Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
import os
|
2 |
import re
|
|
|
3 |
import torch
|
4 |
-
import gradio as gr
|
5 |
import numpy as np
|
6 |
-
|
7 |
from tqdm import tqdm
|
8 |
-
import
|
9 |
|
10 |
# PDF processing
|
11 |
import PyPDF2
|
@@ -26,15 +26,16 @@ from bidi.algorithm import get_display
|
|
26 |
|
27 |
# Evaluation
|
28 |
from rouge_score import rouge_scorer
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
#
|
31 |
-
|
32 |
-
"""Detect if text is primarily Arabic or English"""
|
33 |
-
# Simple heuristic: count Arabic characters
|
34 |
-
arabic_chars = re.findall(r'[\u0600-\u06FF]', text)
|
35 |
-
is_arabic = len(arabic_chars) > len(text) * 0.5
|
36 |
-
return "arabic" if is_arabic else "english"
|
37 |
|
|
|
38 |
def safe_tokenize(text):
|
39 |
"""Pure regex tokenizer with no NLTK dependency"""
|
40 |
if not text:
|
@@ -44,7 +45,14 @@ def safe_tokenize(text):
|
|
44 |
# Split on whitespace and filter empty strings
|
45 |
return [token for token in re.split(r'\s+', text.lower()) if token]
|
46 |
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
def calculate_bleu(prediction, reference):
|
49 |
"""Calculate BLEU score without any NLTK dependency"""
|
50 |
# Tokenize texts using our own tokenizer
|
@@ -116,12 +124,22 @@ def calculate_f1_precision_recall(prediction, reference):
|
|
116 |
|
117 |
return {'precision': precision, 'recall': recall, 'f1': f1}
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
documents = []
|
123 |
|
124 |
-
for pdf_path in
|
125 |
try:
|
126 |
text = ""
|
127 |
with open(pdf_path, 'rb') as file:
|
@@ -180,6 +198,7 @@ def create_vector_store(documents):
|
|
180 |
|
181 |
return vector_store
|
182 |
|
|
|
183 |
def load_model_and_tokenizer():
|
184 |
"""Load the ALLaM-7B model and tokenizer with error handling"""
|
185 |
model_name = "ALLaM-AI/ALLaM-7B-Instruct-preview"
|
@@ -299,7 +318,7 @@ Question: {query} [/INST]</s>"""
|
|
299 |
# Fallback response
|
300 |
return "I apologize, but I encountered an error while generating a response."
|
301 |
|
302 |
-
# Assistant
|
303 |
class Vision2030Assistant:
|
304 |
def __init__(self, model, tokenizer, vector_store):
|
305 |
self.model = model
|
@@ -344,8 +363,9 @@ class Vision2030Assistant:
|
|
344 |
self.conversation_history = []
|
345 |
return "Conversation has been reset."
|
346 |
|
347 |
-
#
|
348 |
-
|
|
|
349 |
{
|
350 |
"query": "ما هي رؤية السعودية 2030؟",
|
351 |
"reference": "رؤية السعودية 2030 هي خطة استراتيجية تهدف إلى تنويع الاقتصاد السعودي وتقليل الاعتماد على النفط مع تطوير قطاعات مختلفة مثل الصحة والتعليم والسياحة.",
|
@@ -358,6 +378,8 @@ sample_evaluation_data = [
|
|
358 |
"category": "overview",
|
359 |
"language": "english"
|
360 |
},
|
|
|
|
|
361 |
{
|
362 |
"query": "ما هي الأهداف الاقتصادية لرؤية 2030؟",
|
363 |
"reference": "تشمل الأهداف الاقتصادية زيادة مساهمة القطاع الخاص إلى 65%، وزيادة الصادرات غير النفطية إلى 50% من الناتج المحلي غير النفطي، وخفض البطالة إلى 7%.",
|
@@ -370,261 +392,294 @@ sample_evaluation_data = [
|
|
370 |
"category": "economic",
|
371 |
"language": "english"
|
372 |
},
|
|
|
|
