File size: 3,491 Bytes
c2780c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import os
import time
import streamlit as st
from langchain_groq import ChatGroq
from langchain_community.document_loaders import PyPDFDirectoryLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.vectorstores import FAISS
from dotenv import load_dotenv
from sentence_transformers import SentenceTransformer

# Load environment variables
load_dotenv()
groq_api_key = os.getenv("GROQ_API_KEY")

# Streamlit Title
st.title("ChatGroq RAG with PDF")

# Initialize LLM
llm = ChatGroq(groq_api_key=groq_api_key, model="llama3-8b-8192")

# Define Prompt Template
prompt = ChatPromptTemplate.from_template(
    """

Answer the questions based on the provided context only.

Please provide the most accurate response based on the question

<context>

{context}

<context>



Question: {input}

"""
)

# Initialize Embedding Model

# Embedding Function
def vector_embedding():
    if "vectors" not in st.session_state:
       
        st.session_state.loader = PyPDFDirectoryLoader("./pdf")
        st.session_state.docs = st.session_state.loader.load()
        st.session_state.text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=1000, chunk_overlap=200
        )
        st.session_state.final_document = st.session_state.text_splitter.split_documents(
            st.session_state.docs
        )
        model_name = "sentence-transformers/all-mpnet-base-v2"
        st.session_state.embeddings = HuggingFaceEmbeddings(model_name=model_name)
        #model = SentenceTransformer("jxm/cde-small-v1", trust_remote_code=True)
        #st.session_state.embeddings = HuggingFaceEmbeddings(model=model)
        st.session_state.vectors = FAISS.from_documents(
            st.session_state.final_document, st.session_state.embeddings
        )

# UI for User Input
prompt1 = st.text_input("Enter Your Question from Documents")

# Embed Documents Button
if st.button("Document Embedding"):
    with st.spinner("Embedding documents..."):
        vector_embedding()
        st.success("Vector Store created.")

# Handle Queries
if prompt1.strip():
    if "vectors" not in st.session_state or st.session_state.vectors is None:
        st.error("Please embed the documents first by clicking the 'Document Embedding' button.")
    else:
        with st.spinner("Fetching response..."):
            start = time.time()
            document_chain = create_stuff_documents_chain(llm, prompt)
            retriever = st.session_state.vectors.as_retriever()
            retrieval_chain = create_retrieval_chain(retriever, document_chain)
            response = retrieval_chain.invoke({"input": prompt1})
            end = time.time()

        st.write(response['answer'])
        st.write(f"Response generated in {end - start:.2f} seconds.")

        with st.expander("Document Similarity Search"):
            context = response.get('context', [])
            if not context:
                st.write("No similar documents found.")
            else:
                for i, doc in enumerate(context):
                    st.write(doc.page_content)
                    st.write("-----------------------------------------------")