Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,966 Bytes
369825f f4c379b 839f10e 9e56ba5 5abe39b 74a077f ed52d42 74a077f 9e56ba5 74a077f 9e56ba5 369825f 839f10e 9e56ba5 839f10e 9e56ba5 839f10e 9e56ba5 74a077f 839f10e d1302f4 9e56ba5 c5064a3 839f10e d1302f4 839f10e d1302f4 839f10e d1302f4 839f10e 9e56ba5 c6ede3c 9e56ba5 905c48c 9e56ba5 905c48c ed52d42 905c48c ed52d42 5abe39b 26d8697 ed52d42 905c48c ed52d42 905c48c ed52d42 9e56ba5 ed52d42 9e56ba5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import spaces
import gradio as gr
from detect_deepsort import run_deepsort
from detect_strongsort import run_strongsort
from detect import run
import os
import torch
from PIL import Image
import cv2
import numpy as np
import threading
should_continue = True
@spaces.GPU(duration=120)
def yolov9_inference(model_id, img_path=None, vid_path=None, tracking_algorithm = None):
global should_continue
img_extensions = ['.jpg', '.jpeg', '.png', '.gif'] # Add more image extensions if needed
vid_extensions = ['.mp4', '.avi', '.mov', '.mkv'] # Add more video extensions if needed
#assert img_path is not None or vid_path is not None, "Either img_path or vid_path must be provided."
image_size = 640
conf_threshold = 0.5
iou_threshold = 0.5
input_path = None
output_path = None
if img_path is not None:
# Convert the numpy array to an image
img = Image.fromarray(img_path)
img_path = 'output.png'
# Save the image
img.save(img_path)
input_path = img_path
print(input_path)
output_path = run(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='0', hide_conf= True)
elif vid_path is not None:
vid_name = 'output.mp4'
# Create a VideoCapture object
cap = cv2.VideoCapture(vid_path)
# Check if video opened successfully
if not cap.isOpened():
print("Error opening video file")
# Read the video frame by frame
frames = []
while cap.isOpened():
ret, frame = cap.read()
if ret:
frames.append(frame)
else:
break
# Release the VideoCapture object
cap.release()
# Convert the list of frames to a numpy array
vid_data = np.array(frames)
# Create a VideoWriter object
out = cv2.VideoWriter(vid_name, cv2.VideoWriter_fourcc(*'mp4v'), 30, (frames[0].shape[1], frames[0].shape[0]))
# Write the frames to the output video file
for frame in frames:
out.write(frame)
# Release the VideoWriter object
out.release()
input_path = vid_name
if tracking_algorithm == 'deep_sort':
output_path = run_deepsort(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='0', draw_trails=True)
elif tracking_algorithm == 'strong_sort':
device_strongsort = torch.device('cuda:0')
output_path = run_strongsort(yolo_weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device=device_strongsort, strong_sort_weights = "osnet_x0_25_msmt17.pt", hide_conf= True)
else:
output_path = run(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='0', hide_conf= True)
# Assuming output_path is the path to the output file
_, output_extension = os.path.splitext(output_path)
output_image = None
output_video = None
if output_extension.lower() in img_extensions:
output_image = output_path # Load the image file here
elif output_extension.lower() in vid_extensions:
output_video = output_path # Load the video file here
return output_image, output_video, output_path
def app():
with gr.Blocks(title="YOLOv9: Real-time Object Detection", css=".gradio-container {background:lightyellow;}"):
with gr.Row():
with gr.Column():
gr.HTML("<h2>Input Parameters</h2>")
img_path = gr.Image(label="Image", height = 370, width = 600)
vid_path = gr.Video(label="Video", height = 370, width = 600)
model_id = gr.Dropdown(
label="Model",
choices=[
"our-converted.pt",
"yolov9_e_trained-converted.pt"
],
value="our-converted.pt"
)
tracking_algorithm = gr.Dropdown(
label= "Tracking Algorithm",
choices=[
"None",
"deep_sort",
"strong_sort"
],
value="None"
)
yolov9_infer = gr.Button(value="Inference")
gr.Examples(['./img_examples/Exam_1.png','./img_examples/Exam_2.png','./img_examples/Exam_3.png','./img_examples/Exam_4.png','./img_examples/Exam_5.png'], inputs=img_path,label = "Image Example", cache_examples = False)
gr.Examples(['./video_examples/video_1.mp4', './video_examples/video_2.mp4','./video_examples/video_3.mp4','./video_examples/video_4.mp4','./video_examples/video_5.mp4'], inputs=vid_path, label = "Video Example", cache_examples = False)
with gr.Column():
gr.HTML("<h2>Output</h2>")
output_image = gr.Image(type="numpy",label="Output")
output_video = gr.Video(label="Output")
output_path = gr.Textbox(label="Output path")
yolov9_infer.click(
fn=yolov9_inference,
inputs=[
model_id,
img_path,
vid_path,
tracking_algorithm
],
outputs=[output_image, output_video, output_path],
)
gradio_app = gr.Blocks()
with gradio_app:
gr.HTML(
"""
<h1 style='text-align: center'>
YOLOv9: Real-time Object Detection
</h1>
""")
css = """
body {
background-color: #f0f0f0;
}
h1 {
color: #4CAF50;
}
"""
with gr.Row():
with gr.Column():
app()
gradio_app.launch(debug=True)
|