Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,813 +1,301 @@
|
|
1 |
-
|
2 |
-
import gradio as gr
|
3 |
-
import time
|
4 |
-
import logging
|
5 |
import os
|
6 |
import re
|
7 |
-
|
8 |
import numpy as np
|
9 |
-
|
10 |
-
import matplotlib.pyplot as plt
|
11 |
-
from sklearn.metrics import precision_recall_fscore_support, accuracy_score
|
12 |
import PyPDF2
|
13 |
-
import
|
14 |
-
import json
|
15 |
-
from langdetect import detect
|
16 |
from sentence_transformers import SentenceTransformer
|
17 |
-
import
|
18 |
-
import
|
19 |
-
import
|
|
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
)
|
27 |
-
logger = logging.getLogger('vision2030_assistant')
|
28 |
-
|
29 |
-
# Check for GPU availability
|
30 |
-
has_gpu = torch.cuda.is_available()
|
31 |
-
logger.info(f"GPU available: {has_gpu}")
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
logger.info("Initializing Vision 2030 Assistant...")
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
"""
|
70 |
-
logger.info("Loading QA pipelines...")
|
71 |
-
try:
|
72 |
-
# English QA pipeline
|
73 |
-
self.qa_pipeline_en = pipeline(
|
74 |
-
"question-answering",
|
75 |
-
model="distilbert-base-cased-distilled-squad",
|
76 |
-
tokenizer="distilbert-base-cased-distilled-squad",
|
77 |
-
device=0 if has_gpu else -1 # Use GPU if available
|
78 |
-
)
|
79 |
-
|
80 |
-
# Arabic QA pipeline
|
81 |
-
# For Arabic, you can use a model like `aubmindlab/bert-base-arabertv02-qa`:
|
82 |
-
self.qa_pipeline_ar = pipeline(
|
83 |
-
"question-answering",
|
84 |
-
model="aubmindlab/bert-base-arabertv02-qa",
|
85 |
-
tokenizer="aubmindlab/bert-base-arabertv02-qa",
|
86 |
-
device=0 if has_gpu else -1
|
87 |
-
)
|
88 |
-
|
89 |
-
logger.info("QA pipelines loaded successfully.")
|
90 |
-
except Exception as e:
|
91 |
-
logger.error(f"Error loading QA pipelines: {str(e)}")
|
92 |
-
self.qa_pipeline_en = None
|
93 |
-
self.qa_pipeline_ar = None
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
"
|
151 |
-
"
|
152 |
-
"
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
"Vision 2030 aims to have at least five Saudi universities among the top 200 universities in international rankings.",
|
157 |
-
"Vision 2030 sets a target of having at least 10 Saudi sites registered on the UNESCO World Heritage List.",
|
158 |
-
"Vision 2030 aims to increase the capacity to welcome Umrah visitors from 8 million to 30 million annually.",
|
159 |
-
"Vision 2030 includes multiple initiatives to strengthen Saudi national identity including cultural programs and heritage preservation.",
|
160 |
-
"Vision 2030 aims to increase non-oil government revenue from SAR 163 billion to SAR 1 trillion."
|
161 |
-
]
|
162 |
-
|
163 |
-
# Arabic texts
|
164 |
-
self.arabic_texts = [
|
165 |
-
"رؤية 2030 هي الإطار الاستراتيجي للمملكة العربية السعودية للحد من الاعتماد على النفط وتنويع الاقتصاد وتطوير القطاعات العامة.",
|
166 |
-
"الركائز الرئيسية لرؤية 2030 هي مجتمع حيوي، واقتصاد مزدهر، ووطن طموح.",
|
167 |
-
"تستهدف رؤية 2030 زيادة مساهمة القطاع الخاص في الناتج المحلي الإجمالي من 40٪ إلى 65٪.",
|
168 |
-
"نيوم هي مدينة ذكية مخططة عبر الحدود في مقاطعة تبوك شمال غرب المملكة العربية السعودية، وهي مشروع رئيسي من رؤية 2030.",
|
169 |
-
"تهدف رؤية 2030 إلى زيادة مشاركة المرأة في القوى العاملة من 22٪ إلى 30٪.",
|
170 |
-
"مشروع البحر الأحمر هو مبادرة رؤية 2030 لتطوير وجهات سياحية فاخرة عبر 50 جزيرة قبالة ساحل البحر الأحمر السعودي.",
|
171 |
-
"القدية هي مشروع ترفيهي ضخم يتم بناؤه في الرياض كجزء من رؤية 2030.",
|
172 |
-
"الثروة الحقيقية للمملكة العربية السعودية، كما أكدت رؤية 2030، هي شعبها، وخاصة الشباب.",
|
173 |
-
"تهدف المملكة العربية السعودية إلى تعزيز مكانتها كبوابة عالمية من خلال الاستفادة من موقعها الاستراتيجي بين آسيا وأوروبا وأفريقيا.",
|
174 |
-
"تهدف رؤية 2030 إلى أن تكون خمس جامعات سعودية على الأقل ضمن أفضل 200 جامعة في التصنيفات الدولية.",
|
175 |
-
"تضع رؤية 2030 هدفًا بتسجيل ما لا يقل عن 10 مواقع سعودية في قائمة التراث العالمي لليونسكو.",
|
176 |
-
"تهدف رؤية 2030 إلى زيادة القدرة على استقبال المعتمرين من 8 ملايين إلى 30 مليون معتمر سنويًا.",
|
177 |
-
"تتضمن رؤية 2030 مبادرات متعددة لتعزيز الهوية الوطنية السعودية بما في ذلك البرامج الثقافية والحفاظ على التراث.",
|
178 |
-
"تهدف رؤية 2030 إلى زيادة الإيرادات الحكومية غير النفطية من 163 مليار ريال سعودي إلى 1 تريليون ريال سعودي."