|
373 |
{
|
374 |
-
"query": "
|
375 |
-
"reference": "
|
376 |
-
"category": "
|
|
|
|
|
|
|
|
|
|
|
|
|
377 |
"language": "english"
|
378 |
}
|
379 |
]
|
380 |
|
381 |
-
#
|
382 |
-
ASSISTANT = None
|
383 |
-
MODEL = None
|
384 |
-
TOKENIZER = None
|
385 |
-
VECTOR_STORE = None
|
386 |
-
PDF_PATHS = ["vision2030_docs/saudi_vision203.pdf", "vision2030_docs/saudi_vision2030_ar.pdf"]
|
387 |
-
|
388 |
-
# Initialize evaluation
|
389 |
-
rouge_scorer_instance = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
|
390 |
-
|
391 |
def initialize_system():
|
392 |
-
|
393 |
-
|
394 |
-
#
|
395 |
-
if
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
|
|
|
|
422 |
|
423 |
# Load model and tokenizer
|
424 |
-
|
425 |
-
MODEL, TOKENIZER = load_model_and_tokenizer()
|
426 |
|
427 |
# Initialize assistant
|
428 |
-
|
429 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
430 |
|
431 |
-
return
|
432 |
|
433 |
-
def
|
434 |
-
"""
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
# Process query
|
439 |
-
response, sources, contexts = ASSISTANT.answer(query)
|
440 |
-
|
441 |
-
# Additional details
|
442 |
-
language = detect_language(query)
|
443 |
-
source_text = "\n".join([f"Source: {s}" for s in sources])
|
444 |
-
context_text = "\n\n".join([f"Context {i+1}: {ctx['content'][:200]}..." for i, ctx in enumerate(contexts)])
|
445 |
-
|
446 |
-
# Calculate metrics if reference is provided
|
447 |
-
metrics_text = ""
|
448 |
-
if reference:
|
449 |
-
# ROUGE scores
|
450 |
-
rouge_scores = rouge_scorer_instance.score(response, reference)
|
451 |
-
|
452 |
-
# BLEU scores
|
453 |
-
bleu_scores = calculate_bleu(response, reference)
|
454 |
-
|
455 |
-
# METEOR score
|
456 |
-
meteor = calculate_meteor(response, reference)
|
457 |
-
|
458 |
-
# F1, Precision, Recall
|
459 |
-
word_metrics = calculate_f1_precision_recall(response, reference)
|
460 |
-
|
461 |
-
# Format metrics text
|
462 |
-
metrics_text = f"""
|
463 |
-
## Evaluation Metrics:
|
464 |
-
- **ROUGE-1**: {rouge_scores['rouge1'].fmeasure:.4f}
|
465 |
-
- **ROUGE-L**: {rouge_scores['rougeL'].fmeasure:.4f}
|
466 |
-
- **BLEU-1**: {bleu_scores['bleu_1']:.4f}
|
467 |
-
- **BLEU-4**: {bleu_scores['bleu_4']:.4f}
|
468 |
-
- **METEOR**: {meteor:.4f}
|
469 |
-
- **Word F1**: {word_metrics['f1']:.4f}
|
470 |
-
- **Word Precision**: {word_metrics['precision']:.4f}
|
471 |
-
- **Word Recall**: {word_metrics['recall']:.4f}
|
472 |
-
"""
|
473 |
-
|
474 |
-
return response, source_text, context_text, metrics_text, language
|
475 |
|
476 |
-
def
|
477 |
-
"""
|
478 |
-
if sample_index < 0 or sample_index >= len(
|
479 |
-
return "Invalid sample index", "", "",
|
480 |
|
481 |
-
|
|
|
482 |
query = sample["query"]
|
483 |
reference = sample["reference"]
|
|
|
|
|
484 |
|
485 |
-
#
|
486 |
-
|
|
|
487 |
|
488 |
-
#
|
489 |
-
|
490 |
-
## Reference Answer:
|
491 |
-
{reference}
|
492 |
-
"""
|
493 |
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
if ASSISTANT:
|
499 |
-
ASSISTANT.reset_conversation()
|
500 |
-
return "Conversation has been reset."
|
501 |
-
return "System not initialized."
