Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import re
|
@@ -5,20 +21,27 @@ import torch
|
|
5 |
import numpy as np
|
6 |
from pathlib import Path
|
7 |
import PyPDF2
|
8 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
9 |
from sentence_transformers import SentenceTransformer
|
10 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
from langchain_community.vectorstores import FAISS
|
12 |
from langchain.schema import Document
|
13 |
from langchain.embeddings import HuggingFaceEmbeddings
|
14 |
-
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Create the Vision 2030 Assistant class
|
17 |
class Vision2030Assistant:
|
18 |
-
def __init__(self, model, tokenizer, vector_store):
|
19 |
self.model = model
|
20 |
self.tokenizer = tokenizer
|
21 |
self.vector_store = vector_store
|
|
|
22 |
self.conversation_history = []
|
23 |
|
24 |
def answer(self, user_query):
|
@@ -40,8 +63,11 @@ class Vision2030Assistant:
|
|
40 |
# Retrieve relevant contexts
|
41 |
contexts = retrieve_context(enhanced_query, self.vector_store, top_k=5)
|
42 |
|
43 |
-
# Generate response
|
44 |
-
|
|
|
|
|
|
|
45 |
|
46 |
# Add response to conversation history
|
47 |
self.conversation_history.append({"role": "assistant", "content": response})
|
@@ -87,9 +113,9 @@ def retrieve_context(query, vector_store, top_k=5):
|
|
87 |
|
88 |
return contexts
|
89 |
|
90 |
-
@spaces.GPU
|
91 |
-
def
|
92 |
-
"""Generate a response using
|
93 |
# Auto-detect language if not specified
|
94 |
if language == "auto":
|
95 |
language = detect_language(query)
|
@@ -149,6 +175,53 @@ Question: {query} [/INST]</s>"""
|
|
149 |
# Fallback response
|
150 |
return "I apologize, but I encountered an error while generating a response."
|
151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
def process_pdf_files(pdf_files):
|
153 |
"""Process PDF files and create documents"""
|
154 |
documents = []
|
@@ -217,24 +290,67 @@ def create_vector_store(documents):
|
|
217 |
vector_store = FAISS.from_documents(chunks, embedding_function)
|
218 |
return vector_store
|
219 |
|
220 |
-
#
|
221 |
-
|
222 |
-
|
223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
global model, tokenizer
|
229 |
|
230 |
-
if model is not None and tokenizer is not None:
|
231 |
-
return "
|
232 |
|
233 |
model_name = "ALLaM-AI/ALLaM-7B-Instruct-preview"
|
234 |
-
print(f"Loading model: {model_name}")
|
235 |
|
236 |
try:
|
237 |
-
#
|
|
|
|
|
|
|
|
|
238 |
tokenizer = AutoTokenizer.from_pretrained(
|
239 |
model_name,
|
240 |
trust_remote_code=True,
|
@@ -244,32 +360,64 @@ def load_model_and_tokenizer():
|
|
244 |
# Load model with appropriate settings for ALLaM
|
245 |
model = AutoModelForCausalLM.from_pretrained(
|
246 |
model_name,
|
247 |
-
torch_dtype=torch.bfloat16,
|
248 |
trust_remote_code=True,
|
249 |
device_map="auto",
|
250 |
)
|
251 |
|
252 |
-
|
|
|
253 |
|
254 |
except Exception as e:
|
255 |
-
error_msg = f"
|
256 |
print(error_msg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
|
274 |
# Gradio Interface Functions
|
275 |
def process_pdfs(pdf_files):
|
@@ -285,27 +433,44 @@ def process_pdfs(pdf_files):
|
|
285 |
|
286 |
# Ensure model is loaded
|
287 |
if model is None or tokenizer is None:
|
288 |
-
|
289 |
-
if "successfully" not in load_status.lower():
|
290 |
-
return f"Model loading failed: {load_status}"
|
291 |
|
292 |
# Create vector store
|
293 |
vector_store = create_vector_store(documents)
|
294 |
|
295 |
# Initialize assistant
|
296 |
-
assistant = Vision2030Assistant(model, tokenizer, vector_store)
|
297 |
|
298 |
return f"Successfully processed {len(documents)} documents. The assistant is ready to use!"