|
179 |
-
]
|
180 |
-
|
181 |
-
# Initialize PDF content containers
|
182 |
-
self.pdf_english_texts = []
|
183 |
-
self.pdf_arabic_texts = []
|
184 |
-
|
185 |
-
logger.info(f"Created knowledge base: {len(self.english_texts)} English, {len(self.arabic_texts)} Arabic texts")
|
186 |
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
try:
|
193 |
-
# Process and embed English texts
|
194 |
-
self.english_vectors = []
|
195 |
-
for text in self.english_texts:
|
196 |
-
try:
|
197 |
-
if has_gpu and hasattr(self.english_embedder, 'to'):
|
198 |
-
with torch.no_grad():
|
199 |
-
vec = self.english_embedder.encode(text)
|
200 |
-
else:
|
201 |
-
vec = self.english_embedder.encode(text)
|
202 |
-
self.english_vectors.append(vec)
|
203 |
-
except Exception as e:
|
204 |
-
logger.error(f"Error encoding English text: {str(e)}")
|
205 |
-
# Use a random vector as fallback
|
206 |
-
self.english_vectors.append(np.random.randn(384).astype(np.float32))
|
207 |
-
|
208 |
-
# Create English index
|
209 |
-
if self.english_vectors:
|
210 |
-
self.english_index = faiss.IndexFlatL2(len(self.english_vectors[0]))
|
211 |
-
self.english_index.add(np.array(self.english_vectors))
|
212 |
-
logger.info(f"Created English index with {len(self.english_vectors)} vectors")
|
213 |
-
else:
|
214 |
-
logger.warning("No English texts to index")
|
215 |
-
|
216 |
-
# Process and embed Arabic texts
|
217 |
-
self.arabic_vectors = []
|
218 |
-
for text in self.arabic_texts:
|
219 |
-
try:
|
220 |
-
if has_gpu and hasattr(self.arabic_embedder, 'to'):
|
221 |
-
with torch.no_grad():
|
222 |
-
vec = self.arabic_embedder.encode(text)
|
223 |
-
else:
|
224 |
-
vec = self.arabic_embedder.encode(text)
|
225 |
-
self.arabic_vectors.append(vec)
|
226 |
-
except Exception as e:
|
227 |
-
logger.error(f"Error encoding Arabic text: {str(e)}")
|
228 |
-
# Use a random vector as fallback
|
229 |
-
self.arabic_vectors.append(np.random.randn(384).astype(np.float32))
|
230 |
-
|
231 |
-
# Create Arabic index
|
232 |
-
if self.arabic_vectors:
|
233 |
-
self.arabic_index = faiss.IndexFlatL2(len(self.arabic_vectors[0]))
|
234 |
-
self.arabic_index.add(np.array(self.arabic_vectors))
|
235 |
-
logger.info(f"Created Arabic index with {len(self.arabic_vectors)} vectors")
|
236 |
-
else:
|
237 |
-
logger.warning("No Arabic texts to index")
|
238 |
-
|
239 |
-
# Create PDF indices if PDF content exists
|
240 |
-
if hasattr(self, 'pdf_english_texts') and self.pdf_english_texts:
|
241 |
-
self._create_pdf_indices()
|
242 |
-
|
243 |
-
except Exception as e:
|
244 |
-
logger.error(f"Error creating FAISS indices: {str(e)}")
|
245 |
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
with torch.no_grad():
|
261 |
-
vec = self.english_embedder.encode(text)
|
262 |
-
else:
|
263 |
-
vec = self.english_embedder.encode(text)
|
264 |
-
self.pdf_english_vectors.append(vec)
|
265 |
-
except Exception as e:
|
266 |
-
logger.error(f"Error encoding English PDF text: {str(e)}")
|
267 |
-
continue
|
268 |
-
|
269 |
-
if self.pdf_english_vectors:
|
270 |
-
self.pdf_english_index = faiss.IndexFlatL2(len(self.pdf_english_vectors[0]))
|
271 |
-
self.pdf_english_index.add(np.array(self.pdf_english_vectors))
|
272 |
-
logger.info(f"Created English PDF index with {len(self.pdf_english_vectors)} vectors")
|
273 |
-
|
274 |
-
# Process and embed Arabic PDF texts
|
275 |
-
if self.pdf_arabic_texts:
|
276 |
-
self.pdf_arabic_vectors = []
|
277 |
-
for text in self.pdf_arabic_texts:
|
278 |
-
try:
|
279 |
-
if has_gpu and hasattr(self.arabic_embedder, 'to'):
|
280 |
-
with torch.no_grad():
|
281 |
-
vec = self.arabic_embedder.encode(text)
|
282 |
-
else:
|
283 |
-
vec = self.arabic_embedder.encode(text)
|
284 |
-
self.pdf_arabic_vectors.append(vec)
|
285 |
-
except Exception as e:
|
286 |
-
logger.error(f"Error encoding Arabic PDF text: {str(e)}")
|
287 |
-
continue
|
288 |
-
|
289 |
-
if self.pdf_arabic_vectors:
|
290 |
-
self.pdf_arabic_index = faiss.IndexFlatL2(len(self.pdf_arabic_vectors[0]))
|
291 |
-
self.pdf_arabic_index.add(np.array(self.pdf_arabic_vectors))
|
292 |
-
logger.info(f"Created Arabic PDF index with {len(self.pdf_arabic_vectors)} vectors")
|
293 |
-
|
294 |
-
# Set flag to indicate PDF content is available
|
295 |
-
self.has_pdf_content = True
|
296 |
-
|
297 |
-
except Exception as e:
|
298 |
-
logger.error(f"Error creating PDF indices: {str(e)}")
|
299 |
|
300 |
-
|
301 |
-
|
302 |
-
self.eval_data = [
|
303 |
-
{
|
304 |
-
"question": "What are the key pillars of Vision 2030?",
|
305 |
-
"lang": "en",
|
306 |
-
"reference_answer": "The key pillars of Vision 2030 are a vibrant society, a thriving economy, and an ambitious nation."
|
307 |
-
},
|
308 |
-
{
|
309 |
-
"question": "ما هي الركائز الرئيسية لرؤية 2030؟",
|
310 |
-
"lang": "ar",
|
311 |
-
"reference_answer": "الركائز الرئيسية لرؤية 2030 هي مجتمع حيوي، واقتصاد مزدهر، ووطن طموح."
