Spaces:
Running
Running
File size: 47,016 Bytes
21a375e c8373c1 5bc3f73 c8373c1 255a7a4 680cbe9 b65f2ef 7e2b9c0 7c5baa0 b16c4b6 c8373c1 b65f2ef 57490f5 2e5b4ed 57490f5 46c7e88 57490f5 46c7e88 57490f5 46c7e88 57490f5 46c7e88 57490f5 46c7e88 57490f5 5bc3f73 b65f2ef 4438381 b65f2ef 46c7e88 b65f2ef 46c7e88 b65f2ef c8373c1 255a7a4 647ad4c c8373c1 255a7a4 df3974d d38a2a4 255a7a4 df3974d 255a7a4 d38a2a4 df3974d 255a7a4 d38a2a4 255a7a4 df3974d 255a7a4 d38a2a4 df3974d 647ad4c 255a7a4 647ad4c df3974d 647ad4c d38a2a4 255a7a4 647ad4c d38a2a4 ca736d2 df3974d 743ad0c df3974d 255a7a4 df3974d 255a7a4 7c5baa0 255a7a4 c8373c1 255a7a4 df3974d 255a7a4 df3974d 255a7a4 743ad0c 255a7a4 c8373c1 df3974d 255a7a4 df3974d 255a7a4 743ad0c 255a7a4 df3974d 255a7a4 647ad4c 255a7a4 df3974d 255a7a4 df3974d 255a7a4 df3974d 255a7a4 d38a2a4 df3974d 255a7a4 df3974d d38a2a4 df3974d d38a2a4 df3974d 255a7a4 c8373c1 255a7a4 ca736d2 df3974d c8373c1 ea1c498 c8373c1 21a375e c8373c1 21a375e b16c4b6 c8373c1 b16c4b6 c8373c1 b16c4b6 c8373c1 21a375e c8373c1 438e395 c2c76a6 5bf37f4 c2c76a6 85d9e2b 518f6cc 85d9e2b 518f6cc 85d9e2b e65749f 85d9e2b 86d5a63 518f6cc 85d9e2b aa3c137 86d5a63 518f6cc 86d5a63 438e395 86d5a63 5bf37f4 86d5a63 c2c76a6 86d5a63 c2c76a6 86d5a63 c2c76a6 85d9e2b 86d5a63 ea1c498 86d5a63 ea1c498 86d5a63 c2c76a6 85d9e2b 438e395 85d9e2b 438e395 85d9e2b 438e395 85d9e2b c2c76a6 c8373c1 d30ceda c8373c1 d30ceda c8373c1 b16c4b6 c8373c1 2f7b0cc 6f3655f c8373c1 b16c4b6 c8373c1 6f3655f c8373c1 d30ceda c8373c1 b16c4b6 c8373c1 6f3655f c8373c1 680cbe9 6542cc6 5bf37f4 df4f503 5bf37f4 c8373c1 6f3655f c8373c1 b16c4b6 6f3655f d6d7173 c8373c1 b16c4b6 ea1c498 680cbe9 c8373c1 b16c4b6 c4923ca b16c4b6 c4923ca b16c4b6 c4923ca b16c4b6 c4923ca b16c4b6 c4923ca b16c4b6 c4923ca b16c4b6 c4923ca b16c4b6 c4923ca b16c4b6 c4923ca b16c4b6 c4923ca b16c4b6 c4923ca b16c4b6 6f3655f b16c4b6 6f3655f b16c4b6 c4923ca b16c4b6 7bc286a 46c7e88 b16c4b6 c4923ca b16c4b6 46c7e88 b16c4b6 c8373c1 b16c4b6 46c7e88 c4923ca b16c4b6 d6d7173 b16c4b6 7bc286a c8373c1 86d5a63 c8373c1 86d5a63 ea1c498 86d5a63 c8373c1 6f3655f c8373c1 6f3655f c8373c1 6f3655f b16c4b6 6f3655f c8373c1 21a375e c8373c1 5bf37f4 c8373c1 518f6cc c8373c1 be954af c8373c1 21a375e 0cddc9b c8373c1 21a375e c8373c1 9698e43 c8373c1 9698e43 c8373c1 be954af c8373c1 ea1c498 5bf37f4 c578caa 5bf37f4 ea1c498 6f3655f 0cddc9b c8373c1 1a12918 c8373c1 be954af b861675 c578caa cc69a12 c8373c1 fe811f7 5bf37f4 c8373c1 c578caa 6f3655f cc69a12 2fb2ae1 b861675 c8373c1 7bc286a c8373c1 f3d9900 c8373c1 4903390 c8373c1 6f3655f c8373c1 46c7e88 c8373c1 46c7e88 f3d9900 4903390 21a375e c8373c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 |
import gradio as gr
import pandas as pd
import numpy as np
import os
import sys
import re
from datetime import datetime
import json
import torch
from tqdm import tqdm
from concurrent.futures import ThreadPoolExecutor, as_completed
import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from huggingface_hub import HfApi
import shutil
import tempfile
import time
from queue import Queue
import threading
import time
from stark_qa import load_qa
from stark_qa.evaluator import Evaluator
from utils.hub_storage import HubStorage
from utils.token_handler import TokenHandler
from stark_qa import load_qa
from stark_qa.evaluator import Evaluator
from utils.hub_storage import HubStorage
from utils.token_handler import TokenHandler
class ForumPost:
def __init__(self, message: str, timestamp: str, post_type: str):
self.message = message
self.timestamp = timestamp
self.post_type = post_type # 'submission' or 'status_update'
class SubmissionForum:
def __init__(self, forum_file="submissions/forum_posts.json", hub_storage=None):
self.forum_file = forum_file
self.hub_storage = hub_storage
self.posts = self._load_posts()
def _load_posts(self):
"""Load existing posts from JSON file in the hub"""
try:
# Try to get content from hub
content = self.hub_storage.get_file_content(self.forum_file)
if content:
posts_data = json.loads(content)
return [ForumPost(**post) for post in posts_data]