|
502 |
|
503 |
-
def
|
504 |
-
"""
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
512 |
|
513 |
-
|
514 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
515 |
|
516 |
-
|
517 |
-
|
518 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
519 |
|
520 |
-
|
521 |
-
|
522 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
523 |
|
524 |
-
#
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
reference_input = gr.Textbox(label="Reference Answer (Optional - for evaluation)", lines=3)
|
540 |
-
|
541 |
-
with gr.Row():
|
542 |
-
submit_btn = gr.Button("Submit")
|
543 |
-
reset_btn = gr.Button("Reset Chat")
|
544 |
-
|
545 |
-
response_output = gr.Textbox(label="Response", lines=6)
|
546 |
-
|
547 |
-
with gr.Accordion("Evaluation Metrics", open=False):
|
548 |
-
metrics_output = gr.Markdown()
|
549 |
-
|
550 |
-
with gr.Accordion("Retrieved Sources", open=False):
|
551 |
-
sources_output = gr.Textbox(label="Sources")
|
552 |
-
|
553 |
-
with gr.Accordion("Retrieved Contexts", open=False):
|
554 |
-
contexts_output = gr.Textbox(label="Contexts", lines=10)
|
555 |
-
|
556 |
-
with gr.Accordion("Qualitative Feedback", open=False):
|
557 |
-
feedback_text = gr.Textbox(label="Your Feedback", lines=3)
|
558 |
-
feedback_type = gr.Radio(
|
559 |
-
["Correctness", "Relevance", "Fluency", "Completeness", "Other"],
|
560 |
-
label="Feedback Type"
|
561 |
-
)
|
562 |
-
feedback_btn = gr.Button("Submit Feedback")
|
563 |
-
feedback_output = gr.Textbox(label="Feedback Status")
|
564 |
-
|
565 |
-
with gr.Tab("Sample Evaluation"):
|
566 |
-
sample_index = gr.Slider(0, len(sample_evaluation_data)-1, 0, step=1, label="Sample Index")
|
567 |
-
eval_btn = gr.Button("Evaluate Sample")
|
568 |
-
|
569 |
-
sample_response = gr.Textbox(label="Response", lines=6)
|
570 |
-
sample_metrics = gr.Markdown(label="Metrics & Reference")
|
571 |
-
|
572 |
-
with gr.Accordion("Retrieved Sources", open=False):
|
573 |
-
sample_sources = gr.Textbox(label="Sources")
|
574 |
-
|
575 |
-
with gr.Accordion("Retrieved Contexts", open=False):
|
576 |
-
sample_contexts = gr.Textbox(label="Contexts", lines=10)
|
577 |
-
|
578 |
-
with gr.Tab("About"):
|
579 |
-
gr.Markdown("""
|
580 |
-
## Vision 2030 Assistant
|
581 |
-
|
582 |
-
This is a multilingual RAG-based Conversational Agent using ALLaM-7B for answering questions about Saudi Vision 2030.