|
312 |
-
},
|
313 |
-
{
|
314 |
-
"question": "What is NEOM?",
|
315 |
-
"lang": "en",
|
316 |
-
"reference_answer": "NEOM is a planned cross-border smart city in the Tabuk Province of northwestern Saudi Arabia, a key project of Vision 2030."
|
317 |
-
},
|
318 |
-
{
|
319 |
-
"question": "ما هو مشروع البحر الأحمر؟",
|
320 |
-
"lang": "ar",
|
321 |
-
"reference_answer": "مشروع البحر الأحمر هو مبادرة رؤية 2030 لتطوير وجهات سياحية فاخرة عبر 50 جزيرة قبالة ساحل البحر الأحمر السعودي."
|
322 |
-
},
|
323 |
-
{
|
324 |
-
"question": "ما هي الثروة الحقيقية التي تعتز بها المملكة كما وردت في الرؤية؟",
|
325 |
-
"lang": "ar",
|
326 |
-
"reference_answer": "الثروة الحقيقية للمملكة العربية السعودية، كما أكدت رؤية 2030، هي شعبها، وخاصة الشباب."
|
327 |
-
},
|
328 |
-
{
|
329 |
-
"question": "كيف تسعى المملكة إلى تعزيز مكانتها كبوابة للعالم؟",
|
330 |
-
"lang": "ar",
|
331 |
-
"reference_answer": "تهدف المملكة العربية السعودية إلى تعزيز مكانتها كبوابة عالمية من خلال الاستفادة من موقعها الاستراتيجي بين آسيا وأوروبا وأفريقيا."
|
332 |
-
}
|
333 |
-
]
|
334 |
-
logger.info(f"Created {len(self.eval_data)} sample evaluation examples")
|
335 |
|
336 |
-
|
337 |
-
|
338 |
-
"""Retrieve relevant context with priority to PDF content"""
|
339 |
-
start_time = time.time()
|
340 |
-
|
341 |
-
try:
|
342 |
-
# First check if we have PDF content
|
343 |
-
if self.has_pdf_content:
|
344 |
-
# Try to retrieve from PDF content first
|
345 |
-
if lang == "ar" and hasattr(self, 'pdf_arabic_index') and hasattr(self, 'pdf_arabic_vectors') and len(self.pdf_arabic_vectors) > 0:
|
346 |
-
if has_gpu and hasattr(self.arabic_embedder, 'to'):
|
347 |
-
with torch.no_grad():
|
348 |
-
query_vec = self.arabic_embedder.encode(query)
|
349 |
-
else:
|
350 |
-
query_vec = self.arabic_embedder.encode(query)
|
351 |
-
|
352 |
-
D, I = self.pdf_arabic_index.search(np.array([query_vec]), k=2)
|
353 |
-
|
354 |
-
# If we found good matches in the PDF
|
355 |
-
if D[0][0] < 1.5: # Threshold for relevance
|
356 |
-
context = "\n".join([self.pdf_arabic_texts[i] for i in I[0] if i < len(self.pdf_arabic_texts) and i >= 0])
|
357 |
-
if context.strip():
|
358 |
-
logger.info("Retrieved context from PDF (Arabic)")
|
359 |
-
return context
|
360 |
-
|
361 |
-
elif lang == "en" and hasattr(self, 'pdf_english_index') and hasattr(self, 'pdf_english_vectors') and len(self.pdf_english_vectors) > 0:
|
362 |
-
if has_gpu and hasattr(self.english_embedder, 'to'):
|
363 |
-
with torch.no_grad():
|
364 |
-
query_vec = self.english_embedder.encode(query)
|
365 |
-
else:
|
366 |
-
query_vec = self.english_embedder.encode(query)
|
367 |
-
|
368 |
-
D, I = self.pdf_english_index.search(np.array([query_vec]), k=2)
|
369 |
-
|
370 |
-
# If we found good matches in the PDF
|
371 |
-
if D[0][0] < 1.5: # Threshold for relevance
|
372 |
-
context = "\n".join([self.pdf_english_texts[i] for i in I[0] if i < len(self.pdf_english_texts) and i >= 0])
|
373 |
-
if context.strip():
|
374 |
-
logger.info("Retrieved context from PDF (English)")
|
375 |
-
return context
|
376 |
-
|
377 |
-
# Fall back to the pre-built knowledge base
|
378 |
-
if lang == "ar":
|
379 |
-
if has_gpu and hasattr(self.arabic_embedder, 'to'):
|
380 |
-
with torch.no_grad():
|
381 |
-
query_vec = self.arabic_embedder.encode(query)
|
382 |
-
else:
|
383 |
-
query_vec = self.arabic_embedder.encode(query)
|
384 |
-
|
385 |
-
D, I = self.arabic_index.search(np.array([query_vec]), k=2)
|
386 |
-
context = "\n".join([self.arabic_texts[i] for i in I[0] if i < len(self.arabic_texts) and i >= 0])
|
387 |
-
else:
|
388 |
-
if has_gpu and hasattr(self.english_embedder, 'to'):
|
389 |
-
with torch.no_grad():
|
390 |
-
query_vec = self.english_embedder.encode(query)
|
391 |
-
else:
|
392 |
-
query_vec = self.english_embedder.encode(query)
|
393 |
-
|
394 |
-
D, I = self.english_index.search(np.array([query_vec]), k=2)
|
395 |
-
context = "\n".join([self.english_texts[i] for i in I[0] if i < len(self.english_texts) and i >= 0])
|
396 |
-
|
397 |
-
retrieval_time = time.time() - start_time
|
398 |
-
logger.info(f"Retrieved context in {retrieval_time:.2f}s")
|
399 |
-
|
400 |
-
return context
|
401 |
-
except Exception as e:
|
402 |
-
logger.error(f"Error retrieving context: {str(e)}")
|
403 |
-
return ""
|
404 |
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
except:
|
423 |
-
lang = "en" # fallback
|
424 |
-
|
425 |
-
logger.info(f"Detected language: {lang}")
|
426 |
-
|
427 |
-
# 2) Retrieve relevant context (could be from PDF or base knowledge)
|
428 |
-
context = self.retrieve_context(user_input, lang)
|
429 |
|
430 |
-
#
|
431 |
-
|
432 |
-
# Use Arabic QA pipeline
|
433 |
-
try:
|
434 |
-
answer = self.qa_pipeline_ar(question=user_input, context=context)
|
435 |
-
reply = answer["answer"].strip()
|
436 |
-
|
437 |
-
# If the QA model returns something too short or obviously unhelpful,
|
438 |
-
# you can fallback to the original context-based approach:
|
439 |
-
if len(reply) < 2:
|
440 |
-
reply = context # fallback to returning the raw context
|
441 |
-
except Exception as e:
|
442 |
-
logger.error(f"Error in Arabic QA pipeline: {str(e)}")
|
443 |
-
# fallback
|
444 |
-
reply = context if context else "لم أتمكن من العثور على معلومات كافية حول هذا السؤال."
