Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,12 +4,15 @@ from detect_deepsort import run_deepsort
|
|
4 |
from detect_strongsort import run_strongsort
|
5 |
from detect import run
|
6 |
import os
|
|
|
|
|
7 |
import threading
|
8 |
-
import
|
|
|
9 |
should_continue = True
|
10 |
|
11 |
|
12 |
-
@spaces.GPU(duration=120)
|
13 |
def yolov9_inference(model_id, img_path=None, vid_path=None, tracking_algorithm = None):
|
14 |
global should_continue
|
15 |
img_extensions = ['.jpg', '.jpeg', '.png', '.gif'] # Add more image extensions if needed
|
@@ -21,23 +24,25 @@ def yolov9_inference(model_id, img_path=None, vid_path=None, tracking_algorithm
|
|
21 |
input_path = None
|
22 |
output_path = None
|
23 |
if img_path is not None:
|
24 |
-
#
|
25 |
-
|
|
|
|
|
|
|
26 |
input_path = img_path
|
27 |
print(input_path)
|
28 |
-
output_path = run(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='
|
29 |
elif vid_path is not None:
|
30 |
#_, vid_extension = os.path.splitext(vid_path)
|
31 |
#if vid_extension.lower() in vid_extensions:
|
32 |
input_path = vid_path
|
33 |
print(input_path)
|
34 |
if tracking_algorithm == 'deep_sort':
|
35 |
-
output_path = run_deepsort(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='
|
36 |
elif tracking_algorithm == 'strong_sort':
|
37 |
-
|
38 |
-
output_path = run_strongsort(yolo_weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device=device_strongsort, strong_sort_weights = "osnet_x0_25_msmt17.pt", hide_conf= True)
|
39 |
else:
|
40 |
-
output_path = run(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='
|
41 |
# Assuming output_path is the path to the output file
|
42 |
_, output_extension = os.path.splitext(output_path)
|
43 |
if output_extension.lower() in img_extensions:
|
@@ -51,78 +56,46 @@ def yolov9_inference(model_id, img_path=None, vid_path=None, tracking_algorithm
|
|
51 |
|
52 |
|
53 |
|
54 |
-
def
|
55 |
-
|
56 |
-
should_continue = False
|
57 |
-
return "Stop..."
|
58 |
-
|
59 |
-
def app():
|
60 |
-
with gr.Blocks():
|
61 |
-
with gr.Row():
|
62 |
-
with gr.Column():
|
63 |
-
gr.HTML("<h2>Input Parameters</h2>")
|
64 |
-
img_path = gr.File(label="Image")
|
65 |
-
vid_path = gr.File(label="Video")
|
66 |
-
model_id = gr.Dropdown(
|
67 |
-
label="Model",
|
68 |
-
choices=[
|
69 |
-
"yolov9_e_trained-converted.pt",
|
70 |
-
"our-converted.pt",
|
71 |
-
"last_best_model.pt"
|
72 |
-
],
|
73 |
-
value="our-converted.pt"
|
74 |
-
|
75 |
-
)
|
76 |
-
tracking_algorithm = gr.Dropdown(
|
77 |
-
label= "Tracking Algorithm",
|
78 |
-
choices=[
|
79 |
-
"None",
|
80 |
-
"deep_sort",
|
81 |
-
"strong_sort"
|
82 |
-
],
|
83 |
-
value="None"
|
84 |
-
)
|
85 |
-
yolov9_infer = gr.Button(value="Inference")
|
86 |
-
stop_button = gr.Button(value="Stop")
|
87 |
-
with gr.Column():
|
88 |
-
gr.HTML("<h2>Output</h2>")
|
89 |
-
output_image = gr.Image(type="numpy",label="Output Image")
|
90 |
-
output_video = gr.Video(label="Output Video")
|
91 |
-
output_path = gr.Textbox(label="Output path")
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
],
|
101 |
-
|
102 |
)
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
}
|
118 |
-
h1 {
|
119 |
-
color: #4CAF50;
|
120 |
-
}
|
121 |
-
"""
|
122 |
-
with gr.Row():
|
123 |
-
with gr.Column():
|
124 |
-
app()
|