|
583 |
-
|
584 |
-
### Features:
|
585 |
-
- Supports both Arabic and English queries
|
586 |
-
- Uses Retrieval-Augmented Generation (RAG) for accurate answers
|
587 |
-
- Provides transparent sources for information
|
588 |
-
- Comprehensive evaluation metrics
|
589 |
-
|
590 |
-
### How to use:
|
591 |
-
1. Initialize the system (first tab)
|
592 |
-
2. Ask questions about Saudi Vision 2030 in the Chat tab
|
593 |
-
3. Optionally provide reference answers for evaluation
|
594 |
-
4. Explore sample evaluations from our test dataset
|
595 |
-
|
596 |
-
### Evaluation Metrics:
|
597 |
-
- ROUGE: Measures overlap of n-grams between response and reference
|
598 |
-
- BLEU: Measures precision of n-grams in the response compared to reference
|
599 |
-
- METEOR: Measures semantic similarity between response and reference
|
600 |
-
- F1/Precision/Recall: Word-level comparison metrics
|
601 |
-
""")
|
602 |
-
|
603 |
-
# Set up event handlers
|
604 |
-
submit_btn.click(
|
605 |
-
process_query,
|
606 |
-
inputs=[query_input, reference_input],
|
607 |
-
outputs=[response_output, sources_output, contexts_output, metrics_output]
|
608 |
-
)
|
609 |
-
|
610 |
-
reset_btn.click(
|
611 |
-
reset_chat,
|
612 |
-
inputs=[],
|
613 |
-
outputs=[response_output]
|
614 |
-
)
|
615 |
-
|
616 |
-
eval_btn.click(
|
617 |
-
evaluate_sample,
|
618 |
-
inputs=[sample_index],
|
619 |
-
outputs=[sample_response, sample_sources, sample_contexts, sample_metrics]
|
620 |
-
)
|
621 |
-
|
622 |
-
feedback_btn.click(
|
623 |
-
qualitative_feedback,
|
624 |
-
inputs=[response_output, feedback_text, feedback_type],
|
625 |
-
outputs=[feedback_output]
|
626 |
-
)
|
627 |
|
628 |
-
# Launch the interface
|
629 |
if __name__ == "__main__":
|
630 |
-
|
|
|
1 |
import os
|
2 |
import re
|
3 |
+
import json
|
4 |
import torch
|
|
|
5 |
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
from tqdm import tqdm
|
8 |
+
from pathlib import Path
|
9 |
|
10 |
# PDF processing
|
11 |
import PyPDF2
|
|
|
26 |
|
27 |
# Evaluation
|
28 |
from rouge_score import rouge_scorer
|
29 |
+
import sacrebleu
|
30 |
+
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
|
31 |
+
import matplotlib.pyplot as plt
|
32 |
+
import seaborn as sns
|
33 |
+
from collections import defaultdict
|
34 |
|
35 |
+
# Gradio for the interface
|
36 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
# Helper functions
|
39 |
def safe_tokenize(text):
|
40 |
"""Pure regex tokenizer with no NLTK dependency"""
|
41 |
if not text:
|
|
|
45 |
# Split on whitespace and filter empty strings
|
46 |
return [token for token in re.split(r'\s+', text.lower()) if token]
|
47 |
|
48 |
+
def detect_language(text):
|
49 |
+
"""Detect if text is primarily Arabic or English"""
|
50 |
+
# Simple heuristic: count Arabic characters
|
51 |
+
arabic_chars = re.findall(r'[\u0600-\u06FF]', text)
|
52 |
+
is_arabic = len(arabic_chars) > len(text) * 0.5
|
53 |
+
return "arabic" if is_arabic else "english"
|
54 |
+
|
55 |
+
# Evaluation metrics
|
56 |
def calculate_bleu(prediction, reference):
|
57 |
"""Calculate BLEU score without any NLTK dependency"""
|
58 |
# Tokenize texts using our own tokenizer
|
|
|
124 |
|
125 |
return {'precision': precision, 'recall': recall, 'f1': f1}
|
126 |
|
127 |
+
def evaluate_retrieval_quality(contexts, query, language):
|
128 |
+
"""Evaluate the quality of retrieved contexts"""
|
129 |
+
# This is a placeholder function that should be implemented based on
|
130 |
+
# how you want to evaluate retrieval quality
|
131 |
+
return {
|
132 |
+
'language_match_ratio': 1.0, # Placeholder
|
133 |
+
'source_diversity': len(set([ctx.get('source', '') for ctx in contexts])) / max(1, len(contexts)),
|
134 |
+
'mrr': 1.0 # Placeholder for Mean Reciprocal Rank
|
135 |
+
}
|
136 |
+
|
137 |
+
# PDF Processing and Vector Store
|
138 |
+
def simple_process_pdfs(pdf_paths):
|
139 |
+
"""Process PDF documents and return document objects"""
|
140 |
documents = []
|
141 |
|
142 |
+
for pdf_path in pdf_paths:
|
143 |
try:
|
144 |
text = ""
|
145 |
with open(pdf_path, 'rb') as file:
|
|
|
198 |
|
199 |
return vector_store
|
200 |
|
201 |
+
# Model Loading and RAG System
|
202 |
def load_model_and_tokenizer():
|
203 |
"""Load the ALLaM-7B model and tokenizer with error handling"""
|
204 |
model_name = "ALLaM-AI/ALLaM-7B-Instruct-preview"
|
|
|
318 |
# Fallback response
|
319 |
return "I apologize, but I encountered an error while generating a response."
