File size: 9,680 Bytes
8d42b57
f4c379b
839f10e
 
 
9e56ba5
5abe39b
1f32ffc
74a077f
ed52d42
74a077f
1f32ffc
9e56ba5
74a077f
9e56ba5
 
5e43db6
839f10e
9e56ba5
 
 
839f10e
 
 
 
9e56ba5
839f10e
9e56ba5
74a077f
 
 
 
 
839f10e
1f32ffc
1935572
9e56ba5
c5064a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
839f10e
1935572
839f10e
1935572
fd60a59
839f10e
1935572
839f10e
9e56ba5
03d7fe4
9e56ba5
905c48c
1f32ffc
 
 
 
 
fd60a59
 
1f32ffc
 
fd60a59
 
 
 
 
1f32ffc
fd60a59
 
 
 
 
 
 
 
 
1f32ffc
9e56ba5
905c48c
1f32ffc
 
 
 
 
8e8faee
fd60a59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f32ffc
ed52d42
 
 
 
 
 
9d353b9
 
a77f399
 
9d353b9
 
 
 
 
 
 
 
 
 
 
 
ed52d42
912adfe
 
 
 
 
 
ed52d42
 
 
 
 
 
 
 
 
 
5abe39b
9d353b9
 
 
1f32ffc
ed52d42
 
 
 
 
 
 
 
 
1f32ffc
ed52d42
9e56ba5
fd60a59
ed52d42
 
 
 
 
dfc0d9b
ed52d42
 
 
 
 
 
 
 
 
 
 
 
 
 
6f1ce2e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import spaces
import gradio as gr
from detect_deepsort import run_deepsort
from detect_strongsort import run_strongsort
from detect import run
import os
import torch
import seaborn as sns
from PIL import Image
import cv2
import numpy as np
import matplotlib.pyplot as plt
import threading

should_continue = True

@spaces.GPU(duration=240)
def yolov9_inference(model_id, img_path=None, vid_path=None, tracking_algorithm = None):
    global should_continue
    img_extensions = ['.jpg', '.jpeg', '.png', '.gif']  # Add more image extensions if needed
    vid_extensions = ['.mp4', '.avi', '.mov', '.mkv']  # Add more video extensions if needed
    #assert img_path is not None or vid_path is not None, "Either img_path or vid_path must be provided."
    image_size = 640
    conf_threshold = 0.5
    iou_threshold = 0.5
    input_path = None
    output_path = None
    if img_path is not None:
        # Convert the numpy array to an image
        img = Image.fromarray(img_path)
        img_path = 'output.png'
        # Save the image
        img.save(img_path)
        input_path = img_path

        output_path, df, frame_counts_df = run(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='0', hide_conf= True)
    elif vid_path is not None:
        vid_name = 'output.mp4'

        # Create a VideoCapture object
        cap = cv2.VideoCapture(vid_path)

        # Check if video opened successfully
        if not cap.isOpened():
            print("Error opening video file")

        # Read the video frame by frame
        frames = []
        while cap.isOpened():
            ret, frame = cap.read()
            if ret:
                frames.append(frame)
            else:
                break

        # Release the VideoCapture object
        cap.release()

        # Convert the list of frames to a numpy array
        vid_data = np.array(frames)

        # Create a VideoWriter object
        out = cv2.VideoWriter(vid_name, cv2.VideoWriter_fourcc(*'mp4v'), 30, (frames[0].shape[1], frames[0].shape[0]))

        # Write the frames to the output video file
        for frame in frames:
            out.write(frame)

        # Release the VideoWriter object
        out.release()
        input_path = vid_name
        if tracking_algorithm == 'deep_sort':
            output_path, df, frame_counts_df = run_deepsort(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='0', draw_trails=True)
        elif tracking_algorithm == 'strong_sort':
            device_strongsort = torch.device('cuda:0')
            output_path, df, frame_counts_df = run_strongsort(yolo_weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device=device_strongsort, strong_sort_weights = "osnet_x0_25_msmt17.pt", hide_conf= True)
        else: 
            output_path, df, frame_counts_df =  run(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='0', hide_conf= True)
        # Assuming output_path is the path to the output file
    _, output_extension = os.path.splitext(output_path)
    palette = {"Bus": "red", "Bike": "blue", "Car": "green", "Pedestrian": "yellow", "Truck": "purple"}
    if output_extension.lower() in img_extensions:
        output_image = output_path  # Load the image file here
        output_video = None
        plt.style.use("ggplot")
        fig, ax = plt.subplots(figsize=(10, 6))
        #for label in labels:
            #df_label = frame_counts_df[frame_counts_df['label'] == label]
        
        sns.barplot(ax=ax, data=df, x='label', y='count', palette=palette, hue='label')

        # Customizations
        ax.set_title('Count of Labels', fontsize=20, pad=20)  # Increase padding for the title
        ax.set_xlabel('Label', fontsize=16)  # Increase font size
        ax.set_ylabel('Count', fontsize=16)  # Increase font size
        ax.tick_params(axis='x', rotation=45, labelsize=12)  # Increase label size and rotate x-axis labels for better readability
        ax.tick_params(axis='y', labelsize=12)  # Increase label size for y-axis
        sns.despine()  # Remove the top and right spines from plot