|
299 |
|
300 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
def answer_query(message, history):
|
302 |
global assistant
|
303 |
|
304 |
if assistant is None:
|
305 |
-
return "Please
|
306 |
|
307 |
response = assistant.answer(message)
|
308 |
-
|
|
|
309 |
|
310 |
def reset_chat():
|
311 |
global assistant
|
@@ -316,31 +481,62 @@ def reset_chat():
|
|
316 |
reset_message = assistant.reset_conversation()
|
317 |
return reset_message
|
318 |
|
|
|
|
|
|
|
319 |
# Create Gradio interface
|
320 |
with gr.Blocks(title="Vision 2030 Virtual Assistant") as demo:
|
321 |
gr.Markdown("# Vision 2030 Virtual Assistant")
|
322 |
gr.Markdown("Ask questions about Saudi Vision 2030 goals, projects, and progress in Arabic or English.")
|
323 |
|
324 |
with gr.Tab("Setup"):
|
325 |
-
gr.Markdown("## Step 1: Load
|
326 |
-
|
327 |
-
|
328 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
|
330 |
-
gr.Markdown("##
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
|
336 |
with gr.Tab("Chat"):
|
337 |
-
chatbot = gr.Chatbot(label="Conversation")
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
|
|
|
|
|
|
344 |
reset_btn = gr.Button("Reset Conversation")
|
345 |
|
346 |
gr.Markdown("### Example Questions")
|
@@ -375,7 +571,7 @@ with gr.Blocks(title="Vision 2030 Virtual Assistant") as demo:
|
|
375 |
submit_btn.click(answer_query, inputs=[message, chatbot], outputs=[chatbot])
|
376 |
message.submit(answer_query, inputs=[message, chatbot], outputs=[chatbot])
|
377 |
reset_btn.click(reset_chat, inputs=[], outputs=[reset_output])
|
378 |
-
reset_btn.click(lambda: None, inputs=[], outputs=[chatbot], postprocess=
|
379 |
|
380 |
# Launch the app
|
381 |
demo.launch()
|
|
|
1 |
+
# Force install sentencepiece
|
2 |
+
import sys
|
3 |
+
import subprocess
|
4 |
+
|
5 |
+
def install_package(package):
|
6 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
7 |
+
|
8 |
+
try:
|
9 |
+
import sentencepiece
|
10 |
+
print("SentencePiece is already installed")
|
11 |
+
except ImportError:
|
12 |
+
print("Installing SentencePiece...")
|
13 |
+
install_package("sentencepiece==0.1.99")
|
14 |
+
print("SentencePiece installed successfully")
|
15 |
+
|
16 |
+
# Import other required libraries
|
17 |
import gradio as gr
|
18 |
import os
|
19 |
import re
|
|
|
21 |
import numpy as np
|
22 |
from pathlib import Path
|
23 |
import PyPDF2
|
24 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSeq2SeqLM
|
25 |
from sentence_transformers import SentenceTransformer
|
26 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
27 |
from langchain_community.vectorstores import FAISS
|
28 |
from langchain.schema import Document
|
29 |
from langchain.embeddings import HuggingFaceEmbeddings
|
30 |
+
import spaces
|
31 |
+
|
32 |
+
# Global variables to store model state
|
33 |
+
model = None
|
34 |
+
tokenizer = None
|
35 |
+
assistant = None
|
36 |
+
model_type = "primary" # Track if we're using primary or fallback model
|
37 |
|
38 |
# Create the Vision 2030 Assistant class
|
39 |
class Vision2030Assistant:
|
40 |
+
def __init__(self, model, tokenizer, vector_store, model_type="primary"):
|
41 |
self.model = model
|
42 |
self.tokenizer = tokenizer
|
43 |
self.vector_store = vector_store
|
44 |
+
self.model_type = model_type
|
45 |
self.conversation_history = []
|
46 |
|
47 |
def answer(self, user_query):
|
|
|
63 |
# Retrieve relevant contexts
|
64 |
contexts = retrieve_context(enhanced_query, self.vector_store, top_k=5)
|
65 |
|
66 |
+
# Generate response based on model type
|
67 |
+
if self.model_type == "primary":
|
68 |
+
response = generate_response_primary(user_query, contexts, self.model, self.tokenizer, language)
|
69 |
+
else:
|
70 |
+
response = generate_response_fallback(user_query, contexts, self.model, self.tokenizer, language)
|
71 |
|
72 |
# Add response to conversation history
|
73 |
self.conversation_history.append({"role": "assistant", "content": response})
|
|
|
113 |
|
114 |
return contexts
|
115 |
|
116 |
+
@spaces.GPU
|
117 |
+
def generate_response_primary(query, contexts, model, tokenizer, language="auto"):
|
118 |
+
"""Generate a response using ALLaM model"""
|
119 |
# Auto-detect language if not specified
|
120 |
if language == "auto":
|
121 |
language = detect_language(query)
|
|
|
175 |
# Fallback response
|
176 |
return "I apologize, but I encountered an error while generating a response."