|
445 |
|
446 |
-
|
447 |
-
|
448 |
-
try:
|
449 |
-
answer = self.qa_pipeline_en(question=user_input, context=context)
|
450 |
-
reply = answer["answer"].strip()
|
451 |
-
if len(reply) < 2:
|
452 |
-
reply = context
|
453 |
-
except Exception as e:
|
454 |
-
logger.error(f"Error in English QA pipeline: {str(e)}")
|
455 |
-
reply = context if context else "I couldn't find enough information about this question."
|
456 |
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
|
461 |
-
|
462 |
-
reply = context if context else "لم أتمكن من العثور على معلومات كافية حول هذا السؤال."
|
463 |
-
else:
|
464 |
-
reply = context if context else "I couldn't find enough information about this question."
|
465 |
-
|
466 |
-
# 5) Record metrics and return
|
467 |
-
response_time = time.time() - start_time
|
468 |
-
self.metrics["response_times"].append(response_time)
|
469 |
-
logger.info(f"Generated response in {response_time:.2f}s")
|
470 |
-
|
471 |
-
# Store the interaction
|
472 |
-
interaction = {
|
473 |
-
"timestamp": datetime.now().isoformat(),
|
474 |
-
"user_input": user_input,
|
475 |
-
"response": reply,
|
476 |
-
"language": lang,
|
477 |
-
"response_time": response_time
|
478 |
-
}
|
479 |
-
self.response_history.append(interaction)
|
480 |
-
|
481 |
-
return reply
|
482 |
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
|
|
|
|
|
|
|
488 |
|
489 |
-
|
490 |
-
|
491 |
-
# This is a simplified approach - in production, use more sophisticated methods
|
492 |
-
keywords_reference = set(re.findall(r'\b\w+\b', reference.lower()))
|
493 |
-
keywords_response = set(re.findall(r'\b\w+\b', response.lower()))
|
494 |
-
|
495 |
-
# Remove common stopwords (simplified approach)
|
496 |
-
english_stopwords = {"the", "is", "a", "an", "and", "or", "of", "to", "in", "for", "with", "by", "on", "at"}
|
497 |
-
arabic_stopwords = {"في", "من", "إلى", "على", "و", "هي", "هو", "عن", "مع"}
|
498 |
-
|
499 |
-
keywords_reference = {w for w in keywords_reference if w not in english_stopwords and w not in arabic_stopwords}
|
500 |
-
keywords_response = {w for w in keywords_response if w not in english_stopwords and w not in arabic_stopwords}
|
501 |
-
|
502 |
-
common_keywords = keywords_reference.intersection(keywords_response)
|
503 |
-
|
504 |
-
if len(keywords_reference) > 0:
|
505 |
-
accuracy = len(common_keywords) / len(keywords_reference)
|
506 |
-
else:
|
507 |
-
accuracy = 0
|
508 |
-
|
509 |
-
return accuracy
|
510 |
|
511 |
-
|
512 |
-
|
513 |
-
"""Evaluate the assistant on the test set"""
|
514 |
-
logger.info("Running evaluation on test set")
|
515 |
-
|
516 |
-
eval_results = []
|
517 |
-
|
518 |
-
for example in self.eval_data:
|
519 |
-
# Generate response
|
520 |
-
response = self.generate_response(example["question"])
|
521 |
-
|
522 |
-
# Calculate factual accuracy
|
523 |
-
accuracy = self.evaluate_factual_accuracy(response, example["reference_answer"])
|
524 |
-
|
525 |
-
eval_results.append({
|
526 |
-
"question": example["question"],
|
527 |
-
"reference": example["reference_answer"],
|
528 |
-
"response": response,
|
529 |
-
"factual_accuracy": accuracy
|
530 |
-
})
|
531 |
-
|
532 |
-
self.metrics["factual_accuracy"].append(accuracy)
|
533 |
-
|
534 |
-
# Calculate average factual accuracy
|
535 |
-
avg_accuracy = sum(self.metrics["factual_accuracy"]) / len(self.metrics["factual_accuracy"]) if self.metrics["factual_accuracy"] else 0
|
536 |
-
avg_response_time = sum(self.metrics["response_times"]) / len(self.metrics["response_times"]) if self.metrics["response_times"] else 0
|
537 |
-
|
538 |
-
results = {
|
539 |
-
"average_factual_accuracy": avg_accuracy,
|
540 |
-
"average_response_time": avg_response_time,
|
541 |
-
"detailed_results": eval_results
|
542 |
-
}
|
543 |
-
|
544 |
-
logger.info(f"Evaluation results: Factual accuracy = {avg_accuracy:.2f}, Avg response time = {avg_response_time:.2f}s")
|
545 |
-
|
546 |
-
return results
|
547 |
-
|
548 |
-
def visualize_evaluation_results(self, results):
|
549 |
-
"""Generate visualization of evaluation results"""
|
550 |
-
# Create a DataFrame from the detailed results
|
551 |
-
df = pd.DataFrame(results["detailed_results"])
|
552 |
-
|
553 |
-
# Create the figure for visualizations
|
554 |
-
fig = plt.figure(figsize=(12, 8))
|
555 |
-
|
556 |
-
# Bar chart of factual accuracy by question
|
557 |
-
plt.subplot(2, 1, 1)
|
558 |
-
bars = plt.bar(range(len(df)), df["factual_accuracy"], color="skyblue")
|
559 |
-
plt.axhline(y=results["average_factual_accuracy"], color='r', linestyle='-',
