File size: 2,229 Bytes
daeec09
36704dc
524b722
 
 
 
 
daeec09
524b722
 
16d3aa3
 
524b722
16d3aa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff9698f
daeec09
16d3aa3
 
daeec09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2ced42
daeec09
ff9698f
daeec09
 
524b722
36704dc
daeec09
 
 
 
 
 
 
 
ff9698f
daeec09
 
 
524b722
daeec09
524b722
 
 
 
 
5f24a61
daeec09
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import gradio as gr
import torch
import spaces
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    TextStreamer,
)

MODEL_ID = "speakleash/Bielik-11B-v2.3-Instruct"
MODEL_NAME = MODEL_ID.split("/")[-1]

if torch.cuda.is_available():
    device = torch.device("cuda")
    print("Using GPU:", torch.cuda.get_device_name(0))
else:
    device = torch.device("cpu")
    print("CUDA is not available. Using CPU.")

quantization_config = BitsAndBytesConfig(
        load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16
    )
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID,
    torch_dtype=torch.bfloat16,
    quantization_config=quantization_config,
    low_cpu_mem_usage=True,
)


@spaces.GPU
def test():
    max_tokens = 5000
    temperature = 0
    top_k = 0
    top_p = 0

    streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

    model.generation_config.pad_token_id = tokenizer.pad_token_id

    prompt = "Kim jesteś?"
    system = "Jesteś chatboem udzielającym odpowiedzi na pytania w języku polskim"
    messages = []

    if system:
        messages.append({"role": "system", "content": system})

    messages.append({"role": "user", "content": prompt})

    tokenizer_output = tokenizer.apply_chat_template(
        messages, return_tensors="pt", return_dict=True
    )

    if torch.cuda.is_available():
        model_input_ids = tokenizer_output.input_ids.to(device)

        model_attention_mask = tokenizer_output.attention_mask.to(device)

    else:
        model_input_ids = tokenizer_output.input_ids
        model_attention_mask = tokenizer_output.attention_mask

    outputs = model.generate(
        model_input_ids,
        attention_mask=model_attention_mask,
        streamer=streamer,
        max_new_tokens=max_tokens,
        do_sample=True if temperature else False,
        temperature=temperature,
        top_k=top_k,
        top_p=top_p,
    )

    answer = tokenizer.batch_decode(outputs, skip_special_tokens=False)

    return answer


demo = gr.Interface(fn=test, inputs=None, outputs=gr.Text())
demo.launch()