underdogquality's picture
Update README.md
b64a930 verified
metadata
license: mit
datasets:
  - IP102
library_name: ultralytics
tags:
  - object-detection
  - YOLO11s
  - pests
  - agriculture
  - ip102
model-index:
  - name: IP102 Pest Detector (YOLO11 Small)
    results:
      - task:
          type: object-detection
        dataset:
          name: IP102
          type: pest-detection
        metrics:
          - type: mAP@0.5
            value: 0.941
          - type: mAP@0.5:0.95
            value: 0.838
          - type: Precision
            value: 0.923
          - type: Recall
            value: 0.907

🐞 IP102 Pest Detector β€” YOLO11 Small

A custom YOLO11 object detection model trained on the IP102 dataset β€” designed for pest detection in precision agriculture.

Model Purpose: Detect and classify 102 pest species in real-time field conditions using computer vision.


πŸ’‘ Model Details

  • Model: YOLO11 Small
  • Dataset: IP102 (Balanced, 34K+ images)
  • Image Sizes: Trained on 640x640 and 896x896
  • Classes: 102 pest species
  • Framework: Ultralytics YOLO11s
  • Hardware: NVIDIA A100 GPU
  • Epochs: 77
  • License: MIT License

πŸ§ͺ Performance

Metric Train Set Validation Set
Precision 0.912 0.744
Recall 0.923 0.789
mAP@0.5 0.941 0.815
mAP@0.5:0.95 0.838 0.605


🐜 Class List

The model detects 102 agricultural pests, including:

rice leaf roller

paddy stem maggot

brown plant hopper

aphids

mole cricket

blister beetle ...and many more!

(See pests.yaml for the full class list.)

βš–οΈ License

This project is released under the MIT License β€” free for personal and commercial use.


πŸ“š Citation

If you use this model in research or production, please cite the IP102 dataset:

Wu, S., Zhan, C., et al. "IP102: A Large-Scale Benchmark Dataset for Insect Pest Recognition." CVPR, 2019.


πŸ’¬ Questions?

Open an issue or reach me on Hugging Face Discussions.


πŸ“¦ Usage

from ultralytics import YOLO

# Load model
model = YOLO("path/to/best.pt")

# Run inference
results = model.predict("your_image.jpg", imgsz=640)

# Display results
results.show()