|
import os
|
|
import time
|
|
import streamlit as st
|
|
from langchain_groq import ChatGroq
|
|
from langchain_community.document_loaders import PyPDFDirectoryLoader
|
|
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|
from langchain_huggingface import HuggingFaceEmbeddings
|
|
from langchain.chains import create_retrieval_chain
|
|
from langchain.chains.combine_documents import create_stuff_documents_chain
|
|
from langchain_core.prompts import ChatPromptTemplate
|
|
from langchain_community.vectorstores import FAISS
|
|
from dotenv import load_dotenv
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
load_dotenv()
|
|
groq_api_key = os.getenv("GROQ_API_KEY")
|
|
|
|
|
|
st.title("ChatGroq RAG with PDF")
|
|
|
|
|
|
llm = ChatGroq(groq_api_key=groq_api_key, model="llama3-8b-8192")
|
|
|
|
|
|
prompt = ChatPromptTemplate.from_template(
|
|
"""
|
|
Answer the questions based on the provided context only.
|
|
Please provide the most accurate response based on the question
|
|
<context>
|
|
{context}
|
|
<context>
|
|
|
|
Question: {input}
|
|
"""
|
|
)
|
|
|
|
|
|
|
|
|
|
def vector_embedding():
|
|
if "vectors" not in st.session_state:
|
|
|
|
st.session_state.loader = PyPDFDirectoryLoader("./pdf")
|
|
st.session_state.docs = st.session_state.loader.load()
|
|
st.session_state.text_splitter = RecursiveCharacterTextSplitter(
|
|
chunk_size=1000, chunk_overlap=200
|
|
)
|
|
st.session_state.final_document = st.session_state.text_splitter.split_documents(
|
|
st.session_state.docs
|
|
)
|
|
model_name = "sentence-transformers/all-mpnet-base-v2"
|
|
st.session_state.embeddings = HuggingFaceEmbeddings(model_name=model_name)
|
|
|
|
|
|
st.session_state.vectors = FAISS.from_documents(
|
|
st.session_state.final_document, st.session_state.embeddings
|
|
)
|
|
|
|
|
|
prompt1 = st.text_input("Enter Your Question from Documents")
|
|
|
|
|
|
if st.button("Document Embedding"):
|
|
with st.spinner("Embedding documents..."):
|
|
vector_embedding()
|
|
st.success("Vector Store created.")
|
|
|
|
|
|
if prompt1.strip():
|
|
if "vectors" not in st.session_state or st.session_state.vectors is None:
|
|
st.error("Please embed the documents first by clicking the 'Document Embedding' button.")
|
|
else:
|
|
with st.spinner("Fetching response..."):
|
|
start = time.time()
|
|
document_chain = create_stuff_documents_chain(llm, prompt)
|
|
retriever = st.session_state.vectors.as_retriever()
|
|
retrieval_chain = create_retrieval_chain(retriever, document_chain)
|
|
response = retrieval_chain.invoke({"input": prompt1})
|
|
end = time.time()
|
|
|
|
st.write(response['answer'])
|
|
st.write(f"Response generated in {end - start:.2f} seconds.")
|
|
|
|
with st.expander("Document Similarity Search"):
|
|
context = response.get('context', [])
|
|
if not context:
|
|
st.write("No similar documents found.")
|
|
else:
|
|
for i, doc in enumerate(context):
|
|
st.write(doc.page_content)
|
|
st.write("-----------------------------------------------")
|
|
|