Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,20 @@
|
|
1 |
-
import spaces
|
2 |
import gradio as gr
|
3 |
from detect_deepsort import run_deepsort
|
4 |
from detect_strongsort import run_strongsort
|
5 |
from detect import run
|
6 |
import os
|
7 |
import torch
|
|
|
8 |
from PIL import Image
|
9 |
import cv2
|
10 |
import numpy as np
|
|
|
11 |
import threading
|
12 |
|
13 |
should_continue = True
|
14 |
|
15 |
-
|
16 |
def yolov9_inference(model_id, img_path=None, vid_path=None, tracking_algorithm = None):
|
17 |
global should_continue
|
18 |
img_extensions = ['.jpg', '.jpeg', '.png', '.gif'] # Add more image extensions if needed
|
@@ -30,8 +32,8 @@ def yolov9_inference(model_id, img_path=None, vid_path=None, tracking_algorithm
|
|
30 |
# Save the image
|
31 |
img.save(img_path)
|
32 |
input_path = img_path
|
33 |
-
|
34 |
-
output_path = run(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='0', hide_conf= True)
|
35 |
elif vid_path is not None:
|
36 |
vid_name = 'output.mp4'
|
37 |
|
@@ -68,23 +70,48 @@ def yolov9_inference(model_id, img_path=None, vid_path=None, tracking_algorithm
|
|
68 |
out.release()
|
69 |
input_path = vid_name
|
70 |
if tracking_algorithm == 'deep_sort':
|
71 |
-
output_path = run_deepsort(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='0', draw_trails=True)
|
72 |
elif tracking_algorithm == 'strong_sort':
|
73 |
device_strongsort = torch.device('cuda:0')
|
74 |
-
output_path = run_strongsort(yolo_weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device=device_strongsort, strong_sort_weights = "osnet_x0_25_msmt17.pt", hide_conf= True)
|
75 |
else:
|
76 |
-
output_path = run(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='0', hide_conf= True)
|
77 |
# Assuming output_path is the path to the output file
|
78 |
_, output_extension = os.path.splitext(output_path)
|
79 |
-
output_image = None
|
80 |
-
output_video = None
|
81 |
if output_extension.lower() in img_extensions:
|
82 |
output_image = output_path # Load the image file here
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
elif output_extension.lower() in vid_extensions:
|
84 |
output_video = output_path # Load the video file here
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
def app():
|
90 |
with gr.Blocks(title="YOLOv9: Real-time Object Detection", css=".gradio-container {background:lightyellow;}"):
|
@@ -97,8 +124,7 @@ def app():
|
|
97 |
label="Model",
|
98 |
choices=[
|
99 |
"our-converted.pt",
|
100 |
-
"
|
101 |
-
"our-best-converted-120ep.pt"
|
102 |
],
|
103 |
value="our-converted.pt"
|
104 |
|
@@ -113,13 +139,17 @@ def app():
|
|
113 |
value="None"
|
114 |
)
|
115 |
yolov9_infer = gr.Button(value="Inference")
|
116 |
-
gr.Examples(['./img_examples/Exam_1.png','./img_examples/Exam_2.png','./img_examples/Exam_3.png','./img_examples/Exam_4.png','./img_examples/Exam_5.png'], inputs=img_path,label = "Image Example", cache_examples= False)
|
117 |
-
gr.Examples(['./video_examples/video_1.mp4', './video_examples/video_2.mp4','./video_examples/video_3.mp4','./video_examples/video_4.mp4','./video_examples/video_5.mp4'], inputs=vid_path, label = "Video Example", cache_examples= False)
|
118 |
with gr.Column():
|
119 |
gr.HTML("<h2>Output</h2>")
|
120 |
output_image = gr.Image(type="numpy",label="Output")
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
123 |
|
124 |
yolov9_infer.click(
|
125 |
fn=yolov9_inference,
|
@@ -129,7 +159,7 @@ def app():
|
|
129 |
vid_path,
|
130 |
tracking_algorithm
|
131 |
],
|
132 |
-
outputs=[output_image, output_video,
|
133 |
)
|
134 |
|
135 |
|
@@ -155,4 +185,3 @@ with gradio_app:
|
|
155 |
|
156 |
gradio_app.launch(debug=True)
|
157 |
|
158 |
-
|
|
|
1 |
+
#import spaces
|
2 |
import gradio as gr
|
3 |
from detect_deepsort import run_deepsort
|
4 |
from detect_strongsort import run_strongsort
|
5 |
from detect import run
|
6 |
import os
|
7 |
import torch
|
8 |
+
import seaborn as sns
|
9 |
from PIL import Image
|
10 |
import cv2
|
11 |
import numpy as np
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
import threading
|
14 |
|
15 |
should_continue = True
|
16 |
|
17 |
+
#@spaces.GPU(duration=120)
|
18 |
def yolov9_inference(model_id, img_path=None, vid_path=None, tracking_algorithm = None):
|
19 |
global should_continue
|
20 |
img_extensions = ['.jpg', '.jpeg', '.png', '.gif'] # Add more image extensions if needed