return []
except Exception as e:
print(f"Error loading forum posts: {e}")
return []
def _save_posts(self):
"""Save posts to JSON file in the hub"""
try:
posts_data = [
{
"message": post.message,
"timestamp": post.timestamp,
"post_type": post.post_type
}
for post in self.posts
]
# Convert to JSON string
json_content = json.dumps(posts_data, indent=4)
# Save to hub
self.hub_storage.save_to_hub(
file_content=json_content,
path_in_repo=self.forum_file,
commit_message="Update forum posts"
)
except Exception as e:
print(f"Error saving forum posts: {e}")
def add_submission_post(self, method_name: str, dataset: str, split: str):
"""Add a new submission post"""
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
message = f"📥 New submission: {method_name} on {split}/{dataset}"
self.posts.append(ForumPost(message, timestamp, "submission"))
self._save_posts()
def add_status_update(self, method_name: str, new_status: str):
"""Add a status update post"""
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
emoji = "✅" if new_status == "approved" else "❌"
message = f"{emoji} Status update: {method_name} has been {new_status}"
self.posts.append(ForumPost(message, timestamp, "status_update"))
self._save_posts()
def get_recent_posts(self, limit=50):
"""Get recent posts, newest first"""
return sorted(
self.posts,
key=lambda x: datetime.strptime(x.timestamp, "%Y-%m-%d %H:%M:%S"),
reverse=True
)[:limit]
def format_posts_for_display(self, limit=50):
"""Format posts for Gradio Markdown display"""
recent_posts = self.get_recent_posts(limit)
if not recent_posts:
return "No forum posts yet."
formatted_posts = []
for post in recent_posts:
formatted_posts.append(
f"**{post.timestamp}** \n"
f"{post.message} \n"
f"{'---'}"
)
return "\n\n".join(formatted_posts)
# Initialize storage once at startup
try:
REPO_ID = "snap-stanford/stark-leaderboard"
hub_storage = HubStorage(REPO_ID)
forum = SubmissionForum(hub_storage=hub_storage)
except Exception as e:
print(f"Failed to initialize forum with hub storage: {e}")
forum = SubmissionForum(hub_storage=hub_storage)
def process_single_instance(args):
"""Process a single instance with improved validation and error handling"""
idx, eval_csv, qa_dataset, evaluator, eval_metrics = args
try:
# Get query data
query, query_id, answer_ids, meta_info = qa_dataset[idx]
# Get predictions
matching_preds = eval_csv[eval_csv['query_id'] == query_id]['pred_rank']
if len(matching_preds) == 0:
print(f"Warning: No prediction found for query_id {query_id}")
return None
elif len(matching_preds) > 1:
print(f"Warning: Multiple predictions found for query_id {query_id}, using first one")
pred_rank = matching_preds.iloc[0]
# Parse prediction
if isinstance(pred_rank, str):
try:
pred_rank = eval(pred_rank)
except Exception as e:
print(f"Error parsing pred_rank for query_id {query_id}: {str(e)}")
return None
# Validate prediction format
if not isinstance(pred_rank, list):
print(f"Warning: pred_rank is not a list for query_id {query_id}")
return None
# # Validate and filter prediction values
# valid_pred_rank = []
# for rank in pred_rank[:100]: # Only use top 100 predictions
# if isinstance(rank, (int, np.integer)) and 0 <= rank < max_candidate_id:
# valid_pred_rank.append(rank)
# else:
# print(f"Warning: Invalid prediction {rank} for query_id {query_id}")
# if not valid_pred_rank:
# print(f"Warning: No valid predictions for query_id {query_id}")
# return None
pred_dict = {pred_rank[i]: -i for i in range(min(100, len(pred_rank)))}
answer_ids = torch.LongTensor(answer_ids)
result = evaluator.evaluate(pred_dict, answer_ids, metrics=eval_metrics)
result["idx"], result["query_id"] = idx, query_id
return result
except Exception as e:
print(f"Error processing idx {idx}: {str(e)}")
return None
def compute_metrics(csv_path: str, dataset: str, split: str, num_workers: int = 4):
"""Compute metrics with improved thread safety and error handling"""
start_time = time.time()
# Dataset configuration
candidate_ids_dict = {
'amazon': [i for i in range(957192)],
'mag': [i for i in range(1172724, 1872968)],