|
177 |
|
178 |
+
@spaces.GPU
|
179 |
+
def generate_response_fallback(query, contexts, model, tokenizer, language="auto"):
|
180 |
+
"""Generate a response using the fallback model (BLOOM or mBART)"""
|
181 |
+
# Auto-detect language if not specified
|
182 |
+
if language == "auto":
|
183 |
+
language = detect_language(query)
|
184 |
+
|
185 |
+
# Format the prompt based on language
|
186 |
+
if language == "arabic":
|
187 |
+
system_prompt = (
|
188 |
+
"أنت مساعد افتراضي يهتم برؤية السعودية 2030. استخدم السياق التالي للإجابة على السؤال: "
|
189 |
+
)
|
190 |
+
else:
|
191 |
+
system_prompt = (
|
192 |
+
"You are a virtual assistant for Saudi Vision 2030. Use the following context to answer the question: "
|
193 |
+
)
|
194 |
+
|
195 |
+
# Combine retrieved contexts
|
196 |
+
context_text = "\n\n".join([f"Document: {ctx['content']}" for ctx in contexts])
|
197 |
+
|
198 |
+
# Format prompt for fallback model (simpler format)
|
199 |
+
prompt = f"{system_prompt}\n\nContext:\n{context_text}\n\nQuestion: {query}\n\nAnswer:"
|
200 |
+
|
201 |
+
try:
|
202 |
+
# Generate with fallback model
|
203 |
+
inputs = tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True).to(model.device)
|
204 |
+
|
205 |
+
outputs = model.generate(
|
206 |
+
inputs.input_ids,
|
207 |
+
attention_mask=inputs.attention_mask,
|
208 |
+
max_length=inputs.input_ids.shape[1] + 512,
|
209 |
+
temperature=0.7,
|
210 |
+
top_p=0.9,
|
211 |
+
do_sample=True,
|
212 |
+
pad_token_id=tokenizer.eos_token_id
|
213 |
+
)
|
214 |
+
|
215 |
+
# For most models, this is how we extract the response
|
216 |
+
response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
217 |
+
|
218 |
+
# Cleanup and return
|
219 |
+
return response.strip()
|
220 |
+
|
221 |
+
except Exception as e:
|
222 |
+
print(f"Error during fallback generation: {e}")
|
223 |
+
return "I apologize, but I encountered an error while generating a response with the fallback model."