|
320 |
|
321 |
+
# Assistant Class
|
322 |
class Vision2030Assistant:
|
323 |
def __init__(self, model, tokenizer, vector_store):
|
324 |
self.model = model
|
|
|
363 |
self.conversation_history = []
|
364 |
return "Conversation has been reset."
|
365 |
|
366 |
+
# Comprehensive evaluation dataset
|
367 |
+
comprehensive_evaluation_data = [
|
368 |
+
# === Overview ===
|
369 |
{
|
370 |
"query": "ما هي رؤية السعودية 2030؟",
|
371 |
"reference": "رؤية السعودية 2030 هي خطة استراتيجية تهدف إلى تنويع الاقتصاد السعودي وتقليل الاعتماد على النفط مع تطوير قطاعات مختلفة مثل الصحة والتعليم والسياحة.",
|
|
|
378 |
"category": "overview",
|
379 |
"language": "english"
|
380 |
},
|
381 |
+
|
382 |
+
# === Economic Goals ===
|
383 |
{
|
384 |
"query": "ما هي الأهداف الاقتصادية لرؤية 2030؟",
|
385 |
"reference": "تشمل الأهداف الاقتصادية زيادة مساهمة القطاع الخاص إلى 65%، وزيادة الصادرات غير النفطية إلى 50% من الناتج المحلي غير النفطي، وخفض البطالة إلى 7%.",
|
|
|
392 |
"category": "economic",
|
393 |
"language": "english"
|
394 |
},
|
395 |
+
|
396 |
+
# === Social Goals ===
|
397 |
{
|
398 |
+
"query": "كيف تعزز رؤية 2030 الإرث الثقافي السعود��؟",
|
399 |
+
"reference": "تتضمن رؤية 2030 الحفاظ على الهوية الوطنية، تسجيل مواقع أثرية في اليونسكو، وتعزيز الفعاليات الثقافية.",
|
400 |
+
"category": "social",
|
401 |
+
"language": "arabic"
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"query": "How does Vision 2030 aim to improve quality of life?",
|
405 |
+
"reference": "Vision 2030 plans to enhance quality of life by expanding sports facilities, promoting cultural activities, and boosting tourism and entertainment sectors.",
|
406 |
+
"category": "social",
|
407 |
"language": "english"
|
408 |
}
|
409 |
]
|
410 |
|
411 |
+
# Gradio Interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
412 |
def initialize_system():
|
413 |
+
"""Initialize the Vision 2030 Assistant system"""
|
414 |
+
# This would normally process PDFs and load models
|
415 |
+
# For Hugging Face Space, we'll need to check if models are already downloaded
|
416 |
+
# and if vector stores are already created
|
417 |
+
|
418 |
+
# Define paths
|
419 |
+
model_dir = "models"
|
420 |
+
vector_store_dir = "vector_stores"
|
421 |
+
pdf_dir = "pdf_data"
|
422 |
+
|
423 |
+
os.makedirs(model_dir, exist_ok=True)
|
424 |
+
os.makedirs(vector_store_dir, exist_ok=True)
|
425 |
+
os.makedirs(pdf_dir, exist_ok=True)
|
426 |
+
|
427 |
+
# Check if we need to download PDFs
|
428 |
+
pdf_files = ["vision2030_docs/saudi_vision203.pdf", "vision2030_docs/saudi_vision2030_ar.pdf"]
|
429 |
+
|
430 |
+
# This is where you would normally download the PDFs if they don't exist
|
431 |
+
# For Hugging Face Space, you would need to upload these files
|
432 |
+
|
433 |
+
# Process PDFs and create vector store
|
434 |
+
if os.path.exists(os.path.join(vector_store_dir, "index.faiss")):
|
435 |
+
print("Loading existing vector store...")