'prime': [i for i in range(129375)]
}
try:
# Input validation
if dataset not in candidate_ids_dict:
raise ValueError(f"Invalid dataset '{dataset}'")
if split not in ['test', 'test-0.1', 'human_generated_eval']:
raise ValueError(f"Invalid split '{split}'")
# Load and validate CSV
print(f"\nLoading data for {dataset} {split}")
eval_csv = pd.read_csv(csv_path)
required_columns = ['query_id', 'pred_rank']
if not all(col in eval_csv.columns for col in required_columns):
raise ValueError(f"CSV must contain columns: {required_columns}")
eval_csv = eval_csv[required_columns]
# Initialize components
evaluator = Evaluator(candidate_ids_dict[dataset])
eval_metrics = ['hit@1', 'hit@5', 'recall@20', 'mrr']
qa_dataset = load_qa(dataset, human_generated_eval=split == 'human_generated_eval')
split_idx = qa_dataset.get_idx_split()
all_indices = split_idx[split].tolist()
print(f"Processing {len(all_indices)} instances with {num_workers} threads")
# Process instances
results_list = []
valid_count = 0
error_count = 0
with ThreadPoolExecutor(max_workers=num_workers) as executor:
futures = [
executor.submit(
process_single_instance,
(idx, eval_csv, qa_dataset, evaluator, eval_metrics)
)
for idx in all_indices
]
with tqdm(total=len(futures), desc="Processing") as pbar:
for future in as_completed(futures):
try:
result = future.result()
if result is not None:
results_list.append(result)
valid_count += 1
else:
error_count += 1
except Exception as e:
print(f"Error in future: {str(e)}")
error_count += 1
pbar.update(1)
# Compute final metrics
if not results_list:
raise ValueError("No valid results were produced")
print(f"\nProcessing complete. Valid: {valid_count}, Errors: {error_count}")
results_df = pd.DataFrame(results_list)
final_results = {
metric: results_df[metric].mean()
for metric in eval_metrics
}
elapsed_time = time.time() - start_time
print(f"Completed in {elapsed_time:.2f} seconds")
return final_results
except Exception as error:
elapsed_time = time.time() - start_time
error_msg = f"Error in compute_metrics ({elapsed_time:.2f}s): {str(error)}"
print(error_msg)
return error_msg
# Data dictionaries for leaderboard
data_synthesized_full = {
'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2'],
'STARK-AMAZON_Hit@1': [44.94, 15.29, 30.96, 26.56, 39.16, 40.93, 21.74, 42.08, 40.07, 46.10],
'STARK-AMAZON_Hit@5': [67.42, 47.93, 51.06, 50.01, 62.73, 64.37, 41.65, 66.87, 64.98, 66.02],
'STARK-AMAZON_R@20': [53.77, 44.49, 41.95, 52.05, 53.29, 54.28, 33.22, 56.52, 55.12, 53.44],
'STARK-AMAZON_MRR': [55.30, 30.20, 40.66, 37.75, 50.35, 51.60, 31.47, 53.46, 51.55, 55.51],
'STARK-MAG_Hit@1': [25.85, 10.51, 21.96, 12.88, 29.08, 30.06, 18.01, 37.90, 25.92, 31.18],
'STARK-MAG_Hit@5': [45.25, 35.23, 36.50, 39.01, 49.61, 50.58, 34.85, 56.74, 50.43, 46.42],
'STARK-MAG_R@20': [45.69, 42.11, 35.32, 46.97, 48.36, 50.49, 35.46, 46.40, 50.80, 43.94],
'STARK-MAG_MRR': [34.91, 21.34, 29.14, 29.12, 38.62, 39.66, 26.10, 47.25, 36.94, 38.39],
'STARK-PRIME_Hit@1': [12.75, 4.46, 6.53, 8.85, 12.63, 10.85, 10.10, 15.57, 15.10, 11.75],
'STARK-PRIME_Hit@5': [27.92, 21.85, 15.67, 21.35, 31.49, 30.23, 22.49, 33.42, 33.56, 23.85],
'STARK-PRIME_R@20': [31.25, 30.13, 16.52, 29.63, 36.00, 37.83, 26.34, 39.09, 38.05, 25.04],
'STARK-PRIME_MRR': [19.84, 12.38, 11.05, 14.73, 21.41, 19.99, 16.12, 24.11, 23.49, 17.39]
}
data_synthesized_10 = {
'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'],
'STARK-AMAZON_Hit@1': [42.68, 16.46, 30.09, 25.00, 39.02, 43.29, 18.90, 43.29, 40.85, 44.31, 45.49, 44.79],
'STARK-AMAZON_Hit@5': [67.07, 50.00, 49.27, 48.17, 64.02, 67.68, 37.80, 71.34, 62.80, 65.24, 71.13, 71.17],
'STARK-AMAZON_R@20': [54.48, 42.15, 41.91, 51.65, 49.30, 56.04, 34.73, 56.14, 52.47, 51.00, 53.77, 55.35],
'STARK-AMAZON_MRR': [54.02, 30.20, 39.30, 36.87, 50.32, 54.20, 28.76, 55.07, 51.54, 55.07, 55.91, 55.69],
'STARK-MAG_Hit@1': [27.81, 11.65, 22.89, 12.03, 28.20, 34.59, 19.17, 38.35, 25.56, 31.58, 36.54, 40.90],
'STARK-MAG_Hit@5': [45.48, 36.84, 37.26, 37.97, 52.63, 50.75, 33.46, 58.64, 50.37, 47.36, 53.17, 58.18],
