File size: 5,966 Bytes
369825f
f4c379b
839f10e
 
 
9e56ba5
5abe39b
74a077f
ed52d42
74a077f
9e56ba5
74a077f
9e56ba5
 
369825f
839f10e
9e56ba5
 
 
839f10e
 
 
 
9e56ba5
839f10e
9e56ba5
74a077f
 
 
 
 
839f10e
 
d1302f4
9e56ba5
c5064a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
839f10e
d1302f4
839f10e
d1302f4
 
839f10e
d1302f4
839f10e
9e56ba5
c6ede3c
 
9e56ba5
905c48c
9e56ba5
905c48c
ed52d42
905c48c
ed52d42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5abe39b
26d8697
 
ed52d42
 
905c48c
 
ed52d42
 
 
 
 
 
 
 
 
 
905c48c
ed52d42
9e56ba5
 
ed52d42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e56ba5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import spaces
import gradio as gr
from detect_deepsort import run_deepsort
from detect_strongsort import run_strongsort
from detect import run
import os
import torch
from PIL import Image
import cv2
import numpy as np
import threading

should_continue = True

@spaces.GPU(duration=120)
def yolov9_inference(model_id, img_path=None, vid_path=None, tracking_algorithm = None):
    global should_continue
    img_extensions = ['.jpg', '.jpeg', '.png', '.gif']  # Add more image extensions if needed
    vid_extensions = ['.mp4', '.avi', '.mov', '.mkv']  # Add more video extensions if needed
    #assert img_path is not None or vid_path is not None, "Either img_path or vid_path must be provided."
    image_size = 640
    conf_threshold = 0.5
    iou_threshold = 0.5
    input_path = None
    output_path = None
    if img_path is not None:
        # Convert the numpy array to an image
        img = Image.fromarray(img_path)
        img_path = 'output.png'
        # Save the image
        img.save(img_path)
        input_path = img_path
        print(input_path)
        output_path = run(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='0', hide_conf= True)
    elif vid_path is not None:
        vid_name = 'output.mp4'

        # Create a VideoCapture object
        cap = cv2.VideoCapture(vid_path)

        # Check if video opened successfully
        if not cap.isOpened():
            print("Error opening video file")

        # Read the video frame by frame
        frames = []
        while cap.isOpened():
            ret, frame = cap.read()
            if ret:
                frames.append(frame)
            else:
                break

        # Release the VideoCapture object
        cap.release()

        # Convert the list of frames to a numpy array
        vid_data = np.array(frames)

        # Create a VideoWriter object
        out = cv2.VideoWriter(vid_name, cv2.VideoWriter_fourcc(*'mp4v'), 30, (frames[0].shape[1], frames[0].shape[0]))

        # Write the frames to the output video file
        for frame in frames:
            out.write(frame)

        # Release the VideoWriter object
        out.release()
        input_path = vid_name
        if tracking_algorithm == 'deep_sort':
            output_path = run_deepsort(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='0', draw_trails=True)
        elif tracking_algorithm == 'strong_sort':
            device_strongsort = torch.device('cuda:0')
            output_path = run_strongsort(yolo_weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device=device_strongsort, strong_sort_weights = "osnet_x0_25_msmt17.pt", hide_conf= True)
        else: 
            output_path =  run(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='0', hide_conf= True)
        # Assuming output_path is the path to the output file
    _, output_extension = os.path.splitext(output_path)
    output_image = None
    output_video = None
    if output_extension.lower() in img_extensions:
        output_image = output_path  # Load the image file here
    elif output_extension.lower() in vid_extensions:
        output_video = output_path  # Load the video file here

    return output_image, output_video, output_path


def app():
    with gr.Blocks(title="YOLOv9: Real-time Object Detection", css=".gradio-container {background:lightyellow;}"):
        with gr.Row():
            with gr.Column():
                gr.HTML("<h2>Input Parameters</h2>")
                img_path = gr.Image(label="Image", height = 370, width = 600)
                vid_path = gr.Video(label="Video", height = 370, width = 600)
                model_id = gr.Dropdown(
                    label="Model",
                    choices=[
                        "our-converted.pt",
                        "yolov9_e_trained-converted.pt"
                    ],
                    value="our-converted.pt"
                    
                )
                tracking_algorithm = gr.Dropdown(
                    label= "Tracking Algorithm",
                    choices=[
                        "None",
                        "deep_sort",
                        "strong_sort"
                    ],
                    value="None"
                )
                yolov9_infer = gr.Button(value="Inference")
                gr.Examples(['./img_examples/Exam_1.png','./img_examples/Exam_2.png','./img_examples/Exam_3.png','./img_examples/Exam_4.png','./img_examples/Exam_5.png'], inputs=img_path,label = "Image Example", cache_examples = False)
                gr.Examples(['./video_examples/video_1.mp4', './video_examples/video_2.mp4','./video_examples/video_3.mp4','./video_examples/video_4.mp4','./video_examples/video_5.mp4'], inputs=vid_path, label = "Video Example", cache_examples = False)
            with gr.Column():
                gr.HTML("<h2>Output</h2>")
                output_image = gr.Image(type="numpy",label="Output")
                output_video = gr.Video(label="Output")
                output_path = gr.Textbox(label="Output path")

        yolov9_infer.click(
            fn=yolov9_inference,
            inputs=[
                model_id,
                img_path,
                vid_path,
                tracking_algorithm
            ],
            outputs=[output_image, output_video, output_path],
        )


gradio_app = gr.Blocks()
with gradio_app:
    gr.HTML(
        """
    <h1 style='text-align: center'>
    YOLOv9: Real-time Object Detection
    </h1>
    """)
    css = """
    body {
        background-color: #f0f0f0;
    }
    h1 {
        color: #4CAF50;
    }
    """
    with gr.Row():
        with gr.Column():
            app()

gradio_app.launch(debug=True)