Upload 3 files
Browse files- .env +1 -0
- app.py +92 -0
- requirements.txt +11 -0
.env
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
groq_api_key="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"
|
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import streamlit as st
|
4 |
+
from langchain_groq import ChatGroq
|
5 |
+
from langchain_community.document_loaders import PyPDFDirectoryLoader
|
6 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
7 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
8 |
+
from langchain.chains import create_retrieval_chain
|
9 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
10 |
+
from langchain_core.prompts import ChatPromptTemplate
|
11 |
+
from langchain_community.vectorstores import FAISS
|
12 |
+
from dotenv import load_dotenv
|
13 |
+
from sentence_transformers import SentenceTransformer
|
14 |
+
|
15 |
+
# Load environment variables
|
16 |
+
load_dotenv()
|
17 |
+
groq_api_key = os.getenv("GROQ_API_KEY")
|
18 |
+
|
19 |
+
# Streamlit Title
|
20 |
+
st.title("ChatGroq RAG with PDF")
|
21 |
+
|
22 |
+
# Initialize LLM
|
23 |
+
llm = ChatGroq(groq_api_key=groq_api_key, model="llama3-8b-8192")
|
24 |
+
|
25 |
+
# Define Prompt Template
|
26 |
+
prompt = ChatPromptTemplate.from_template(
|
27 |
+
"""
|
28 |
+
Answer the questions based on the provided context only.
|
29 |
+
Please provide the most accurate response based on the question
|
30 |
+
<context>
|
31 |
+
{context}
|
32 |
+
<context>
|
33 |
+
|
34 |
+
Question: {input}
|
35 |
+
"""
|
36 |
+
)
|
37 |
+
|
38 |
+
# Initialize Embedding Model
|
39 |
+
|
40 |
+
# Embedding Function
|
41 |
+
def vector_embedding():
|
42 |
+
if "vectors" not in st.session_state:
|
43 |
+
|
44 |
+
st.session_state.loader = PyPDFDirectoryLoader("./pdf")
|
45 |
+
st.session_state.docs = st.session_state.loader.load()
|
46 |
+
st.session_state.text_splitter = RecursiveCharacterTextSplitter(
|
47 |
+
chunk_size=1000, chunk_overlap=200
|
48 |
+
)
|
49 |
+
st.session_state.final_document = st.session_state.text_splitter.split_documents(
|
50 |
+
st.session_state.docs
|
51 |
+
)
|
52 |
+
model_name = "sentence-transformers/all-mpnet-base-v2"
|
53 |
+
st.session_state.embeddings = HuggingFaceEmbeddings(model_name=model_name)
|
54 |
+
#model = SentenceTransformer("jxm/cde-small-v1", trust_remote_code=True)
|
55 |
+
#st.session_state.embeddings = HuggingFaceEmbeddings(model=model)
|
56 |
+
st.session_state.vectors = FAISS.from_documents(
|
57 |
+
st.session_state.final_document, st.session_state.embeddings
|
58 |
+
)
|
59 |
+
|
60 |
+
# UI for User Input
|
61 |
+
prompt1 = st.text_input("Enter Your Question from Documents")
|
62 |
+
|
63 |
+
# Embed Documents Button
|
64 |
+
if st.button("Document Embedding"):
|
65 |
+
with st.spinner("Embedding documents..."):
|
66 |
+
vector_embedding()
|
67 |
+
st.success("Vector Store created.")
|
68 |
+
|
69 |
+
# Handle Queries
|
70 |
+
if prompt1.strip():
|
71 |
+
if "vectors" not in st.session_state or st.session_state.vectors is None:
|
72 |
+
st.error("Please embed the documents first by clicking the 'Document Embedding' button.")
|
73 |
+
else:
|
74 |
+
with st.spinner("Fetching response..."):
|
75 |
+
start = time.time()
|
76 |
+
document_chain = create_stuff_documents_chain(llm, prompt)
|
77 |
+
retriever = st.session_state.vectors.as_retriever()
|
78 |
+
retrieval_chain = create_retrieval_chain(retriever, document_chain)
|
79 |
+
response = retrieval_chain.invoke({"input": prompt1})
|
80 |
+
end = time.time()
|
81 |
+
|
82 |
+
st.write(response['answer'])
|
83 |
+
st.write(f"Response generated in {end - start:.2f} seconds.")
|
84 |
+
|
85 |
+
with st.expander("Document Similarity Search"):
|
86 |
+
context = response.get('context', [])
|
87 |
+
if not context:
|
88 |
+
st.write("No similar documents found.")
|
89 |
+
else:
|
90 |
+
for i, doc in enumerate(context):
|
91 |
+
st.write(doc.page_content)
|
92 |
+
st.write("-----------------------------------------------")
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
langchain
|
3 |
+
langchain-community
|
4 |
+
langchain-core
|
5 |
+
langchain-text-splitters
|
6 |
+
langchain-huggingface
|
7 |
+
langchain-groq
|
8 |
+
sentence-transformers
|
9 |
+
faiss-cpu
|
10 |
+
python-dotenv
|
11 |
+
pypdf
|