'STARK-MAG_R@20': [44.59, 42.30, 44.16, 47.98, 49.25, 50.75, 29.85, 46.38, 53.03, 45.72, 48.36, 48.60],
'STARK-MAG_MRR': [35.97, 21.82, 30.00, 28.70, 38.55, 42.90, 26.06, 48.25, 36.82, 38.98, 44.15, 49.00],
'STARK-PRIME_Hit@1': [13.93, 5.00, 6.78, 7.14, 15.36, 12.14, 9.29, 16.79, 15.36, 15.00, 17.79, 18.28],
'STARK-PRIME_Hit@5': [31.07, 23.57, 16.15, 17.14, 31.07, 31.42, 20.7, 34.29, 32.86, 26.07, 36.90, 37.28],
'STARK-PRIME_R@20': [32.84, 30.50, 17.07, 32.95, 37.88, 37.34, 25.54, 41.11, 40.99, 27.78, 35.57, 34.05],
'STARK-PRIME_MRR': [21.68, 13.50, 11.42, 16.27, 23.50, 21.23, 15.00, 24.99, 23.70, 19.98, 26.27, 26.55]
}
data_human_generated = {
'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'],
'STARK-AMAZON_Hit@1': [27.16, 16.05, 25.93, 22.22, 39.50, 35.80, 29.63, 40.74, 46.91, 33.33, 53.09, 50.62],
'STARK-AMAZON_Hit@5': [51.85, 39.51, 54.32, 49.38, 64.19, 62.96, 46.91, 71.60, 72.84, 55.56, 74.07, 75.31],
'STARK-AMAZON_R@20': [29.23, 15.23, 23.69, 21.54, 35.46, 33.01, 21.21, 36.30, 40.22, 29.03, 35.46, 35.46],
'STARK-AMAZON_MRR': [18.79, 27.21, 37.12, 31.33, 52.65, 47.84, 38.61, 53.21, 58.74, 43.77, 62.11, 61.06],
'STARK-MAG_Hit@1': [32.14, 4.72, 25.00, 20.24, 28.57, 22.62, 16.67, 34.52, 23.81, 33.33, 38.10, 36.90],
'STARK-MAG_Hit@5': [41.67, 9.52, 30.95, 26.19, 41.67, 36.90, 28.57, 44.04, 41.67, 36.90, 45.24, 46.43],
'STARK-MAG_R@20': [32.46, 25.00, 27.24, 28.76, 35.95, 32.44, 21.74, 34.57, 39.85, 30.50, 35.95, 35.95],
'STARK-MAG_MRR': [37.42, 7.90, 27.98, 25.53, 35.81, 29.68, 21.59, 38.72, 31.43, 35.97, 42.00, 40.65],
'STARK-PRIME_Hit@1': [22.45, 2.04, 7.14, 6.12, 17.35, 16.33, 9.18, 25.51, 24.49, 15.31, 28.57, 28.57],
'STARK-PRIME_Hit@5': [41.84, 9.18, 13.27, 13.27, 34.69, 32.65, 21.43, 41.84, 39.80, 26.53, 46.94, 44.90],
'STARK-PRIME_R@20': [42.32, 10.69, 11.72, 17.62, 41.09, 39.01, 26.77, 48.10, 47.21, 25.56, 41.61, 41.61],
'STARK-PRIME_MRR': [30.37, 7.05, 10.07, 9.39, 26.35, 24.33, 15.24, 34.28, 32.98, 19.67, 36.32, 34.82]
}
# Initialize DataFrames
df_synthesized_full = pd.DataFrame(data_synthesized_full)
df_synthesized_10 = pd.DataFrame(data_synthesized_10)
df_human_generated = pd.DataFrame(data_human_generated)
# Model type definitions
model_types = {
'Sparse Retriever': ['BM25'],
'Small Dense Retrievers': ['DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)'],
'LLM-based Dense Retrievers': ['ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b'],
'Multivector Retrievers': ['multi-ada-002', 'ColBERTv2'],
'LLM Rerankers': ['Claude3 Reranker', 'GPT4 Reranker'],
'Others': [] # Will be populated dynamically with submitted models
}
# Submission form validation functions
def validate_email(email_str):
"""Validate email format(s)"""
emails = [e.strip() for e in email_str.split(';')]
email_pattern = re.compile(r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$')
return all(email_pattern.match(email) for email in emails)
def validate_github_url(url):
"""Validate GitHub URL format"""
github_pattern = re.compile(
r'^https?:\/\/(?:www\.)?github\.com\/[\w-]+\/[\w.-]+\/?$'
)
return bool(github_pattern.match(url))
def validate_csv(file_obj):
"""Validate CSV file format and content"""
try:
df = pd.read_csv(file_obj.name)
required_cols = ['query_id', 'pred_rank']
if not all(col in df.columns for col in required_cols):
return False, "CSV must contain 'query_id' and 'pred_rank' columns"
try:
first_rank = eval(df['pred_rank'].iloc[0]) if isinstance(df['pred_rank'].iloc[0], str) else df['pred_rank'].iloc[0]
if not isinstance(first_rank, list) or len(first_rank) < 20:
return False, "pred_rank must be a list with at least 20 candidates"
except:
return False, "Invalid pred_rank format"
return True, "Valid CSV file"
except Exception as e:
return False, f"Error processing CSV: {str(e)}"
def sanitize_name(name):
"""Sanitize name for file system use"""
return re.sub(r'[^a-zA-Z0-9]', '_', name)
def read_json_from_hub(api: HfApi, repo_id: str, file_path: str) -> dict:
"""
Read and parse JSON file from HuggingFace Hub.