|
436 |
+
embedding_function = HuggingFaceEmbeddings(
|
437 |
+
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
438 |
+
)
|
439 |
+
vector_store = FAISS.load_local(vector_store_dir, embedding_function)
|
440 |
+
else:
|
441 |
+
print("Creating new vector store...")
|
442 |
+
documents = simple_process_pdfs(pdf_files)
|
443 |
+
vector_store = create_vector_store(documents)
|
444 |
+
vector_store.save_local(vector_store_dir)
|
445 |
|
446 |
# Load model and tokenizer
|
447 |
+
model, tokenizer = load_model_and_tokenizer()
|
|
|
448 |
|
449 |
# Initialize assistant
|
450 |
+
assistant = Vision2030Assistant(model, tokenizer, vector_store)
|
451 |
+
|
452 |
+
return assistant
|
453 |
+
|
454 |
+
def evaluate_response(query, response, reference):
|
455 |
+
"""Evaluate a single response against a reference"""
|
456 |
+
# Calculate metrics
|
457 |
+
rouge = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
|
458 |
+
rouge_scores = rouge.score(response, reference)
|
459 |
+
|
460 |
+
bleu_scores = calculate_bleu(response, reference)
|
461 |
+
meteor = calculate_meteor(response, reference)
|
462 |
+
word_metrics = calculate_f1_precision_recall(response, reference)
|
463 |
+
|
464 |
+
# Format results
|
465 |
+
evaluation_results = {
|
466 |
+
"ROUGE-1": f"{rouge_scores['rouge1'].fmeasure:.4f}",
|
467 |
+
"ROUGE-2": f"{rouge_scores['rouge2'].fmeasure:.4f}",
|
468 |
+
"ROUGE-L": f"{rouge_scores['rougeL'].fmeasure:.4f}",
|
469 |
+
"BLEU-1": f"{bleu_scores['bleu_1']:.4f}",
|
470 |
+
"BLEU-4": f"{bleu_scores['bleu_4']:.4f}",
|
471 |
+
"METEOR": f"{meteor:.4f}",
|
472 |
+
"Word Precision": f"{word_metrics['precision']:.4f}",
|
473 |
+
"Word Recall": f"{word_metrics['recall']:.4f}",
|
474 |
+
"Word F1": f"{word_metrics['f1']:.4f}"
|
475 |
+
}
|
476 |
|
477 |
+
return evaluation_results
|
478 |
|
479 |
+
def run_conversation(assistant, query):
|
480 |
+
"""Run a query through the assistant and return the response"""
|
481 |
+
response, sources, contexts = assistant.answer(query)
|
482 |
+
return response, sources, contexts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
483 |
|
484 |
+
def run_evaluation_on_sample(assistant, sample_index=0):
|
485 |
+
"""Run evaluation on a selected sample from the evaluation dataset"""
|
486 |
+
if sample_index < 0 or sample_index >= len(comprehensive_evaluation_data):
|
487 |
+
return "Invalid sample index", "", "", {}
|
488 |
|
489 |
+
# Get the sample
|
490 |
+
sample = comprehensive_evaluation_data[sample_index]
|
491 |
query = sample["query"]
|
492 |
reference = sample["reference"]
|
493 |
+
category = sample["category"]
|
494 |
+
language = sample["language"]
|
495 |
|
496 |
+
# Reset conversation and get response
|
497 |
+
assistant.reset_conversation()
|
498 |
+
response, sources, contexts = assistant.answer(query)
|
499 |
|
500 |
+
# Evaluate response
|
501 |
+
evaluation_results = evaluate_response(query, response, reference)
|
|
|
|
|
|
|
502 |
|
503 |
+
# Format for display
|
504 |
+
metrics_str = "\n".join([f"{k}: {v}" for k, v in evaluation_results.items()])
|
505 |
+
|
506 |
+
return query, response, reference, evaluation_results, sources, category, language
|
|
|
|
|
|
|
|
|
507 |
|
508 |
+
def qualitative_evaluation_interface(assistant):
|
509 |
+
"""Create a Gradio interface for qualitative evaluation"""
|
510 |
+
|
511 |
+
sample_options = [f"{i+1}. {item['query'][:50]}..." for i, item in enumerate(comprehensive_evaluation_data)]
|
512 |
+
|
513 |
+
with gr.Blocks(title="Vision 2030 Assistant - Qualitative Evaluation") as interface:
|
514 |
+
gr.Markdown("# Vision 2030 Assistant - Qualitative Evaluation")
|
515 |
+
gr.Markdown("This interface allows you to evaluate the Vision 2030 Assistant on predefined samples or your own queries.")