|
|
|
32 |
# Save the image
|
33 |
img.save(img_path)
|
34 |
input_path = img_path
|
35 |
+
|
36 |
+
output_path, df, frame_counts_df = run(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='0', hide_conf= True)
|
37 |
elif vid_path is not None:
|
38 |
vid_name = 'output.mp4'
|
39 |
|
|
|
70 |
out.release()
|
71 |
input_path = vid_name
|
72 |
if tracking_algorithm == 'deep_sort':
|
73 |
+
output_path, df, frame_counts_df = run_deepsort(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='0', draw_trails=True)
|
74 |
elif tracking_algorithm == 'strong_sort':
|
75 |
device_strongsort = torch.device('cuda:0')
|
76 |
+
output_path, df, frame_counts_df = run_strongsort(yolo_weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device=device_strongsort, strong_sort_weights = "osnet_x0_25_msmt17.pt", hide_conf= True)
|
77 |
else:
|
78 |
+
output_path, df, frame_counts_df = run(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='0', hide_conf= True)
|
79 |
# Assuming output_path is the path to the output file
|
80 |
_, output_extension = os.path.splitext(output_path)
|
|
|
|
|
81 |
if output_extension.lower() in img_extensions:
|
82 |
output_image = output_path # Load the image file here
|
83 |
+
output_video = None
|
84 |
+
plt.style.use("ggplot")
|
85 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
86 |
+
#for label in labels:
|
87 |
+
#df_label = frame_counts_df[frame_counts_df['label'] == label]
|
88 |
+
sns.barplot(ax = ax, data = df, x = 'label', y = 'count', palette='viridis', hue = 'label', legend = False)
|
89 |
+
|
90 |
+
# Customizations
|
91 |
+
ax.set_title('Count of Labels', fontsize=20)
|
92 |
+
ax.set_xlabel('Label', fontsize=15)
|
93 |
+
ax.set_ylabel('Count', fontsize=15)
|
94 |
+
ax.tick_params(axis='x', rotation=45) # Rotate x-axis labels for better readability
|
95 |
+
sns.despine() # Remove the top and right spines from plot
|
96 |
+
#ax.legend()
|
97 |
+
ax.grid(True)
|
98 |
+
#ax.set_facecolor('#D3D3D3')
|
99 |
elif output_extension.lower() in vid_extensions:
|
100 |
output_video = output_path # Load the video file here
|
101 |
+
output_image = None
|
102 |
+
plt.style.use("ggplot")
|
103 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
104 |
+
#for label in labels:
|
105 |
+
#df_label = frame_counts_df[frame_counts_df['label'] == label]
|
106 |
+
sns.lineplot(ax = ax, data = frame_counts_df, x = 'frame', y = 'count', hue = 'label')
|
107 |
+
|
108 |
+
ax.set_xlabel('Frame')
|
109 |
+
ax.set_ylabel('Count')
|
110 |
+
ax.set_title('Count of Labels over Frames')
|
111 |
+
ax.legend()
|
112 |
+
ax.grid(True)
|
113 |
+
ax.set_facecolor('#D3D3D3')
|
114 |
+
return output_image, output_video, fig
|
115 |
|
116 |
def app():
|
117 |
with gr.Blocks(title="YOLOv9: Real-time Object Detection", css=".gradio-container {background:lightyellow;}"):
|
|
|
124 |
label="Model",
|
125 |
choices=[
|
126 |
"our-converted.pt",
|
127 |
+
"last_best_model.pt"
|
|
|
128 |
],
|
129 |
value="our-converted.pt"
|
130 |
|
|
|
139 |
value="None"
|
140 |
)
|
141 |
yolov9_infer = gr.Button(value="Inference")
|
142 |
+
gr.Examples(['./img_examples/Exam_1.png','./img_examples/Exam_2.png','./img_examples/Exam_3.png','./img_examples/Exam_4.png','./img_examples/Exam_5.png'], inputs=img_path,label = "Image Example", cache_examples = False)
|
143 |
+
gr.Examples(['./video_examples/video_1.mp4', './video_examples/video_2.mp4','./video_examples/video_3.mp4','./video_examples/video_4.mp4','./video_examples/video_5.mp4'], inputs=vid_path, label = "Video Example", cache_examples = False)
|
144 |
with gr.Column():
|
145 |
gr.HTML("<h2>Output</h2>")
|
146 |
output_image = gr.Image(type="numpy",label="Output")
|
147 |
+
#df = gr.BarPlot(show_label=False, x="label", y="counts", x_title="Labels", y_title="Counts", vertical=False)
|
148 |
+
output_video = gr.Video(label="Output")
|
149 |
+
#frame_counts_df = gr.LinePlot(show_label=False, x="frame", y="count", x_title="Frame", y_title="Counts", color="label")
|
150 |
+
fig = gr.Plot(label = "Plot")
|
151 |
+
#output_path = gr.Textbox(label="Output path")
|
152 |
+
|
153 |
|
154 |
yolov9_infer.click(
|
155 |
fn=yolov9_inference,
|
|
|
159 |
vid_path,
|
160 |
tracking_algorithm
|
161 |
],
|
162 |
+
outputs=[output_image, output_video, fig],
|
163 |
)
|
164 |
|
165 |
|
|
|
185 |
|
186 |
gradio_app.launch(debug=True)
|
187 |
|
|