|
560 |
-
label=f"Avg: {results['average_factual_accuracy']:.2f}")
|
561 |
-
plt.xlabel("Question Index")
|
562 |
-
plt.ylabel("Factual Accuracy")
|
563 |
-
plt.title("Factual Accuracy by Question")
|
564 |
-
plt.ylim(0, 1.1)
|
565 |
-
plt.legend()
|
566 |
-
|
567 |
-
# Add language information
|
568 |
-
df["language"] = df["question"].apply(lambda x: "Arabic" if detect(x) == "ar" else "English")
|
569 |
-
|
570 |
-
# Group by language
|
571 |
-
lang_accuracy = df.groupby("language")["factual_accuracy"].mean()
|
572 |
-
|
573 |
-
# Bar chart of accuracy by language
|
574 |
-
plt.subplot(2, 1, 2)
|
575 |
-
lang_bars = plt.bar(lang_accuracy.index, lang_accuracy.values, color=["lightblue", "lightgreen"])
|
576 |
-
plt.axhline(y=results["average_factual_accuracy"], color='r', linestyle='-',
|
577 |
-
label=f"Overall: {results['average_factual_accuracy']:.2f}")
|
578 |
-
plt.xlabel("Language")
|
579 |
-
plt.ylabel("Average Factual Accuracy")
|
580 |
-
plt.title("Factual Accuracy by Language")
|
581 |
-
plt.ylim(0, 1.1)
|
582 |
-
|
583 |
-
# Add value labels
|
584 |
-
for i, v in enumerate(lang_accuracy):
|
585 |
-
plt.text(i, v + 0.05, f"{v:.2f}", ha='center')
|
586 |
-
|
587 |
-
plt.tight_layout()
|
588 |
-
return fig
|
589 |
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
"rating": rating,
|
597 |
-
"feedback_text": feedback_text
|
598 |
-
}
|
599 |
-
|
600 |
-
self.metrics["user_ratings"].append(rating)
|
601 |
-
|
602 |
-
# In a production system, store this in a database
|
603 |
-
logger.info(f"Recorded user feedback: rating={rating}")
|
604 |
-
|
605 |
-
return True
|
606 |
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
# Convert bytes to file-like object
|
617 |
-
file_stream = io.BytesIO(file)
|
618 |
-
|
619 |
-
# Use PyPDF2 to read the file content
|
620 |
-
reader = PyPDF2.PdfReader(file_stream)
|
621 |
-
|
622 |
-
# Extract text from the PDF
|
623 |
-
full_text = ""
|
624 |
-
for page_num in range(len(reader.pages)):
|
625 |
-
page = reader.pages[page_num]
|
626 |
-
extracted_text = page.extract_text()
|
627 |
-
if extracted_text:
|
628 |
-
full_text += extracted_text + "\n"
|
629 |
-
|
630 |
-
if not full_text.strip():
|
631 |
-
return "The uploaded PDF doesn't contain extractable text. Please try another file."
|
632 |
-
|
633 |
-
# Process the extracted text with better chunking
|
634 |
-
chunks = []
|
635 |
-
paragraphs = re.split(r'\n\s*\n', full_text)
|
636 |
-
|
637 |
-
for paragraph in paragraphs:
|
638 |
-
# Skip very short paragraphs
|
639 |
-
if len(paragraph.strip()) < 20:
|
640 |
-
continue
|
641 |
-
|
642 |
-
if len(paragraph) > 500: # For very long paragraphs
|
643 |
-
# Split into smaller chunks
|
644 |
-
sentences = re.split(r'(?<=[.!?])\s+', paragraph)
|
645 |
-
current_chunk = ""
|
646 |
-
for sentence in sentences:
|
647 |
-
if len(current_chunk) + len(sentence) > 300:
|
648 |
-
if current_chunk:
|
649 |
-
chunks.append(current_chunk.strip())
|
650 |
-
current_chunk = sentence
|
651 |
-
else:
|
652 |
-
current_chunk += " " + sentence if current_chunk else sentence
|
653 |
-
|
654 |
-
if current_chunk:
|
655 |
-
chunks.append(current_chunk.strip())
|
656 |
-
else:
|
657 |
-
chunks.append(paragraph.strip())
|
658 |
-
|
659 |
-
# Categorize text by language
|
660 |
-
english_chunks = []
|
661 |
-
arabic_chunks = []
|
662 |
-
|
663 |
-
for chunk in chunks:
|
664 |
-
try:
|
665 |
-
lang = detect(chunk)
|
666 |
-
if lang == "ar":
|
667 |
-
arabic_chunks.append(chunk)
|
668 |
-
else:
|
669 |
-
english_chunks.append(chunk)
|
670 |
-
except:
|
671 |
-
# If language detection fails, check for Arabic characters
|
672 |
-
if any('\u0600' <= c <= '\u06FF' for c in chunk):
|
673 |
-
arabic_chunks.append(chunk)
|
674 |
-
else:
|
675 |
-
english_chunks.append(chunk)
|
676 |
-
|
677 |
-
# Store PDF content
|
678 |
-
self.pdf_english_texts = english_chunks
|
679 |
-
self.pdf_arabic_texts = arabic_chunks
|
680 |
-
|
681 |
-
# Create indices for PDF content
|
682 |
-
self._create_pdf_indices()
|
683 |
-
|
684 |
-
logger.info(f"Successfully processed PDF: {len(arabic_chunks)} Arabic chunks, {len(english_chunks)} English chunks")
|
685 |
-
|
686 |
-
return f"✅ Successfully processed the PDF! Found {len(arabic_chunks)} Arabic and {len(english_chunks)} English text segments. PDF content will now be prioritized when answering questions."
|
687 |
-
|
688 |
-
except Exception as e:
|
689 |
-
logger.error(f"Error processing PDF: {str(e)}")
|
690 |
-
return f"❌ Error processing the PDF: {str(e)}. Please try another file."