Args:
api: HuggingFace API instance
repo_id: Repository ID
file_path: Path to file in repository
Returns:
dict: Parsed JSON content
"""
try:
# Download the file content as bytes
content = api.hf_hub_download(
repo_id=repo_id,
filename=file_path,
repo_type="space"
)
# Read and parse JSON
with open(content, 'r') as f:
return json.load(f)
except Exception as e:
print(f"Error reading JSON file {file_path}: {str(e)}")
return None
def scan_submissions_directory():
"""
Scans the submissions directory and updates the model types dictionary
with submitted models.
"""
try:
# Initialize HuggingFace API
api = HfApi()
# Track submissions for each split
submissions_by_split = {
'test': [],
'test-0.1': [],
'human_generated_eval': []
}
# Get all files from repository
try:
all_files = api.list_repo_files(
repo_id=REPO_ID,
repo_type="space"
)
# Filter for files in submissions directory
repo_files = [f for f in all_files if f.startswith('submissions/')]
except Exception as e:
print(f"Error listing repository contents: {str(e)}")
return submissions_by_split
# Group files by team folders
folder_files = {}
for filepath in repo_files:
parts = filepath.split('/')
if len(parts) < 3: # Need at least submissions/team_folder/file
continue
folder_name = parts[1] # team_folder name
if folder_name not in folder_files:
folder_files[folder_name] = []
folder_files[folder_name].append(filepath)
# Process each team folder
for folder_name, files in folder_files.items():
try:
# Find latest.json in this folder
latest_file = next((f for f in files if f.endswith('latest.json')), None)
if not latest_file:
print(f"No latest.json found in {folder_name}")
continue
# Read latest.json
latest_info = read_json_from_hub(api, REPO_ID, latest_file)
if not latest_info:
print(f"Failed to read latest.json for {folder_name}")
continue
timestamp = latest_info.get('latest_submission')
if not timestamp:
print(f"No timestamp found in latest.json for {folder_name}")
continue
# Find metadata file for latest submission
metadata_file = next(
(f for f in files if f.endswith(f'metadata_{timestamp}.json')),
None
)
if not metadata_file:
print(f"No matching metadata file found for {folder_name} timestamp {timestamp}")
continue
# Read metadata file
submission_data = read_json_from_hub(api, REPO_ID, metadata_file)
if not submission_data:
print(f"Failed to read metadata for {folder_name}")
continue
if latest_info.get('status') != 'approved':
print(f"Skipping unapproved submission in {folder_name}")
continue
# Add to submissions by split
split = submission_data.get('Split')
if split in submissions_by_split:
submissions_by_split[split].append(submission_data)
# Update model types if necessary
method_name = submission_data.get('Method Name')
model_type = submission_data.get('Model Type', 'Others')
# Add to model type if it's a new method
method_exists = any(method_name in methods for methods in model_types.values())
if not method_exists and model_type in model_types:
model_types[model_type].append(method_name)
except Exception as e:
print(f"Error processing folder {folder_name}: {str(e)}")
continue
return submissions_by_split
except Exception as e:
print(f"Error scanning submissions directory: {str(e)}")
return None
def initialize_leaderboard():
"""
Initialize the leaderboard with baseline results and submitted results.
