Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,6 @@ import numpy as np
|
|
10 |
import threading
|
11 |
|
12 |
should_continue = True
|
13 |
-
os.environ["GRADIO_CACHE_EXAMPLES"] = "lazy"
|
14 |
|
15 |
@spaces.GPU(duration=120)
|
16 |
def yolov9_inference(model_id, img_path=None, vid_path=None, tracking_algorithm = None):
|
@@ -31,7 +30,7 @@ def yolov9_inference(model_id, img_path=None, vid_path=None, tracking_algorithm
|
|
31 |
img.save(img_path)
|
32 |
input_path = img_path
|
33 |
print(input_path)
|
34 |
-
output_path = run(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='
|
35 |
elif vid_path is not None:
|
36 |
vid_name = 'output.mp4'
|
37 |
|
@@ -68,11 +67,12 @@ def yolov9_inference(model_id, img_path=None, vid_path=None, tracking_algorithm
|
|
68 |
out.release()
|
69 |
input_path = vid_name
|
70 |
if tracking_algorithm == 'deep_sort':
|
71 |
-
output_path = run_deepsort(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='
|
72 |
elif tracking_algorithm == 'strong_sort':
|
73 |
-
|
|
|
74 |
else:
|
75 |
-
output_path = run(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='
|
76 |
# Assuming output_path is the path to the output file
|
77 |
_, output_extension = os.path.splitext(output_path)
|
78 |
if output_extension.lower() in img_extensions:
|
@@ -108,8 +108,8 @@ def app():
|
|
108 |
],
|
109 |
value="None"
|
110 |
)
|
111 |
-
gr.Examples(['camera1_A_133.png'], inputs=img_path,label = "Image Example")
|
112 |
-
gr.Examples(['test.mp4'], inputs=vid_path, label = "Video Example")
|
113 |
yolov9_infer = gr.Button(value="Inference")
|
114 |
with gr.Column():
|
115 |
gr.HTML("<h2>Output</h2>")
|
|
|
10 |
import threading
|
11 |
|
12 |
should_continue = True
|
|
|
13 |
|
14 |
@spaces.GPU(duration=120)
|
15 |
def yolov9_inference(model_id, img_path=None, vid_path=None, tracking_algorithm = None):
|
|
|
30 |
img.save(img_path)
|
31 |
input_path = img_path
|
32 |
print(input_path)
|
33 |
+
output_path = run(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='0', hide_conf= True)
|
34 |
elif vid_path is not None:
|
35 |
vid_name = 'output.mp4'
|
36 |
|
|
|
67 |
out.release()
|
68 |
input_path = vid_name
|
69 |
if tracking_algorithm == 'deep_sort':
|
70 |
+
output_path = run_deepsort(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='0', draw_trails=True)
|
71 |
elif tracking_algorithm == 'strong_sort':
|
72 |
+
device_strongsort = torch.device('cuda:0')
|
73 |
+
output_path = run_strongsort(yolo_weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device=device_strongsort, strong_sort_weights = "osnet_x0_25_msmt17.pt", hide_conf= True)
|
74 |
else:
|
75 |
+
output_path = run(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, device='0', hide_conf= True)
|
76 |
# Assuming output_path is the path to the output file
|
77 |
_, output_extension = os.path.splitext(output_path)
|
78 |
if output_extension.lower() in img_extensions:
|
|
|
108 |
],
|
109 |
value="None"
|
110 |
)
|
111 |
+
gr.Examples(['camera1_A_133.png'], inputs=img_path,label = "Image Example", cache_examples = False)
|
112 |
+
gr.Examples(['test.mp4'], inputs=vid_path, label = "Video Example", cache_examples = False)
|
113 |
yolov9_infer = gr.Button(value="Inference")
|
114 |
with gr.Column():
|
115 |
gr.HTML("<h2>Output</h2>")
|