(keywords_reference)
|
469 |
+
else:
|
470 |
+
accuracy = 0
|
471 |
+
|
472 |
+
return accuracy
|
473 |
|
474 |
@spaces.GPU
|
475 |
+
def evaluate_on_test_set(self):
|
476 |
+
"""Evaluate the assistant on the test set"""
|
477 |
+
logger.info("Running evaluation on test set")
|
478 |
+
|
479 |
+
eval_results = []
|
480 |
+
|
481 |
+
for example in self.eval_data:
|
482 |
+
# Generate response
|
483 |
+
response = self.generate_response(example["question"])
|
484 |
+
|
485 |
+
# Calculate factual accuracy
|
486 |
+
accuracy = self.evaluate_factual_accuracy(response, example["reference_answer"])
|
487 |
+
|
488 |
+
eval_results.append({
|
489 |
+
"question": example["question"],
|
490 |
+
"reference": example["reference_answer"],
|
491 |
+
"response": response,
|
492 |
+
"factual_accuracy": accuracy
|
493 |
+
})
|
494 |
+
|
495 |
+
self.metrics["factual_accuracy"].append(accuracy)
|
496 |
+
|
497 |
+
# Calculate average factual accuracy
|
498 |
+
avg_accuracy = sum(self.metrics["factual_accuracy"]) / len(self.metrics["factual_accuracy"]) if self.metrics["factual_accuracy"] else 0
|
499 |
+
avg_response_time = sum(self.metrics["response_times"]) / len(self.metrics["response_times"]) if self.metrics["response_times"] else 0
|
500 |
+
|
501 |
+
results = {
|
502 |
+
"average_factual_accuracy": avg_accuracy,
|
503 |
+
"average_response_time": avg_response_time,
|
504 |
+
"detailed_results": eval_results
|
505 |
+
}
|
506 |
+
|
507 |
+
logger.info(f"Evaluation results: Factual accuracy = {avg_accuracy:.2f}, Avg response time = {avg_response_time:.2f}s")
|
508 |
+
|
509 |
+
return results
|
510 |
+
|
511 |
+
def visualize_evaluation_results(self, results):
|
512 |
+
"""Generate visualization of evaluation results"""
|
513 |
+
# Create a DataFrame from the detailed results
|
514 |
+
df = pd.DataFrame(results["detailed_results"])
|
515 |
+
|
516 |
+
# Create the figure for visualizations
|
517 |
+
fig = plt.figure(figsize=(12, 8))
|
518 |
+
|
519 |
+
# Bar chart of factual accuracy by question
|
520 |
+
plt.subplot(2, 1, 1)
|
521 |
+
bars = plt.bar(range(len(df)), df["factual_accuracy"], color="skyblue")
|
522 |
+
plt.axhline(y=results["average_factual_accuracy"], color='r', linestyle='-',
|
523 |
+
label=f"Avg: {results['average_factual_accuracy']:.2f}")
|
524 |
+
plt.xlabel("Question Index")
|
525 |
+
plt.ylabel("Factual Accuracy")
|
526 |
+
plt.title("Factual Accuracy by Question")
|
527 |
+
plt.ylim(0, 1.1)
|
528 |
+
plt.legend()
|
529 |
+
|
530 |
+
# Add language information
|
531 |
+
df["language"] = df["question"].apply(lambda x: "Arabic" if detect(x) == "ar" else "English")
|
532 |
+
|
533 |
+
# Group by language
|
534 |
+
lang_accuracy = df.groupby("language")["factual_accuracy"].mean()
|
535 |
+
|
536 |
+
# Bar chart of accuracy by language
|
537 |
+
plt.subplot(2, 1, 2)
|
538 |
+
lang_bars = plt.bar(lang_accuracy.index, lang_accuracy.values, color=["lightblue", "lightgreen"])
|
539 |
+
plt.axhline(y=results["average_factual_accuracy"], color='r', linestyle='-',
|
540 |
+
label=f"Overall: {results['average_factual_accuracy']:.2f}")
|
541 |
+
plt.xlabel("Language")
|
542 |
+
plt.ylabel("Average Factual Accuracy")
|
543 |
+
plt.title("Factual Accuracy by Language")
|
544 |
+
plt.ylim(0, 1.1)
|