"""
global df_synthesized_full, df_synthesized_10, df_human_generated
try:
# First, initialize with baseline results
df_synthesized_full = pd.DataFrame(data_synthesized_full)
df_synthesized_10 = pd.DataFrame(data_synthesized_10)
df_human_generated = pd.DataFrame(data_human_generated)
print("Initialized with baseline results")
# Then scan and add submitted results
submissions = scan_submissions_directory()
if submissions:
for split, split_submissions in submissions.items():
for submission in split_submissions:
if submission.get('results'): # Make sure we have results
# Update appropriate DataFrame based on split
if split == 'test':
df_to_update = df_synthesized_full
elif split == 'test-0.1':
df_to_update = df_synthesized_10
else: # human_generated_eval
df_to_update = df_human_generated
# Prepare new row data
new_row = {
'Method': submission['Method Name'],
f'STARK-{submission["Dataset"].upper()}_Hit@1': submission['results']['hit@1'],
f'STARK-{submission["Dataset"].upper()}_Hit@5': submission['results']['hit@5'],
f'STARK-{submission["Dataset"].upper()}_R@20': submission['results']['recall@20'],
f'STARK-{submission["Dataset"].upper()}_MRR': submission['results']['mrr']
}
# Update existing row or add new one
method_mask = df_to_update['Method'] == submission['Method Name']
if method_mask.any():
for col in new_row:
df_to_update.loc[method_mask, col] = new_row[col]
else:
df_to_update.loc[len(df_to_update)] = new_row
print("Leaderboard initialization complete")
except Exception as e:
print(f"Error initializing leaderboard: {str(e)}")
def get_file_content(file_path):
"""
Helper function to safely read file content from HuggingFace repository
"""
try:
api = HfApi()
content_path = api.hf_hub_download(
repo_id=REPO_ID,
filename=file_path,
repo_type="space"
)
with open(content_path, 'r') as f:
return f.read()
except Exception as e:
print(f"Error reading file {file_path}: {str(e)}")
return None
def save_submission(submission_data, csv_file):
"""
Save submission data and CSV file using model_name_team_name format
Args:
submission_data (dict): Metadata and results for the submission
csv_file: The uploaded CSV file object
"""
# Create folder name from model name and team name
model_name_clean = sanitize_name(submission_data['Method Name'])
team_name_clean = sanitize_name(submission_data['Team Name'])
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
# Create folder name: model_name_team_name
folder_name = f"{model_name_clean}_{team_name_clean}"
submission_id = f"{folder_name}_{timestamp}"
# Create submission directory structure
base_dir = "submissions"
submission_dir = os.path.join(base_dir, folder_name)
os.makedirs(submission_dir, exist_ok=True)
# Save CSV file with timestamp to allow multiple submissions
csv_filename = f"predictions_{timestamp}.csv"
csv_path = os.path.join(submission_dir, csv_filename)
if hasattr(csv_file, 'name'):
with open(csv_file.name, 'rb') as source, open(csv_path, 'wb') as target:
target.write(source.read())
# Add file paths to submission data
submission_data.update({
"csv_path": csv_path,
"submission_id": submission_id,
"folder_name": folder_name
})
# Save metadata as JSON with timestamp
metadata_path = os.path.join(submission_dir, f"metadata_{timestamp}.json")
with open(metadata_path, 'w') as f:
json.dump(submission_data, f, indent=4)
# Update latest.json to track most recent submission
latest_path = os.path.join(submission_dir, "latest.json")
with open(latest_path, 'w') as f:
json.dump({
"latest_submission": timestamp,
"status": "pending_review",
"method_name": submission_data['Method Name']
}, f, indent=4)
return submission_id
def update_leaderboard_data(submission_data):
"""
Update leaderboard data with new submission results
Only uses model name in the displayed table
"""
global df_synthesized_full, df_synthesized_10, df_human_generated
# Determine which DataFrame to update based on split
split_to_df = {
'test': df_synthesized_full,
'test-0.1': df_synthesized_10,
'human_generated_eval': df_human_generated
}
df_to_update = split_to_df[submission_data['Split']]
submitted_dataset = submission_data['Dataset'].upper()
# Prepare new row data
new_row = {
'Method': submission_data['Method Name'],
f'STARK-{submitted_dataset}_Hit@1': submission_data['results']['hit@1'],
f'STARK-{submitted_dataset}_Hit@5': submission_data['results']['hit@5'],
f'STARK-{submitted_dataset}_R@20': submission_data['results']['recall@20'],
f'STARK-{submitted_dataset}_MRR': submission_data['results']['mrr']
}
# Check if method already exists
method_mask = df_to_update['Method'] == submission_data['Method Name']
if method_mask.any():
# Update existing row
for col in new_row:
df_to_update.loc[method_mask, col] = new_row[col]
else:
# For new method, create row with NaN for other datasets
all_columns = df_to_update.columns
full_row = {col: None for col in all_columns} # Initialize with NaN
full_row.update(new_row) # Update with the submitted dataset's values
df_to_update.loc[len(df_to_update)] = full_row
# Function to get emails from meta_data
def get_emails_from_metadata(meta_data):
"""
Extracts emails from the meta_data dictionary.
Args:
meta_data (dict): The metadata dictionary that contains the 'Contact Email(s)' field.
Returns:
list: A list of email addresses.
"""
return [email.strip() for email in meta_data.get("Contact Email(s)", "").split(";")]
# Function to format meta_data as an HTML table (without Prediction CSV)
def format_metadata_as_table(meta_data):
"""
Formats metadata dictionary into an HTML table for the email.
Handles multiple contact emails separated by a semicolon.
Args:
meta_data (dict): Dictionary containing submission metadata.
Returns:
str: HTML string representing the metadata table.
"""
table_rows = ""
for key, value in meta_data.items():
if key == "Contact Email(s)":
# Ensure that contact emails are split by semicolon
emails = value.split(';')
formatted_emails = "; ".join([email.strip() for email in emails])
table_rows += f"<tr><td><b>{key}</b></td><td>{formatted_emails}</td></tr>"
elif key != "Prediction CSV": # Exclude the Prediction CSV field
table_rows += f"<tr><td><b>{key}</b></td><td>{value}</td></tr>"
table_html = f"""
<table border="1" cellpadding="5" cellspacing="0">
{table_rows}
</table>
"""
return table_html
# Function to get emails from meta_data
def get_emails_from_metadata(meta_data):
"""
Extracts emails from the meta_data dictionary.
Args:
meta_data (dict): The metadata dictionary that contains the 'Contact Email(s)' field.
Returns:
list: A list of email addresses.
"""
return [email.strip() for email in meta_data.get("Contact Email(s)", "").split(";")]
def format_evaluation_results(results):
"""
Formats the evaluation results dictionary into a readable string.