|
224 |
+
|
225 |
def process_pdf_files(pdf_files):
|
226 |
"""Process PDF files and create documents"""
|
227 |
documents = []
|
|
|
290 |
vector_store = FAISS.from_documents(chunks, embedding_function)
|
291 |
return vector_store
|
292 |
|
293 |
+
# Attempt to create mock documents if none are available yet
|
294 |
+
def create_mock_documents():
|
295 |
+
"""Create mock documents about Vision 2030"""
|
296 |
+
documents = []
|
297 |
+
|
298 |
+
# Sample content about Vision 2030 in both languages
|
299 |
+
samples = [
|
300 |
+
{
|
301 |
+
"content": "رؤية السعودية 2030 هي خطة استراتيجية تهدف إلى تنويع الاقتصاد السعودي وتقليل الاعتماد على النفط مع تطوير قطاعات مختلفة مثل الصحة والتعليم والسياحة.",
|
302 |
+
"source": "vision2030_overview_ar.txt"
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"content": "Saudi Vision 2030 is a strategic framework aiming to diversify Saudi Arabia's economy and reduce dependence on oil, while developing sectors like health, education, and tourism.",
|
306 |
+
"source": "vision2030_overview_en.txt"
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"content": "تشمل الأهداف الاقتصادية لرؤية 2030 زيادة مساهمة القطاع الخاص من 40% إلى 65% من الناتج المحلي الإجمالي، ورفع نسبة الصادرات غير النفطية من 16% إلى 50% من الناتج المحلي الإجمالي غير النفطي، وخفض البطالة إلى 7%.",
|
310 |
+
"source": "economic_goals_ar.txt"
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"content": "The economic goals of Vision 2030 include increasing private sector contribution from 40% to 65% of GDP, raising non-oil exports from 16% to 50%, and reducing unemployment from 11.6% to 7%.",
|
314 |
+
"source": "economic_goals_en.txt"
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"content": "تركز رؤية 2030 على زيادة مشاركة المرأة في سوق العمل من 22% إلى 30% بحلول عام 2030، مع توفير فرص متساوية في التعليم والعمل.",
|
318 |
+
"source": "women_empowerment_ar.txt"
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"content": "Vision 2030 emphasizes increasing women's participation in the workforce from 22% to 30% by 2030, while providing equal opportunities in education and employment.",
|
322 |
+
"source": "women_empowerment_en.txt"
|
323 |
+
}
|
324 |
+
]
|
325 |
+
|
326 |
+
# Create documents from samples
|
327 |
+
for sample in samples:
|
328 |
+
doc = Document(
|
329 |
+
page_content=sample["content"],
|
330 |
+
metadata={"source": sample["source"], "filename": sample["source"]}
|
331 |
+
)
|
332 |
+
documents.append(doc)
|
333 |
+
|
334 |
+
print(f"Created {len(documents)} mock documents")
|
335 |
+
return documents
|
336 |
|
337 |
+
@spaces.GPU
|
338 |
+
def load_primary_model():
|
339 |
+
"""Load the ALLaM-7B model with error handling"""
|
340 |
+
global model, tokenizer, model_type
|
341 |
|
342 |
+
if model is not None and tokenizer is not None and model_type == "primary":
|
343 |
+
return "Primary model (ALLaM-7B) already loaded"
|
344 |
|
345 |
model_name = "ALLaM-AI/ALLaM-7B-Instruct-preview"
|
346 |
+
print(f"Loading primary model: {model_name}")
|
347 |
|
348 |
try:
|
349 |
+
# Try to import sentencepiece explicitly first
|
350 |
+
import sentencepiece as spm
|
351 |
+
print("SentencePiece imported successfully")
|
352 |
+
|
353 |
+
# First attempt with AutoTokenizer and explicit trust_remote_code
|
354 |
tokenizer = AutoTokenizer.from_pretrained(
|
355 |
model_name,
|
356 |
trust_remote_code=True,
|
|
|
360 |
# Load model with appropriate settings for ALLaM
|
361 |
model = AutoModelForCausalLM.from_pretrained(
|
362 |
model_name,
|
363 |
+
torch_dtype=torch.bfloat16,
|
364 |
trust_remote_code=True,
|
365 |
device_map="auto",
|
366 |
)
|
367 |
|
368 |
+
model_type = "primary"
|
369 |
+
return "Primary model (ALLaM-7B) loaded successfully!"
|
370 |
|
371 |
except Exception as e:
|
372 |
+
error_msg = f"Primary model loading failed: {e}"
|
373 |
print(error_msg)
|
374 |
+
return error_msg
|
375 |
+
|
376 |
+
@spaces.GPU
|
377 |
+
def load_fallback_model():
|
378 |
+
"""Load the fallback model (BLOOM-7B1) when ALLaM fails"""
|
379 |
+
global model, tokenizer, model_type
|
380 |
+
|
381 |
+
if model is not None and tokenizer is not None and model_type == "fallback":
|
382 |
+
return "Fallback model already loaded"
|
383 |
+
|
384 |
+
try:
|
385 |
+
print("Loading fallback model: BLOOM-7B1...")