545 |
+
|
546 |
+
# Add value labels
|
547 |
+
for i, v in enumerate(lang_accuracy):
|
548 |
+
plt.text(i, v + 0.05, f"{v:.2f}", ha='center')
|
549 |
+
|
550 |
+
plt.tight_layout()
|
551 |
+
return fig
|
552 |
|
553 |
+
def record_user_feedback(self, user_input, response, rating, feedback_text=""):
|
554 |
+
"""Record user feedback for a response"""
|
555 |
+
feedback = {
|
556 |
+
"timestamp": datetime.now().isoformat(),
|
557 |
+
"user_input": user_input,
|
558 |
+
"response": response,
|
559 |
+
"rating": rating,
|
560 |
+
"feedback_text": feedback_text
|
561 |
+
}
|
562 |
+
|
563 |
+
self.metrics["user_ratings"].append(rating)
|
564 |
+
|
565 |
+
# In a production system, store this in a database
|
566 |
+
logger.info(f"Recorded user feedback: rating={rating}")
|
567 |
+
|
568 |
+
return True
|
569 |
|
570 |
+
@spaces.GPU
|
571 |
+
def process_pdf(self, file):
|
572 |
+
"""Process uploaded PDF file"""
|
573 |
+
if file is None:
|
574 |
+
return "No file uploaded. Please select a PDF file."
|
575 |
+
|
576 |
+
try:
|
577 |
+
logger.info(f"Processing uploaded file")
|
578 |
+
|
579 |
+
# Convert bytes to file-like object
|
580 |
+
file_stream = io.BytesIO(file)
|
581 |
+
|
582 |
+
# Use PyPDF2 to read the file content
|
583 |
+
reader = PyPDF2.PdfReader(file_stream)
|
584 |
+
|
585 |
+
# Extract text from the PDF
|
586 |
+
full_text = ""
|
587 |
+
for page_num in range(len(reader.pages)):
|
588 |
+
page = reader.pages[page_num]
|
589 |
+
extracted_text = page.extract_text()
|
590 |
+
if extracted_text:
|
591 |
+
full_text += extracted_text + "\n"
|
592 |
+
|
593 |
+
if not full_text.strip():
|
594 |
+
return "The uploaded PDF doesn't contain extractable text. Please try another file."
|
595 |
+
|
596 |
+
# Process the extracted text with better chunking
|
597 |
+
chunks = []
|
598 |
+
paragraphs = re.split(r'\n\s*\n', full_text)
|
599 |
+
|
600 |
+
for paragraph in paragraphs:
|
601 |
+
# Skip very short paragraphs
|
602 |
+
if len(paragraph.strip()) < 20:
|
603 |
+
continue
|
604 |
+
|
605 |
+
if len(paragraph) > 500: # For very long paragraphs
|
606 |
+
# Split into smaller chunks
|
607 |
+
sentences = re.split(r'(?<=[.!?])\s+', paragraph)
|
608 |
+
current_chunk = ""
|
609 |
+
for sentence in sentences:
|
610 |
+
if len(current_chunk) + len(sentence) > 300:
|
611 |
+
if current_chunk:
|
612 |
+
chunks.append(current_chunk.strip())
|
613 |
+
current_chunk = sentence
|
614 |
+
else:
|
615 |
+
current_chunk += " " + sentence if current_chunk else sentence
|
616 |
+
|
617 |
+
if current_chunk:
|
618 |
+
chunks.append(current_chunk.strip())
|
619 |
+
else:
|
620 |
+
chunks.append(paragraph.strip())
|
621 |
+
|
622 |
+
# Categorize text by language
|
623 |
+
english_chunks = []
|
624 |
+
arabic_chunks = []
|
625 |
+
|
626 |
+
for chunk in chunks:
|
627 |
+
try:
|
628 |
+
lang = detect(chunk)
|
629 |
+
if lang == "ar":
|
630 |
+
arabic_chunks.append(chunk)
|
631 |
+
else:
|
632 |
+
english_chunks.append(chunk)
|
633 |
+
except:
|
634 |
+
# If language detection fails, check for Arabic characters
|
635 |
+
if any('\u0600' <= c <= '\u06FF' for c in chunk):
|
636 |
+
arabic_chunks.append(chunk)
|
637 |
+
else:
|
638 |
+
english_chunks.append(chunk)
|
639 |
+
|
640 |
+
# Store PDF content
|
641 |
+