|
691 |
|
692 |
-
#
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
Average response time: {results['average_response_time']:.4f} seconds
|
728 |
-
|
729 |
-
Detailed Results:
|
730 |
-
"""
|
731 |
-
|
732 |
-
for i, result in enumerate(results['detailed_results']):
|
733 |
-
summary += f"\nQ{i+1}: {result['question']}\n"
|
734 |
-
summary += f"Reference: {result['reference']}\n"
|
735 |
-
summary += f"Response: {result['response']}\n"
|
736 |
-
summary += f"Accuracy: {result['factual_accuracy']:.2f}\n"
|
737 |
-
summary += "-" * 40 + "\n"
|
738 |
-
|
739 |
-
# Return both the results summary and visualization
|
740 |
-
fig = assistant.visualize_evaluation_results(results)
|
741 |
-
|
742 |
-
return summary, fig
|
743 |
|
744 |
-
|
745 |
-
|
746 |
-
return assistant.process_pdf(file)
|
747 |
|
748 |
-
#
|
749 |
-
|
750 |
-
gr.Markdown("# Vision 2030 Virtual Assistant 🌟")
|
751 |
-
gr.Markdown("Ask questions about Saudi Arabia's Vision 2030 in both Arabic and English")
|
752 |
-
|
753 |
-
with gr.Tab("Chat"):
|
754 |
-
chatbot = gr.Chatbot(height=400)
|
755 |
-
msg = gr.Textbox(label="Your Question", placeholder="Ask about Vision 2030...")
|
756 |
-
with gr.Row():
|
757 |
-
submit_btn = gr.Button("Submit")
|
758 |
-
clear_btn = gr.Button("Clear Chat")
|
759 |
-
|
760 |
-
gr.Markdown("### Provide Feedback")
|
761 |
-
with gr.Row():
|
762 |
-
rating = gr.Slider(minimum=1, maximum=5, step=1, value=3, label="Rate the Response (1-5)")
|
763 |
-
feedback_text = gr.Textbox(label="Additional Comments (Optional)")
|
764 |
-
feedback_btn = gr.Button("Submit Feedback")
|
765 |
-
feedback_result = gr.Textbox(label="Feedback Status")
|
766 |
-
|
767 |
-
with gr.Tab("Evaluation"):
|
768 |
-
evaluate_btn = gr.Button("Run Evaluation on Test Set")
|
769 |
-
eval_output = gr.Textbox(label="Evaluation Results", lines=20)
|
770 |
-
eval_chart = gr.Plot(label="Evaluation Metrics")
|
771 |
-
|
772 |
-
with gr.Tab("Upload PDF"):
|
773 |
-
gr.Markdown("""
|
774 |
-
### Upload a Vision 2030 PDF Document
|
775 |
-
Upload a PDF document to enhance the assistant's knowledge base.
|
776 |
-
""")
|
777 |
-
|
778 |
-
with gr.Row():
|
779 |
-
file_input = gr.File(
|
780 |
-
label="Select PDF File",
|
781 |
-
file_types=[".pdf"],
|
782 |
-
type="binary" # This is critical - use binary mode
|
783 |
-
)
|
784 |
-
|
785 |
-
with gr.Row():
|
786 |
-
upload_btn = gr.Button("Process PDF", variant="primary")
|
787 |
-
|
788 |
-
with gr.Row():
|
789 |
-
upload_status = gr.Textbox(
|
790 |
-
label="Upload Status",
|
791 |
-
placeholder="Upload status will appear here...",
|
792 |
-
interactive=False
|
793 |
-
)
|
794 |
-
|
795 |
-
gr.Markdown("""
|
796 |
-
### Notes:
|
797 |
-
- The PDF should contain text that can be extracted (not scanned images)
|
798 |
-
- After uploading, return to the Chat tab to ask questions about the uploaded content
|
799 |
-
""")
|
800 |
-
|
801 |
-
# Set up event handlers
|
802 |
-
msg.submit(chat, [msg, chatbot], [chatbot, msg])
|
803 |
-
submit_btn.click(chat, [msg, chatbot], [chatbot, msg])
|
804 |
-
clear_btn.click(lambda: [], None, chatbot)
|
805 |
-
feedback_btn.click(provide_feedback, [chatbot, rating, feedback_text], feedback_result)
|
806 |
-
evaluate_btn.click(run_evaluation, None, [eval_output, eval_chart])
|
807 |
-
upload_btn.click(process_uploaded_file, [file_input], [upload_status])
|
808 |
|
809 |
-
|
|
|
|
|
|
|
|
|
810 |
|
811 |
-
#
|
812 |
-
|
813 |
-
|
|
|
|
1 |
+
import streamlit as st
|
|
|
|
|
|
|
2 |
import os
|
3 |
import re
|
4 |
+
import torch
|
5 |
import numpy as np
|
6 |
+
from pathlib import Path
|
|
|
|
|
7 |
import PyPDF2
|
8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
9 |
from sentence_transformers import SentenceTransformer
|
10 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
+
from langchain_community.vectorstores import FAISS
|
12 |
+
from langchain.schema import Document
|
13 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
14 |
|
15 |
+
# Set page configuration
|
16 |
+
st.set_page_config(
|
17 |
+
page_title="Vision 2030 Virtual Assistant",
|
18 |
+
page_icon="🇸🇦",
|
19 |
+
layout="wide"
|
20 |
)
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
# App title and description
|
23 |
+
st.title("Vision 2030 Virtual Assistant")
|
24 |
+
st.markdown("Ask questions about Saudi Vision 2030 goals, projects, and progress in Arabic or English.")
|
|
|
25 |
|
26 |
+
# Function definitions
|
27 |
+
@st.cache_resource
|
28 |
+
def load_model_and_tokenizer():
|
29 |
+
"""Load the ALLaM-7B model and tokenizer with error handling"""
|
30 |
+
model_name = "ALLaM-AI/ALLaM-7B-Instruct-preview"
|
31 |
+
st.info(f"Loading model: {model_name} (this may take a few minutes)")
|
32 |
+
|
33 |
+
try:
|
34 |
+
# First attempt with AutoTokenizer
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
36 |
+
model_name,
|
37 |
+
trust_remote_code=True,
|
38 |
+
use_fast=False
|
39 |
+
)
|
40 |
+
|
41 |
+
# Load model with appropriate settings for ALLaM
|
42 |
+
model = AutoModelForCausalLM.from_pretrained(
|
43 |
+
model_name,
|
44 |
+
torch_dtype=torch.bfloat16,
|
45 |
+
trust_remote_code=True,
|
46 |
+
device_map="auto",
|
47 |
+
)
|
48 |
+
|
49 |
+
st.success("Model loaded successfully!")