125 |
-
|
126 |
-
gradio_app.launch(debug=True)
|
127 |
-
|
128 |
|
|
|
|
4 |
from detect_strongsort import run_strongsort
|
5 |
from detect import run
|
6 |
import os
|
7 |
+
from PIL import Image
|
8 |
+
import numpy as np
|
9 |
import threading
|
10 |
+
import cv2
|
11 |
+
|
12 |
should_continue = True
|
13 |
|
14 |
|
15 |
+
@spaces.GPU(duration=120)
|
16 |
def yolov9_inference(model_id, img_path=None, vid_path=None, tracking_algorithm = None):
|
17 |
global should_continue
|
18 |
img_extensions = ['.jpg', '.jpeg', '.png', '.gif'] # Add more image extensions if needed
|
|
|
24 |
input_path = None
|
25 |
output_path = None
|
26 |
if img_path is not None:
|
27 |
+
# Convert the numpy array to an image
|
28 |
+
img = Image.fromarray(img_path)
|
29 |
+
img_path = 'output.png'
|
30 |
+
# Save the image
|
31 |
+
img.save(img_path)
|
32 |
input_path = img_path
|
33 |
print(input_path)
|
34 |
+
output_path = run(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='cpu', hide_conf= True)
|
35 |
elif vid_path is not None:
|
36 |
#_, vid_extension = os.path.splitext(vid_path)
|
37 |
#if vid_extension.lower() in vid_extensions:
|
38 |
input_path = vid_path
|
39 |
print(input_path)
|
40 |
if tracking_algorithm == 'deep_sort':
|
41 |
+
output_path = run_deepsort(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='cpu', draw_trails=True)
|
42 |
elif tracking_algorithm == 'strong_sort':
|
43 |
+
output_path = run_strongsort(yolo_weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='cpu', strong_sort_weights = "osnet_x0_25_msmt17.pt", hide_conf= True)
|
|
|
44 |
else:
|
45 |
+
output_path = run(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='cpu', hide_conf= True)
|
46 |
# Assuming output_path is the path to the output file
|
47 |
_, output_extension = os.path.splitext(output_path)
|
48 |
if output_extension.lower() in img_extensions:
|
|
|
56 |
|
57 |
|
58 |
|
59 |
+
def app(model_id, img_path, vid_path, tracking_algorithm):
|
60 |
+
return yolov9_inference(model_id, img_path, vid_path, tracking_algorithm)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
iface = gr.Interface(
|
63 |
+
fn=app,
|
64 |
+
inputs=[
|
65 |
+
gr.Dropdown(
|
66 |
+
label="Model",
|
67 |
+
choices=[
|
68 |
+
"last_best_model.pt",
|
69 |
+
"best_model-converted.pt",
|
70 |
+
"yolov9_e_trained.pt",
|
71 |
+
"best_model-converted-reparams.pt"
|
72 |
+
],
|
73 |
+
value="last_best_model.pt"
|
74 |
+
),
|
75 |
+
gr.Image(label="Image"),
|
76 |
+
gr.Video(label="Video"),
|
77 |
+
gr.Dropdown(
|
78 |
+
label= "Tracking Algorithm",
|
79 |
+
choices=[
|
80 |
+
"None",
|
81 |
+
"deep_sort",
|
82 |
+
"strong_sort"
|
83 |
],
|
84 |
+
value="None"
|
85 |
)
|
86 |
+
],
|
87 |
+
outputs=[
|
88 |
+
gr.Image(type="numpy",label="Output Image"),
|
89 |
+
gr.Video(label="Output Video"),
|
90 |
+
gr.Textbox(label="Output path")
|
91 |
+
],
|
92 |
+
examples=[
|
93 |
+
["last_best_model.pt", "camera1_A_133.png", None, "deep_sort"],
|
94 |
+
["last_best_model.pt", None, "test.mp4", "strong_sort"]
|
95 |
+
],
|
96 |
+
title='YOLOv9: Real-time Object Detection',
|
97 |
+
description='This is a real-time object detection system using YOLOv9.',
|
98 |
+
theme='huggingface'
|
99 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
iface.launch(debug=True)
|