|
386 |
|
387 |
+
# Use BLOOM model as fallback (it doesn't need SentencePiece)
|
388 |
+
tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-7b1")
|
389 |
+
model = AutoModelForCausalLM.from_pretrained(
|
390 |
+
"bigscience/bloom-7b1",
|
391 |
+
torch_dtype=torch.bfloat16,
|
392 |
+
device_map="auto",
|
393 |
+
load_in_8bit=True # Reduce memory usage
|
394 |
+
)
|
395 |
+
|
396 |
+
model_type = "fallback"
|
397 |
+
return "Fallback model (BLOOM-7B1) loaded successfully!"
|
398 |
+
except Exception as e:
|
399 |
+
return f"Fallback model loading failed: {e}"
|
400 |
+
|
401 |
+
def load_mbart_model():
|
402 |
+
"""Load mBART as a second fallback option"""
|
403 |
+
global model, tokenizer, model_type
|
404 |
+
|
405 |
+
try:
|
406 |
+
print("Loading mBART multilingual model...")
|
407 |
+
|
408 |
+
model_name = "facebook/mbart-large-50-many-to-many-mmt"
|
409 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
410 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
411 |
+
model_name,
|
412 |
+
torch_dtype=torch.float16,
|
413 |
+
device_map="auto",
|
414 |
+
load_in_8bit=True
|
415 |
+
)
|
416 |
+
|
417 |
+
model_type = "mbart"
|
418 |
+
return "mBART multilingual model loaded successfully!"
|
419 |
+
except Exception as e:
|
420 |
+
return f"mBART model loading failed: {e}"
|
421 |
|
422 |
# Gradio Interface Functions
|
423 |
def process_pdfs(pdf_files):
|
|
|
433 |
|
434 |
# Ensure model is loaded
|
435 |
if model is None or tokenizer is None:
|
436 |
+
return "Please load a model first (primary or fallback) before processing documents."
|
|
|
|
|
437 |
|
438 |
# Create vector store
|
439 |
vector_store = create_vector_store(documents)
|
440 |
|
441 |
# Initialize assistant
|
442 |
+
assistant = Vision2030Assistant(model, tokenizer, vector_store, model_type)
|
443 |
|
444 |
return f"Successfully processed {len(documents)} documents. The assistant is ready to use!"
|
445 |
|
446 |
+
def use_mock_documents():
|
447 |
+
"""Use mock documents when no PDFs are available"""
|
448 |
+
documents = create_mock_documents()
|
449 |
+
|
450 |
+
global assistant, model, tokenizer
|
451 |
+
|
452 |
+
# Ensure model is loaded
|
453 |
+
if model is None or tokenizer is None:
|
454 |
+
return "Please load a model first (primary or fallback) before using mock documents."
|
455 |
+
|
456 |
+
# Create vector store
|
457 |
+
vector_store = create_vector_store(documents)
|
458 |
+
|
459 |
+
# Initialize assistant
|
460 |
+
assistant = Vision2030Assistant(model, tokenizer, vector_store, model_type)
|
461 |
+
|
462 |
+
return "Successfully initialized with mock Vision 2030 documents. The assistant is ready for testing!"
|
463 |
+
|
464 |
+
@spaces.GPU
|
465 |
def answer_query(message, history):
|
466 |
global assistant
|
467 |
|
468 |
if assistant is None:
|
469 |
+
return [(message, "Please load a model and process documents first (or use mock documents for testing).")]
|
470 |
|
471 |
response = assistant.answer(message)
|
472 |
+
history.append((message, response))
|
473 |
+
return history
|
474 |
|
475 |
def reset_chat():
|
476 |
global assistant
|
|
|
481 |
reset_message = assistant.reset_conversation()
|
482 |
return reset_message
|
483 |
|
484 |
+
def restart_factory():
|
485 |
+
return "Restarting the application... Please reload the page in a few seconds."