|
516 |
+
|
517 |
+
with gr.Tab("Sample Evaluation"):
|
518 |
+
gr.Markdown("### Evaluate the assistant on predefined samples")
|
519 |
+
|
520 |
+
sample_dropdown = gr.Dropdown(
|
521 |
+
choices=sample_options,
|
522 |
+
label="Select a sample query",
|
523 |
+
value=sample_options[0] if sample_options else None
|
524 |
+
)
|
525 |
+
|
526 |
+
eval_button = gr.Button("Evaluate Sample")
|
527 |
+
|
528 |
+
with gr.Row():
|
529 |
+
with gr.Column():
|
530 |
+
sample_query = gr.Textbox(label="Query")
|
531 |
+
sample_category = gr.Textbox(label="Category")
|
532 |
+
sample_language = gr.Textbox(label="Language")
|
533 |
+
|
534 |
+
with gr.Column():
|
535 |
+
sample_response = gr.Textbox(label="Assistant Response")
|
536 |
+
sample_reference = gr.Textbox(label="Reference Answer")
|
537 |
+
sample_sources = gr.Textbox(label="Sources Used")
|
538 |
+
|
539 |
+
with gr.Row():
|
540 |
+
metrics_display = gr.JSON(label="Evaluation Metrics")
|
541 |
|
542 |
+
with gr.Tab("Custom Evaluation"):
|
543 |
+
gr.Markdown("### Evaluate the assistant on your own query")
|
544 |
+
|
545 |
+
custom_query = gr.Textbox(
|
546 |
+
lines=3,
|
547 |
+
placeholder="Enter your question about Saudi Vision 2030...",
|
548 |
+
label="Your Query"
|
549 |
+
)
|
550 |
+
|
551 |
+
custom_reference = gr.Textbox(
|
552 |
+
lines=3,
|
553 |
+
placeholder="Enter a reference answer (optional)...",
|
554 |
+
label="Reference Answer (Optional)"
|
555 |
+
)
|
556 |
+
|
557 |
+
custom_eval_button = gr.Button("Get Response and Evaluate")
|
558 |
+
|
559 |
+
custom_response = gr.Textbox(label="Assistant Response")
|
560 |
+
custom_sources = gr.Textbox(label="Sources Used")
|
561 |
+
|
562 |
+
custom_metrics = gr.JSON(
|
563 |
+
label="Evaluation Metrics (if reference provided)",
|
564 |
+
visible=True
|
565 |
+
)
|
566 |
|
567 |
+
with gr.Tab("Conversation Mode"):
|
568 |
+
gr.Markdown("### Have a conversation with the Vision 2030 Assistant")
|
569 |
+
|
570 |
+
chatbot = gr.Chatbot(label="Conversation")
|
571 |
+
|
572 |
+
conv_input = gr.Textbox(
|
573 |
+
placeholder="Ask about Saudi Vision 2030...",
|
574 |
+
label="Your message"
|
575 |
+
)
|
576 |
+
|
577 |
+
with gr.Row():
|
578 |
+
conv_button = gr.Button("Send")
|
579 |
+
reset_button = gr.Button("Reset Conversation")
|
580 |
+
|
581 |
+
conv_sources = gr.Textbox(label="Sources Used")
|
582 |
|
583 |
+
# Sample evaluation event handlers
|
584 |
+
def handle_sample_selection(selection):
|
585 |
+
if not selection:
|
586 |
+
return "", "", "", "", "", "", ""
|
587 |
+
|
588 |
+
# Extract index from the selection string
|
589 |
+
try:
|
590 |
+
index = int(selection.split(".")[0]) - 1
|
591 |
+
query, response, reference, metrics, sources, category, language = run_evaluation_on_sample(assistant, index)
|
592 |
+
sources_str = ", ".join(sources)
|
593 |
+
return query, response, reference, metrics, sources_str, category, language
|
594 |
+
except:
|
595 |
+
return "Error processing selection", "", "", {}, "", "", ""
|
596 |
+
|
597 |
+
eval_button.click(