|
50 |
+
|
51 |
+
except Exception as e:
|
52 |
+
st.error(f"First loading attempt failed: {e}")
|
53 |
+
st.info("Trying alternative loading approach...")
|
54 |
+
|
55 |
+
# Try with specific tokenizer class if the first attempt fails
|
56 |
+
from transformers import LlamaTokenizer
|
57 |
+
|
58 |
+
tokenizer = LlamaTokenizer.from_pretrained(model_name)
|
59 |
+
model = AutoModelForCausalLM.from_pretrained(
|
60 |
+
model_name,
|
61 |
+
torch_dtype=torch.float16,
|
62 |
+
trust_remote_code=True,
|
63 |
+
device_map="auto",
|
64 |
+
)
|
65 |
+
|
66 |
+
st.success("Model loaded successfully with LlamaTokenizer!")
|
67 |
+
|
68 |
+
return model, tokenizer
|
69 |
|
70 |
+
def detect_language(text):
|
71 |
+
"""Detect if text is primarily Arabic or English"""
|
72 |
+
arabic_chars = re.findall(r'[\u0600-\u06FF]', text)
|
73 |
+
is_arabic = len(arabic_chars) > len(text) * 0.5
|
74 |
+
return "arabic" if is_arabic else "english"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
def process_pdfs():
|
77 |
+
"""Process uploaded PDF documents"""
|
78 |
+
documents = []
|
79 |
+
|
80 |
+
if 'uploaded_pdfs' in st.session_state and st.session_state.uploaded_pdfs:
|
81 |
+
for pdf_file in st.session_state.uploaded_pdfs:
|
82 |
+
try:
|
83 |
+
# Save the uploaded file temporarily
|
84 |
+
pdf_path = f"temp_{pdf_file.name}"
|
85 |
+
with open(pdf_path, "wb") as f:
|
86 |
+
f.write(pdf_file.getbuffer())
|
87 |
+
|
88 |
+
# Extract text
|
89 |
+
text = ""
|
90 |
+
with open(pdf_path, 'rb') as file:
|
91 |
+
reader = PyPDF2.PdfReader(file)
|
92 |
+
for page in reader.pages:
|
93 |
+
text += page.extract_text() + "\n\n"
|
94 |
+
|
95 |
+
# Remove temporary file
|
96 |
+
os.remove(pdf_path)
|
97 |
+
|
98 |
+
if text.strip(): # If we got some text
|
99 |
+
doc = Document(
|
100 |
+
page_content=text,
|
101 |
+
metadata={"source": pdf_file.name, "filename": pdf_file.name}
|
102 |
+
)
|
103 |
+
documents.append(doc)
|
104 |
+
st.info(f"Successfully processed: {pdf_file.name}")
|
105 |
+
else:
|
106 |
+
st.warning(f"No text extracted from {pdf_file.name}")
|
107 |
+
except Exception as e:
|
108 |
+
st.error(f"Error processing {pdf_file.name}: {e}")
|
109 |
+
|
110 |
+
st.success(f"Processed {len(documents)} PDF documents")
|
111 |
+
return documents
|
112 |
|
113 |
+
def create_vector_store(documents):
|
114 |
+
"""Split documents into chunks and create a FAISS vector store"""
|
115 |
+
# Text splitter for breaking documents into chunks
|
116 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
117 |
+
chunk_size=500,
|
118 |
+
chunk_overlap=50,
|
119 |
+
separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""]
|
120 |
+
)
|
121 |
+
|
122 |
+
# Split documents into chunks
|
123 |
+
chunks = []
|
124 |
+
for doc in documents:
|
125 |
+
doc_chunks = text_splitter.split_text(doc.page_content)
|
126 |
+
# Preserve metadata for each chunk
|
127 |
+
chunks.extend([
|
128 |
+
Document(page_content=chunk, metadata=doc.metadata)
|
129 |
+
for chunk in doc_chunks
|
130 |
+
])
|
131 |
+
|
132 |
+
st.info(f"Created {len(chunks)} chunks from {len(documents)} documents")
|
133 |
+
|
134 |
+
# Create a proper embedding function for LangChain
|
135 |
+
embedding_function = HuggingFaceEmbeddings(
|
136 |
+
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
137 |
+
)
|
138 |
+
|
139 |
+
# Create FAISS index
|
140 |
+
vector_store = FAISS.from_documents(
|
141 |
+
chunks,
|
142 |
+
embedding_function
|
143 |
+
)
|
144 |
+
|
145 |
+
return vector_store
|
146 |
|
147 |
+
def retrieve_context(query, vector_store, top_k=5):
|
148 |
+
"""Retrieve most relevant document chunks for a given query"""
|
149 |
+
# Search the vector store using similarity search
|
150 |
+
results = vector_store.similarity_search_with_score(query, k=top_k)
|
151 |
+
|
152 |
+
# Format the retrieved contexts
|
153 |
+
contexts = []
|
154 |
+
for doc, score in results:
|
155 |
+
contexts.append({
|
156 |
+
"content": doc.page_content,
|
157 |
+
"source": doc.metadata.get("source", "Unknown"),
|
158 |
+
"relevance_score": score
|
159 |
+
})
|
160 |
+
|
161 |
+
return contexts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
+
def generate_response(query, contexts, model, tokenizer):
|
164 |
+
"""Generate a response using retrieved contexts with ALLaM-specific formatting"""
|
165 |
+
# Auto-detect language
|
166 |
+
language = detect_language(query)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
+
# Format the prompt based on language
|
169 |
+
if language == "arabic":
|
170 |
+
instruction = (
|
171 |
+
"أنت مساعد افتراضي يهتم برؤية السعودية 2030. استخدم المعلومات التالية للإجابة على السؤال. "
|
172 |
+
"إذا لم تعرف الإجابة، فقل بأمانة إنك لا تعرف."