Args:
results (dict): Dictionary containing evaluation metrics and their values.
Returns:
str: Formatted string of evaluation results.
"""
result_lines = [f"{metric}: {value}" for metric, value in results.items()]
return "\n".join(result_lines)
def get_model_type_for_method(method_name):
"""
Find the model type category for a given method name.
Returns 'Others' if not found in predefined categories.
"""
for type_name, methods in model_types.items():
if method_name in methods:
return type_name
return 'Others'
def validate_model_type(method_name, selected_type):
"""
Validate if the selected model type is appropriate for the method name.
Returns (is_valid, message).
"""
# Check if method exists in any category
existing_type = None
for type_name, methods in model_types.items():
if method_name in methods:
existing_type = type_name
break
# If method exists, it must be submitted under its predefined category
if existing_type:
if existing_type != selected_type:
return False, f"This method name is already registered under '{existing_type}'. Please use the correct category."
return True, "Valid model type"
# For new methods, any category is valid
return True, "Valid model type"
def process_submission(
method_name, team_name, dataset, split, contact_email,
code_repo, csv_file, model_description, hardware, paper_link, model_type, honor_code
):
"""Process and validate submission"""
if not honor_code:
return "Error: Please accept the honor code to submit"
temp_files = []
try:
# Input validation
if not all([method_name, team_name, dataset, split, contact_email, code_repo, csv_file, model_type]):
return "Error: Please fill in all required fields"
# Validate model type
is_valid, message = validate_model_type(method_name, model_type)
if not is_valid:
return f"Error: {message}"
# Create metadata
meta_data = {
"Method Name": method_name,
"Team Name": team_name,
"Dataset": dataset,
"Split": split,
"Contact Email(s)": contact_email,
"Code Repository": code_repo,
"Model Description": model_description,
"Hardware": hardware,
"(Optional) Paper link": paper_link,
"Model Type": model_type
}
# Generate folder name and timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
folder_name = f"{sanitize_name(method_name)}_{sanitize_name(team_name)}"
# Process CSV file
temp_csv_path = None
if isinstance(csv_file, str):
temp_csv_path = csv_file
else:
temp_fd, temp_csv_path = tempfile.mkstemp(suffix='.csv')
temp_files.append(temp_csv_path)
os.close(temp_fd)
if hasattr(csv_file, 'name'):
shutil.copy2(csv_file.name, temp_csv_path)
else:
with open(temp_csv_path, 'wb') as temp_file:
if hasattr(csv_file, 'seek'):
csv_file.seek(0)
if hasattr(csv_file, 'read'):
shutil.copyfileobj(csv_file, temp_file)
else:
temp_file.write(csv_file)
if not os.path.exists(temp_csv_path):
raise FileNotFoundError(f"Failed to create temporary CSV file at {temp_csv_path}")
# Compute metrics
results = compute_metrics(
csv_path=temp_csv_path,
dataset=dataset.lower(),
split=split,
num_workers=4
)
if isinstance(results, str):
# send_error_notification(meta_data, results)
return f"Evaluation error: {results}"
# Process results
processed_results = {
"hit@1": round(results['hit@1'] * 100, 2),
"hit@5": round(results['hit@5'] * 100, 2),
"recall@20": round(results['recall@20'] * 100, 2),
"mrr": round(results['mrr'] * 100, 2)
}
# Save files to HuggingFace Hub
try:
# 1. Save CSV file
csv_filename = f"predictions_{timestamp}.csv"
csv_path_in_repo = f"submissions/{folder_name}/{csv_filename}"
hub_storage.save_to_hub(
file_content=temp_csv_path,
path_in_repo=csv_path_in_repo,
commit_message=f"Add submission: {method_name} by {team_name}"
)
# 2. Save metadata
submission_data = {
**meta_data,
"results": processed_results,
"status": "pending_review", # or "approved"
"submission_date": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"csv_path": csv_path_in_repo
}
metadata_fd, temp_metadata_path = tempfile.mkstemp(suffix='.json')
temp_files.append(temp_metadata_path)
os.close(metadata_fd)
with open(temp_metadata_path, 'w') as f:
json.dump(submission_data, f, indent=4)
metadata_path = f"submissions/{folder_name}/metadata_{timestamp}.json"
hub_storage.save_to_hub(
file_content=temp_metadata_path,
path_in_repo=metadata_path,
commit_message=f"Add metadata: {method_name} by {team_name}"
)
# 3. Create or update latest.json
latest_info = {
"latest_submission": timestamp,
"status": "pending_review", # or "approved"
"method_name": method_name,
"team_name": team_name
}
latest_fd, temp_latest_path = tempfile.mkstemp(suffix='.json')
temp_files.append(temp_latest_path)
os.close(latest_fd)
with open(temp_latest_path, 'w') as f:
json.dump(latest_info, f, indent=4)
latest_path = f"submissions/{folder_name}/latest.json"
hub_storage.save_to_hub(
file_content=temp_latest_path,
path_in_repo=latest_path,
commit_message=f"Update latest submission info for {method_name}"
)
except Exception as e:
raise RuntimeError(f"Failed to save files to HuggingFace Hub: {str(e)}")
# Send confirmation email and update leaderboard data
# send_submission_confirmation(meta_data, processed_results)
update_leaderboard_data(submission_data)
forum.add_submission_post(method_name, dataset, split)
forum_display = forum.format_posts_for_display()
# Return success message
return f"""
Submission successful!