|
598 |
+
handle_sample_selection,
|
599 |
+
inputs=[sample_dropdown],
|
600 |
+
outputs=[sample_query, sample_response, sample_reference, metrics_display,
|
601 |
+
sample_sources, sample_category, sample_language]
|
602 |
+
)
|
603 |
+
|
604 |
+
sample_dropdown.change(
|
605 |
+
handle_sample_selection,
|
606 |
+
inputs=[sample_dropdown],
|
607 |
+
outputs=[sample_query, sample_response, sample_reference, metrics_display,
|
608 |
+
sample_sources, sample_category, sample_language]
|
609 |
+
)
|
610 |
+
|
611 |
+
# Custom evaluation event handlers
|
612 |
+
def handle_custom_evaluation(query, reference):
|
613 |
+
if not query:
|
614 |
+
return "Please enter a query", "", {}
|
615 |
+
|
616 |
+
# Reset conversation to ensure clean state
|
617 |
+
assistant.reset_conversation()
|
618 |
+
|
619 |
+
# Get response
|
620 |
+
response, sources, _ = assistant.answer(query)
|
621 |
+
sources_str = ", ".join(sources)
|
622 |
+
|
623 |
+
# Evaluate if reference is provided
|
624 |
+
metrics = {}
|
625 |
+
if reference:
|
626 |
+
metrics = evaluate_response(query, response, reference)
|
627 |
+
|
628 |
+
return response, sources_str, metrics
|
629 |
+
|
630 |
+
custom_eval_button.click(
|
631 |
+
handle_custom_evaluation,
|
632 |
+
inputs=[custom_query, custom_reference],
|
633 |
+
outputs=[custom_response, custom_sources, custom_metrics]
|
634 |
+
)
|
635 |
+
|
636 |
+
# Conversation mode event handlers
|
637 |
+
def handle_conversation(message, history):
|
638 |
+
if not message:
|
639 |
+
return history, "", ""
|
640 |
+
|
641 |
+
# Get response
|
642 |
+
response, sources, _ = assistant.answer(message)
|
643 |
+
sources_str = ", ".join(sources)
|
644 |
+
|
645 |
+
# Update history
|
646 |
+
history = history + [[message, response]]
|
647 |
+
|
648 |
+
return history, "", sources_str
|
649 |
+
|
650 |
+
def reset_conv():
|
651 |
+
result = assistant.reset_conversation()
|
652 |
+
return [], result, ""
|
653 |
+
|
654 |
+
conv_button.click(
|
655 |
+
handle_conversation,
|
656 |
+
inputs=[conv_input, chatbot],
|
657 |
+
outputs=[chatbot, conv_input, conv_sources]
|
658 |
+
)
|
659 |
+
|
660 |
+
reset_button.click(
|
661 |
+
reset_conv,
|
662 |
+
inputs=[],
|
663 |
+
outputs=[chatbot, conv_input, conv_sources]
|
664 |
+
)
|
665 |
+
|
666 |
+
return interface
|
667 |
|
668 |
+
# Main function to run in Hugging Face Space
|
669 |
+
def main():
|
670 |
+
# Initialize the system
|
671 |
+
try:
|
672 |
+
assistant = initialize_system()
|
673 |
+
interface = qualitative_evaluation_interface(assistant)
|
674 |
+
interface.launch()
|
675 |
+
except Exception as e:
|
676 |
+
print(f"Error initializing system: {e}")
|
677 |
+
# Create a simple error interface
|
678 |
+
gr.Interface(
|
679 |
+
fn=lambda x: f"System initialization failed: {str(e)}",
|
680 |
+
inputs=gr.Textbox(placeholder="System failed to initialize"),
|
681 |
+
outputs=gr.Textbox()
|
682 |
+
).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
683 |
|
|
|
684 |
if __name__ == "__main__":
|
685 |
+
main()
|