|
173 |
+
)
|
174 |
+
else: # english
|
175 |
+
instruction = (
|
176 |
+
"You are a virtual assistant for Saudi Vision 2030. Use the following information to answer the question. "
|
177 |
+
"If you don't know the answer, honestly say you don't know."
|
178 |
+
)
|
179 |
+
|
180 |
+
# Combine retrieved contexts
|
181 |
+
context_text = "\n\n".join([f"Document: {ctx['content']}" for ctx in contexts])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
+
# Format the prompt for ALLaM instruction format
|
184 |
+
prompt = f"""<s>[INST] {instruction}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
+
Context:
|
187 |
+
{context_text}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
+
Question: {query} [/INST]</s>"""
|
190 |
+
|
191 |
+
try:
|
192 |
+
with st.spinner("Generating response..."):
|
193 |
+
# Generate response with appropriate parameters for ALLaM
|
194 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
195 |
+
|
196 |
+
# Generate with appropriate parameters
|
197 |
+
outputs = model.generate(
|
198 |
+
inputs.input_ids,
|
199 |
+
attention_mask=inputs.attention_mask,
|
200 |
+
max_new_tokens=512,
|
201 |
+
temperature=0.7,
|
202 |
+
top_p=0.9,
|
203 |
+
do_sample=True,
|
204 |
+
repetition_penalty=1.1
|
205 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
|
207 |
+
# Decode the response
|
208 |
+
full_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
+
# Extract just the answer part (after the instruction)
|
211 |
+
response = full_output.split("[/INST]")[-1].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
+
# If response is empty for some reason, return the full output
|
214 |
+
if not response:
|
215 |
+
response = full_output
|
216 |
|
217 |
+
return response, [ctx.get("source", "Unknown") for ctx in contexts]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
|
219 |
+
except Exception as e:
|
220 |
+
st.error(f"Error during generation: {e}")
|
221 |
+
# Fallback response
|
222 |
+
return "I apologize, but I encountered an error while generating a response.", []
|
223 |
|
224 |
+
# Initialize the app state
|
225 |
+
if 'conversation_history' not in st.session_state:
|
226 |
+
st.session_state.conversation_history = []
|
227 |
|
228 |
+
if 'vector_store' not in st.session_state:
|
229 |
+
st.session_state.vector_store = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
|
231 |
+
if 'uploaded_pdfs' not in st.session_state:
|
232 |
+
st.session_state.uploaded_pdfs = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
|
234 |
+
# PDF upload section
|
235 |
+
st.header("1. Upload Vision 2030 Documents")
|
236 |
+
uploaded_files = st.file_uploader("Upload PDF documents about Vision 2030",
|
237 |
+
type=["pdf"],
|
238 |
+
accept_multiple_files=True,
|
239 |
+
help="Upload one or more PDF documents containing information about Vision 2030")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
|
241 |
+
if uploaded_files:
|
242 |
+
st.session_state.uploaded_pdfs = uploaded_files
|
243 |
+
if st.button("Process PDFs"):
|
244 |
+
documents = process_pdfs()
|
245 |
+
if documents:
|
246 |
+
with st.spinner("Creating vector database..."):
|
247 |
+
st.session_state.vector_store = create_vector_store(documents)
|
248 |
+
st.success("Vector database created successfully!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
|
250 |
+
# Load the model (cached)
|
251 |
+
model, tokenizer = load_model_and_tokenizer()
|
252 |
+
|
253 |
+
# Chat interface
|
254 |
+
st.header("2. Chat with the Vision 2030 Assistant")
|
255 |
+
|
256 |
+
# Display conversation history
|
257 |
+
for message in st.session_state.conversation_history:
|
258 |
+
if message["role"] == "user":
|
259 |
+
st.markdown(f"**You:** {message['content']}")
|
260 |
+
else:
|
261 |
+
st.markdown(f"**Assistant:** {message['content']}")
|
262 |
+
if 'sources' in message and message['sources']:
|
263 |
+
st.markdown(f"*Sources: {', '.join([os.path.basename(src) for src in message['sources']])}*")
|
264 |
+
st.divider()
|
265 |
+
|
266 |
+
# Input for new question
|
267 |
+
user_input = st.text_input("Ask a question about Vision 2030 (in Arabic or English):", key="user_query")
|
268 |
+
|
269 |
+
# Examples
|
270 |
+
st.markdown("**Example questions:**")
|
271 |
+
examples_col1, examples_col2 = st.columns(2)
|
272 |
+
with examples_col1:
|
273 |
+
st.markdown("- What is Saudi Vision 2030?")
|
274 |
+
st.markdown("- What are the economic goals of Vision 2030?")
|
275 |
+
st.markdown("- How does Vision 2030 support women's empowerment?")
|
276 |
+
with examples_col2:
|
277 |
+
st.markdown("- ما هي رؤية السعودية 2030؟")
|
278 |
+
st.markdown("- ما هي الأهداف الاقتصادية لرؤية 2030؟")
|
279 |
+
st.markdown("- كيف تدعم رؤية 2030 تمكين المرأة السعودية؟")
|
280 |
+
|
281 |
+
# Process the user input
|
282 |
+
if user_input and st.session_state.vector_store:
|
283 |
+
# Add user message to history
|
284 |
+
st.session_state.conversation_history.append({"role": "user", "content": user_input})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
|
286 |
+
# Get response
|
287 |
+
response, sources = generate_response(user_input, retrieve_context(user_input, st.session_state.vector_store), model, tokenizer)
|
|
|
288 |
|
289 |
+
# Add assistant message to history
|
290 |
+
st.session_state.conversation_history.append({"role": "assistant", "content": response, "sources": sources})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
|
292 |
+
# Rerun to update the UI
|
293 |
+
st.experimental_rerun()
|
294 |
+
|
295 |
+
elif user_input and not st.session_state.vector_store:
|
296 |
+
st.warning("Please upload and process Vision 2030 PDF documents first")
|
297 |
|
298 |
+
# Reset conversation button
|
299 |
+
if st.button("Reset Conversation") and len(st.session_state.conversation_history) > 0:
|
300 |
+
st.session_state.conversation_history = []
|
301 |
+
st.experimental_rerun()
|