self.pdf_english_texts = english_chunks
|
642 |
+
self.pdf_arabic_texts = arabic_chunks
|
643 |
+
|
644 |
+
# Create indices for PDF content
|
645 |
+
self._create_pdf_indices()
|
646 |
+
|
647 |
+
logger.info(f"Successfully processed PDF: {len(arabic_chunks)} Arabic chunks, {len(english_chunks)} English chunks")
|
648 |
+
|
649 |
+
return f"✅ Successfully processed the PDF! Found {len(arabic_chunks)} Arabic and {len(english_chunks)} English text segments. PDF content will now be prioritized when answering questions."
|
650 |
+
|
651 |
except Exception as e:
|
652 |
+
logger.error(f"Error processing PDF: {str(e)}")
|
653 |
+
return f"❌ Error processing the PDF: {str(e)}. Please try another file."
|
654 |
|
655 |
# Create the Gradio interface
|
656 |
def create_interface():
|
657 |
+
# Initialize the assistant
|
658 |
assistant = Vision2030Assistant()
|
659 |
+
|
660 |
+
def chat(message, history):
|
661 |
+
if not message or message.strip() == "":
|
662 |
+
return history, ""
|
663 |
+
|
664 |
+
# Generate response
|
665 |
+
reply = assistant.generate_response(message)
|
666 |
+
|
667 |
+
# Update history
|
668 |
+
history.append((message, reply))
|
669 |
+
|
670 |
return history, ""
|
671 |
+
|
672 |
+
def provide_feedback(history, rating, feedback_text):
|
673 |
+
# Record feedback for the last conversation
|
674 |
+
if history and len(history) > 0:
|
675 |
+
last_interaction = history[-1]
|
676 |
+
assistant.record_user_feedback(last_interaction[0], last_interaction[1], rating, feedback_text)
|
677 |
+
return f"Thank you for your feedback! (Rating: {rating}/5)"
|
678 |
+
return "No conversation found to rate."
|
679 |
+
|
680 |
+
@spaces.GPU
|
681 |
+
def run_evaluation():
|
682 |
+
results = assistant.evaluate_on_test_set()
|
683 |
+
|
684 |
+
# Create summary text
|
685 |
+
summary = f"""
|
686 |
+
Evaluation Results:
|
687 |
+
------------------
|
688 |
+
Total questions evaluated: {len(results['detailed_results'])}
|
689 |
+
Overall factual accuracy: {results['average_factual_accuracy']:.2f}
|
690 |
+
Average response time: {results['average_response_time']:.4f} seconds
|
691 |
+
|
692 |
+
Detailed Results:
|
693 |
+
"""
|
694 |
+
|
695 |
+
for i, result in enumerate(results['detailed_results']):
|
696 |
+
summary += f"\nQ{i+1}: {result['question']}\n"
|
697 |
+
summary += f"Reference: {result['reference']}\n"
|
698 |
+
summary += f"Response: {result['response']}\n"
|
699 |
+
summary += f"Accuracy: {result['factual_accuracy']:.2f}\n"
|
700 |
+
summary += "-" * 40 + "\n"
|
701 |
+
|
702 |
+
# Return both the results summary and visualization
|
703 |
+
fig = assistant.visualize_evaluation_results(results)
|
704 |
+
|
705 |
+
return summary, fig
|
706 |
+
|
707 |
+
def process_uploaded_file(file):
|
708 |
+
"""Process the uploaded PDF file"""
|
709 |
+
return assistant.process_pdf(file)
|
710 |
+
|
711 |
+
# Create the Gradio interface
|
712 |
with gr.Blocks() as demo:
|
713 |
+
gr.Markdown("# Vision 2030 Virtual Assistant 🌟")
|
714 |
+
gr.Markdown("Ask questions about Saudi Arabia's Vision 2030 in both Arabic and English")
|
715 |
+
|
716 |
+
with gr.Tab("Chat"):
|
717 |
+
chatbot = gr.Chatbot(height=400)
|
718 |
+
msg = gr.Textbox(label="Your Question", placeholder="Ask about Vision 2030...")
