Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,18 @@
|
|
1 |
-
import spaces
|
2 |
import gradio as gr
|
3 |
from detect_deepsort import run_deepsort
|
4 |
from detect_strongsort import run_strongsort
|
5 |
from detect import run
|
6 |
import os
|
7 |
-
import torch
|
8 |
from PIL import Image
|
|
|
9 |
import numpy as np
|
10 |
import threading
|
11 |
-
import cv2
|
12 |
|
13 |
should_continue = True
|
14 |
|
15 |
-
|
|
|
16 |
def yolov9_inference(model_id, img_path=None, vid_path=None, tracking_algorithm = None):
|
17 |
global should_continue
|
18 |
img_extensions = ['.jpg', '.jpeg', '.png', '.gif'] # Add more image extensions if needed
|
@@ -31,7 +31,7 @@ def yolov9_inference(model_id, img_path=None, vid_path=None, tracking_algorithm
|
|
31 |
img.save(img_path)
|
32 |
input_path = img_path
|
33 |
print(input_path)
|
34 |
-
output_path = run(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='
|
35 |
elif vid_path is not None:
|
36 |
vid_name = 'output.mp4'
|
37 |
|
@@ -68,64 +68,91 @@ def yolov9_inference(model_id, img_path=None, vid_path=None, tracking_algorithm
|
|
68 |
out.release()
|
69 |
input_path = vid_name
|
70 |
if tracking_algorithm == 'deep_sort':
|
71 |
-
output_path = run_deepsort(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='
|
72 |
elif tracking_algorithm == 'strong_sort':
|
73 |
-
|
74 |
-
output_path = run_strongsort(yolo_weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device=device_strongsort, strong_sort_weights = "osnet_x0_25_msmt17.pt", hide_conf= True)
|
75 |
else:
|
76 |
-
output_path = run(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='
|
77 |
# Assuming output_path is the path to the output file
|
78 |
_, output_extension = os.path.splitext(output_path)
|
79 |
if output_extension.lower() in img_extensions:
|
80 |
-
|
81 |
-
output_video = None
|
82 |
elif output_extension.lower() in vid_extensions:
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
def app(model_id, img_path, vid_path, tracking_algorithm):
|
91 |
-
return yolov9_inference(model_id, img_path, vid_path, tracking_algorithm)
|
92 |
|
93 |
-
iface = gr.Interface(
|
94 |
-
fn=app,
|
95 |
-
inputs=[
|
96 |
-
gr.Dropdown(
|
97 |
-
label="Model",
|
98 |
-
choices=[
|
99 |
-
"our-converted.pt",
|
100 |
-
"yolov9_e_trained-converted.pt",
|
101 |
-
"last_best_model.pt"
|
102 |
-
],
|
103 |
-
value="our-converted.pt"
|
104 |
-
),
|
105 |
-
gr.Image(label="Image"),
|
106 |
-
gr.Video(label="Video"),
|
107 |
-
gr.Dropdown(
|
108 |
-
label= "Tracking Algorithm",
|
109 |
-
choices=[
|
110 |
-
"None",
|
111 |
-
"deep_sort",
|
112 |
-
"strong_sort"
|
113 |
-
],
|
114 |
-
value="None"
|
115 |
-
)
|
116 |
-
],
|
117 |
-
outputs=[
|
118 |
-
gr.Image(type="numpy",label="Output Image"),
|
119 |
-
gr.Video(label="Output Video"),
|
120 |
-
gr.Textbox(label="Output path")
|
121 |
-
],
|
122 |
-
examples=[
|
123 |
-
["last_best_model.pt", "camera1_A_133.png", None, "deep_sort"],
|
124 |
-
["last_best_model.pt", None, "test.mp4", "strong_sort"]
|
125 |
-
],
|
126 |
-
title='YOLOv9: Real-time Object Detection',
|
127 |
-
description='This is a real-time object detection system using YOLOv9.',
|
128 |
-
theme='huggingface'
|
129 |
-
)
|
130 |
-
|
131 |
-
iface.launch(debug=True)
|
|
|
1 |
+
#import spaces
|
2 |
import gradio as gr
|
3 |
from detect_deepsort import run_deepsort
|
4 |
from detect_strongsort import run_strongsort
|
5 |
from detect import run
|
6 |
import os
|
|
|
7 |
from PIL import Image
|
8 |
+
import cv2
|
9 |
import numpy as np
|
10 |
import threading
|
|
|
11 |
|
12 |
should_continue = True
|
13 |
|
14 |
+
|
15 |
+
#@spaces.GPU(duration=120)
|
16 |
