π IP102 Pest Detector β YOLO11 Small
A custom YOLO11 object detection model trained on the IP102 dataset β designed for pest detection in precision agriculture.
Model Purpose: Detect and classify 102 pest species in real-time field conditions using computer vision.
π‘ Model Details
- Model: YOLO11 Small
- Dataset: IP102 (Balanced, 14K+ images)
- Image Sizes: Trained on 640x640 and 896x896
- Classes: 102 pest species
- Framework: Ultralytics YOLO11s
- Hardware: NVIDIA A100 GPU
- Epochs: 77
- License: MIT License
π§ͺ Performance
Metric | Train Set | Validation Set |
---|---|---|
Precision | 0.912 | 0.744 |
Recall | 0.923 | 0.789 |
mAP@0.5 | 0.941 | 0.815 |
mAP@0.5:0.95 | 0.838 | 0.605 |
π Class List
The model detects 102 agricultural pests, including:
rice leaf roller
paddy stem maggot
brown plant hopper
aphids
mole cricket
blister beetle ...and many more!
(See pests.yaml for the full class list.)
βοΈ License
This project is released under the MIT License β free for personal and commercial use.
π Citation
If you use this model in research or production, please cite the IP102 dataset:
Wu, S., Zhan, C., et al. "IP102: A Large-Scale Benchmark Dataset for Insect Pest Recognition." CVPR, 2019.
π¬ Questions?
Open an issue or reach me on Hugging Face Discussions.
π¦ Usage
from ultralytics import YOLO
# Load model
model = YOLO("path/to/best.pt")
# Run inference
results = model.predict("your_image.jpg", imgsz=640)
# Display results
results.show()
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support
Evaluation results
- mAP@0.5 on IP102self-reported0.941
- mAP@0.5:0.95 on IP102self-reported0.838
- Precision on IP102self-reported0.923
- Recall on IP102self-reported0.907