|
719 |
+
with gr.Row():
|
720 |
+
submit_btn = gr.Button("Submit")
|
721 |
+
clear_btn = gr.Button("Clear Chat")
|
722 |
+
|
723 |
+
gr.Markdown("### Provide Feedback")
|
724 |
+
with gr.Row():
|
725 |
+
rating = gr.Slider(minimum=1, maximum=5, step=1, value=3, label="Rate the Response (1-5)")
|
726 |
+
feedback_text = gr.Textbox(label="Additional Comments (Optional)")
|
727 |
+
feedback_btn = gr.Button("Submit Feedback")
|
728 |
+
feedback_result = gr.Textbox(label="Feedback Status")
|
729 |
+
|
730 |
+
with gr.Tab("Evaluation"):
|
731 |
+
evaluate_btn = gr.Button("Run Evaluation on Test Set")
|
732 |
+
eval_output = gr.Textbox(label="Evaluation Results", lines=20)
|
733 |
+
eval_chart = gr.Plot(label="Evaluation Metrics")
|
734 |
+
|
735 |
+
with gr.Tab("Upload PDF"):
|
736 |
+
gr.Markdown("""
|
737 |
+
### Upload a Vision 2030 PDF Document
|
738 |
+
Upload a PDF document to enhance the assistant's knowledge base.
|
739 |
+
""")
|
740 |
+
|
741 |
+
with gr.Row():
|
742 |
+
file_input = gr.File(
|
743 |
+
label="Select PDF File",
|
744 |
+
file_types=[".pdf"],
|
745 |
+
type="binary" # This is critical - use binary mode
|
746 |
+
)
|
747 |
+
|
748 |
+
with gr.Row():
|
749 |
+
upload_btn = gr.Button("Process PDF", variant="primary")
|
750 |
+
|
751 |
+
with gr.Row():
|
752 |
+
upload_status = gr.Textbox(
|
753 |
+
label="Upload Status",
|
754 |
+
placeholder="Upload status will appear here...",
|
755 |
+
interactive=False
|
756 |
+
)
|
757 |
+
|
758 |
+
gr.Markdown("""
|
759 |
+
### Notes:
|
760 |
+
- The PDF should contain text that can be extracted (not scanned images)
|
761 |
+
- After uploading, return to the Chat tab to ask questions about the uploaded content
|
762 |
+
""")
|
763 |
+
|
764 |
+
# Set up event handlers
|
765 |
+
msg.submit(chat, [msg, chatbot], [chatbot, msg])
|
766 |
+
submit_btn.click(chat, [msg, chatbot], [chatbot, msg])
|
767 |
+
clear_btn.click(lambda: [], None, chatbot)
|
768 |
+
feedback_btn.click(provide_feedback, [chatbot, rating, feedback_text], feedback_result)
|
769 |
+
evaluate_btn.click(run_evaluation, None, [eval_output, eval_chart])
|
770 |
+
upload_btn.click(process_uploaded_file, [file_input], [upload_status])
|
771 |
+
|
772 |
return demo
|
773 |
|
774 |
+
# Launch the app
|
775 |
+
demo = create_interface()
|
776 |
+
demo.launch()
|
|