def yolov9_inference(model_id, img_path=None, vid_path=None, tracking_algorithm = None):
|
17 |
global should_continue
|
18 |
img_extensions = ['.jpg', '.jpeg', '.png', '.gif'] # Add more image extensions if needed
|
|
|
31 |
img.save(img_path)
|
32 |
input_path = img_path
|
33 |
print(input_path)
|
34 |
+
output_path = run(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='cpu', hide_conf= True)
|
35 |
elif vid_path is not None:
|
36 |
vid_name = 'output.mp4'
|
37 |
|
|
|
68 |
out.release()
|
69 |
input_path = vid_name
|
70 |
if tracking_algorithm == 'deep_sort':
|
71 |
+
output_path = run_deepsort(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='cpu', draw_trails=True)
|
72 |
elif tracking_algorithm == 'strong_sort':
|
73 |
+
output_path = run_strongsort(yolo_weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='cpu', strong_sort_weights = "osnet_x0_25_msmt17.pt", hide_conf= True)
|
|
|
74 |
else:
|
75 |
+
output_path = run(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='cpu', hide_conf= True)
|
76 |
# Assuming output_path is the path to the output file
|
77 |
_, output_extension = os.path.splitext(output_path)
|
78 |
if output_extension.lower() in img_extensions:
|
79 |
+
output = output_path # Load the image file here
|
|
|
80 |
elif output_extension.lower() in vid_extensions:
|
81 |
+
output = output_path # Load the video file here
|
82 |
+
|
83 |
+
return output, output_path
|
84 |
+
|
85 |
+
|
86 |
+
def app():
|
87 |
+
with gr.Blocks(title="YOLOv9: Real-time Object Detection", css=".gradio-container {background:lightyellow;}"):
|
88 |
+
with gr.Row():
|
89 |
+
with gr.Column():
|
90 |
+
gr.HTML("<h2>Input Parameters</h2>")
|
91 |
+
img_path = gr.Image(label="Image", height = 370, width = 600)
|
92 |
+
vid_path = gr.Video(label="Video", height = 370, width = 600)
|
93 |
+
model_id = gr.Dropdown(
|
94 |
+
label="Model",
|
95 |
+
choices=[
|
96 |
+
"our-converted.pt",
|
97 |
+
"yolov9_e_trained-converted.pt"
|
98 |
+
],
|
99 |
+
value="our-converted.pt"
|
100 |
+
|
101 |
+
)
|
102 |
+
tracking_algorithm = gr.Dropdown(
|
103 |
+
label= "Tracking Algorithm",
|
104 |
+
choices=[
|
105 |
+
"None",
|
106 |
+
"deep_sort",
|
107 |
+
"strong_sort"
|
108 |
+
],
|
109 |
+
value="None"
|
110 |
+
)
|
111 |
+
gr.Examples(['camera1_A_133.png'], inputs=img_path,label = "Image Example")
|
112 |
+
gr.Examples(['test.mp4'], inputs=vid_path, label = "Video Example")
|
113 |
+
yolov9_infer = gr.Button(value="Inference")
|
114 |
+
with gr.Column():
|
115 |
+
gr.HTML("<h2>Output</h2>")
|
116 |
+
if img_path is not None:
|
117 |
+
output_image = gr.Image(type="numpy",label="Output")
|
118 |
+
output = output_image
|
119 |
+
else:
|
120 |
+
output_video = gr.Video(label="Output")
|
121 |
+
output = output_video
|
122 |
+
output_path = gr.Textbox(label="Output path")
|
123 |
+
|
124 |
+
yolov9_infer.click(
|
125 |
+
fn=yolov9_inference,
|
126 |
+
inputs=[
|
127 |
+
model_id,
|
128 |
+
img_path,
|
129 |
+
vid_path,
|
130 |
+
tracking_algorithm
|
131 |
+
],
|
132 |
+
outputs=[output, output_path],
|
133 |
+
)
|
134 |
|
135 |
|
136 |
+
gradio_app = gr.Blocks()
|
137 |
+
with gradio_app:
|
138 |
+
gr.HTML(
|
139 |
+
"""
|
140 |
+
<h1 style='text-align: center'>
|
141 |
+
YOLOv9: Real-time Object Detection
|
142 |
+
</h1>
|
143 |
+
""")
|
144 |
+
css = """
|
145 |
+
body {
|
146 |
+
background-color: #f0f0f0;
|
147 |
+
}
|
148 |
+
h1 {
|
149 |
+
color: #4CAF50;
|
150 |
+
}
|
151 |
+
"""
|
152 |
+
with gr.Row():
|
153 |
+
with gr.Column():
|
154 |
+
app()
|
155 |
+
|
156 |
+
gradio_app.launch(debug=True)
|
157 |
|
|
|
|
|
158 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|