        # Add grid but make it lighter and put it behind bars
        ax.grid(True, linestyle=':', linewidth=0.6, color='gray', alpha=0.6)
        ax.set_axisbelow(True)

        # Add a legend with a smaller font size
        ax.legend(fontsize=10)

        plt.tight_layout()  # Ensure the entire plot fits into the figure area
        #ax.set_facecolor('#D3D3D3')
    elif output_extension.lower() in vid_extensions:
        output_video = output_path  # Load the video file here
        output_image = None
        plt.style.use("ggplot")
        fig, ax = plt.subplots(figsize=(10, 6))
        #for label in labels:
            #df_label = frame_counts_df[frame_counts_df['label'] == label]
        sns.lineplot(ax = ax, data = frame_counts_df,  x = 'frame', y = 'count', hue = 'label', palette=palette,linewidth=2.5)

        ax.set_title('Count of Labels over Frames', fontsize=20, pad=20)  # Increase padding for the title
        ax.set_xlabel('Frame', fontsize=16)  # Increase font size
        ax.set_ylabel('Count', fontsize=16)  # Increase font size
        ax.tick_params(axis='x', labelsize=12)  # Increase label size for x-axis
        ax.tick_params(axis='y', labelsize=12)  # Increase label size for y-axis

        # Add grid but make it lighter and put it behind bars
        ax.grid(True, linestyle=':', linewidth=0.6, color='gray', alpha=0.6)
        ax.set_axisbelow(True)

        # Change the background color to a lighter shade
        ax.set_facecolor('#F0F0F0')

        # Add a legend with a smaller font size
        ax.legend(fontsize=10)

        plt.tight_layout()  # Ensure the entire
    return output_image, output_video, fig

def app():
    with gr.Blocks(title="YOLOv9: Real-time Object Detection", css=".gradio-container {background:lightyellow;}"):
        with gr.Row():
            with gr.Column():
                gr.HTML("<h2>Input Parameters</h2>")
                img_path = gr.Image(label="Image", height = 260, width = 410)
                vid_path = gr.Video(label="Video", height = 260, width = 410)
                gr.HTML("<img src='flie/img_examples/clasess.png'>")
                #gr.Image("/file=.img_examples/clasess.png")
                #gr.Examples(['./img_examples/Exam_1.png','./img_examples/Exam_2.png','./img_examples/Exam_3.png','./img_examples/Exam_4.png','./img_examples/Exam_5.png'], inputs=img_path,label = "Image Example", cache_examples = False)
                #gr.Examples(['./video_examples/video_1.mp4', './video_examples/video_2.mp4','./video_examples/video_3.mp4','./video_examples/video_4.mp4','./video_examples/video_5.mp4'], inputs=vid_path, label = "Video Example", cache_examples = False)
            with gr.Column(min_width = 270):
                gr.HTML("<h2>Output</h2>")
                output_image = gr.Image(type="numpy",label="Output", height = 260, width = 410)
                #df = gr.BarPlot(show_label=False, x="label", y="counts", x_title="Labels", y_title="Counts", vertical=False)
                output_video = gr.Video(label="Output", height = 260, width = 410) 
                #frame_counts_df = gr.LinePlot(show_label=False, x="frame", y="count", x_title="Frame", y_title="Counts", color="label")
                fig = gr.Plot(label = "label")
                #output_path = gr.Textbox(label="Output path")
            with gr.Column():
                gr.HTML("<h2>Example, Model and Tracking Algorithm</h2>")
                model_id = gr.Dropdown(
                    label="Model",
                    choices=[
                        "Our_Model.pt",
                        "yolov9_e_trained.pt"
                    ],
                    value="Our_Model.pt"
                )
                tracking_algorithm = gr.Dropdown(
                    label= "Tracking Algorithm",
                    choices=[
                        "None",
                        "deep_sort",
                        "strong_sort"
                    ],
                    value="None"
                )
                yolov9_infer = gr.Button(value="Inference")
                gr.Examples(['./img_examples/Exam_1.png','./img_examples/Exam_2.png','./img_examples/Exam_3.png','./img_examples/Exam_4.png','./img_examples/Exam_5.png'], inputs=img_path,label = "Image Example", cache_examples = False, examples_per_page = 3)
                gr.Examples(['./video_examples/video_1.mp4', './video_examples/video_2.mp4','./video_examples/video_3.mp4','./video_examples/video_4.mp4','./video_examples/video_5.mp4'], inputs=vid_path, label = "Video Example", cache_examples = False, examples_per_page = 3)

                

        yolov9_infer.click(
            fn=yolov9_inference,
            inputs=[
                model_id,
                img_path,
                vid_path,
                tracking_algorithm
            ],
            outputs=[output_image, output_video, fig],
        )


gradio_app = gr.Blocks()
with gradio_app:
    gr.HTML(
        """
    <h1 style='text-align: center'>
    YOLOv9-FishEye:  Improving model for realtime fisheye camera object detection
    </h1>
    """)
    css = """
    body {
        background-color: #f0f0f0;
    }
    h1 {
        color: #4CAF50;
    }
    """
    with gr.Row():
        with gr.Column():
            app()

gradio_app.launch(debug=True, allowed_paths=['.img_examples/clasess.png'])