|
486 |
+
|
487 |
# Create Gradio interface
|
488 |
with gr.Blocks(title="Vision 2030 Virtual Assistant") as demo:
|
489 |
gr.Markdown("# Vision 2030 Virtual Assistant")
|
490 |
gr.Markdown("Ask questions about Saudi Vision 2030 goals, projects, and progress in Arabic or English.")
|
491 |
|
492 |
with gr.Tab("Setup"):
|
493 |
+
gr.Markdown("## Step 1: Load a Model")
|
494 |
+
with gr.Row():
|
495 |
+
with gr.Column():
|
496 |
+
primary_btn = gr.Button("Load ALLaM-7B Model (Primary)", variant="primary")
|
497 |
+
primary_output = gr.Textbox(label="Primary Model Status")
|
498 |
+
primary_btn.click(load_primary_model, inputs=[], outputs=primary_output)
|
499 |
+
|
500 |
+
with gr.Column():
|
501 |
+
fallback_btn = gr.Button("Load BLOOM-7B1 (Fallback)", variant="secondary")
|
502 |
+
fallback_output = gr.Textbox(label="Fallback Model Status")
|
503 |
+
fallback_btn.click(load_fallback_model, inputs=[], outputs=fallback_output)
|
504 |
+
|
505 |
+
with gr.Column():
|
506 |
+
mbart_btn = gr.Button("Load mBART (Alternative)", variant="secondary")
|
507 |
+
mbart_output = gr.Textbox(label="mBART Model Status")
|
508 |
+
mbart_btn.click(load_mbart_model, inputs=[], outputs=mbart_output)
|
509 |
+
|
510 |
+
gr.Markdown("## Step 2: Prepare Documents")
|
511 |
+
with gr.Row():
|
512 |
+
with gr.Column():
|
513 |
+
pdf_files = gr.File(file_types=[".pdf"], file_count="multiple", label="Upload PDF Documents")
|
514 |
+
process_btn = gr.Button("Process Documents", variant="primary")
|
515 |
+
process_output = gr.Textbox(label="Processing Status")
|
516 |
+
process_btn.click(process_pdfs, inputs=[pdf_files], outputs=process_output)
|
517 |
+
|
518 |
+
with gr.Column():
|
519 |
+
mock_btn = gr.Button("Use Mock Documents (for testing)", variant="secondary")
|
520 |
+
mock_output = gr.Textbox(label="Mock Documents Status")
|
521 |
+
mock_btn.click(use_mock_documents, inputs=[], outputs=mock_output)
|
522 |
|
523 |
+
gr.Markdown("## Troubleshooting")
|
524 |
+
restart_btn = gr.Button("Restart Application", variant="secondary")
|
525 |
+
restart_output = gr.Textbox(label="Restart Status")
|
526 |
+
restart_btn.click(restart_factory, inputs=[], outputs=restart_output)
|
527 |
+
restart_btn.click(None, [], None, _js="() => {setTimeout(() => {location.reload()}, 5000)}")
|
528 |
|
529 |
with gr.Tab("Chat"):
|
530 |
+
chatbot = gr.Chatbot(label="Conversation", height=500)
|
531 |
+
|
532 |
+
with gr.Row():
|
533 |
+
message = gr.Textbox(
|
534 |
+
label="Ask a question about Vision 2030 (in Arabic or English)",
|
535 |
+
placeholder="What are the main goals of Vision 2030?",
|
536 |
+
lines=2
|
537 |
+
)
|
538 |
+
submit_btn = gr.Button("Submit", variant="primary")
|
539 |
+
|
540 |
reset_btn = gr.Button("Reset Conversation")
|
541 |
|
542 |
gr.Markdown("### Example Questions")
|
|
|
571 |
submit_btn.click(answer_query, inputs=[message, chatbot], outputs=[chatbot])
|
572 |
message.submit(answer_query, inputs=[message, chatbot], outputs=[chatbot])
|
573 |
reset_btn.click(reset_chat, inputs=[], outputs=[reset_output])
|
574 |
+
reset_btn.click(lambda: None, inputs=[], outputs=[chatbot], postprocess=lambda: [])
|
575 |
|
576 |
# Launch the app
|
577 |
demo.launch()
|