Evaluation Results:
Hit@1: {processed_results['hit@1']:.2f}%
Hit@5: {processed_results['hit@5']:.2f}%
Recall@20: {processed_results['recall@20']:.2f}%
MRR: {processed_results['mrr']:.2f}%
Your submission has been saved and a confirmation email has been sent to {contact_email}.
Once approved, your results will appear in the leaderboard under: {method_name}
You can find your submission at:
https://huggingface.co/spaces/{REPO_ID}/tree/main/submissions/{folder_name}
Please refresh the page to see your submission in the leaderboard.
""", forum_display
except Exception as e:
error_message = f"Error processing submission: {str(e)}"
# send_error_notification(meta_data, error_message)
return error_message, forum.format_posts_for_display()
finally:
# Clean up temporary files
for temp_file in temp_files:
try:
if os.path.exists(temp_file):
os.unlink(temp_file)
except Exception as e:
print(f"Warning: Failed to delete temporary file {temp_file}: {str(e)}")
# Modify the review script to add forum posts for status updates
def update_json_file(file_path: str, content: dict, method_name: str = None, new_status: str = None) -> bool:
"""Update local JSON file and add forum post if status changed"""
try:
with open(file_path, 'w') as f:
json.dump(content, f, indent=4)
# Add forum post if this is a status update
if method_name and new_status:
forum.add_status_update(method_name, new_status)
return True
except Exception as e:
print(f"Error updating {file_path}: {str(e)}")
return False
def filter_by_model_type(df, selected_types):
"""
Filter DataFrame by selected model types, including submitted models.
"""
if not selected_types:
return df.head(0)
# Get all models from selected types
selected_models = []
for type_name in selected_types:
selected_models.extend(model_types[type_name])
# Filter DataFrame to include only selected models
return df[df['Method'].isin(selected_models)]
def format_dataframe(df, dataset):
"""
Format DataFrame for display, removing rows with no data for the specified dataset.
"""
# Get relevant columns
columns = ['Method'] + [col for col in df.columns if dataset in col]
filtered_df = df[columns].copy()
# Remove rows where all metric columns are NaN
metric_columns = [col for col in filtered_df.columns if col != 'Method']
filtered_df = filtered_df.dropna(subset=metric_columns, how='all')
# Rename columns to remove dataset prefix
filtered_df.columns = [col.split('_')[-1] if '_' in col else col for col in filtered_df.columns]
# Sort by MRR
filtered_df = filtered_df.sort_values('MRR', ascending=False)
return filtered_df
def update_tables(selected_types):
"""
Update tables based on selected model types.
Include all models from selected categories.
"""
if not selected_types:
return [df.head(0) for df in [df_synthesized_full, df_synthesized_10, df_human_generated]]
filtered_df_full = filter_by_model_type(df_synthesized_full, selected_types)
filtered_df_10 = filter_by_model_type(df_synthesized_10, selected_types)
filtered_df_human = filter_by_model_type(df_human_generated, selected_types)
outputs = []
for df in [filtered_df_full, filtered_df_10, filtered_df_human]:
for dataset in ['AMAZON', 'MAG', 'PRIME']:
outputs.append(format_dataframe(df, f"STARK-{dataset}"))
return outputs
css = """
table > thead {
white-space: normal
}
table {
--cell-width-1: 250px
}
table > tbody > tr > td:nth-child(2) > div {
overflow-x: auto
}
.tab-nav {
border-bottom: 1px solid rgba(255, 255, 255, 0.1);
margin-bottom: 1rem;
}
"""
# Main application
with gr.Blocks(css=css) as demo:
gr.Markdown("# Semi-structured Retrieval Benchmark (STaRK) Leaderboard")
gr.Markdown("Refer to the [STaRK paper](https://arxiv.org/pdf/2404.13207) for details on metrics, tasks and models.")
# Initialize leaderboard at startup
print("Starting leaderboard initialization...")
initialize_leaderboard()
print("Leaderboard initialization finished")
# Model type filter
model_type_filter = gr.CheckboxGroup(
choices=list(model_types.keys()),
value=list(model_types.keys()),
label="Model types",
interactive=True
)
# Initialize dataframes list
all_dfs = []
# Create nested tabs structure
with gr.Tabs() as outer_tabs:
with gr.TabItem("Synthesized (full)"):
with gr.Tabs() as inner_tabs1:
for dataset in ['AMAZON', 'MAG', 'PRIME']:
with gr.TabItem(dataset):
all_dfs.append(gr.DataFrame(interactive=False))
with gr.TabItem("Synthesized (10%)"):
with gr.Tabs() as inner_tabs2:
for dataset in ['AMAZON', 'MAG', 'PRIME']:
with gr.TabItem(dataset):
all_dfs.append(gr.DataFrame(interactive=False))
with gr.TabItem("Human-Generated"):
with gr.Tabs() as inner_tabs3:
for dataset in ['AMAZON', 'MAG', 'PRIME']:
with gr.TabItem(dataset):
all_dfs.append(gr.DataFrame(interactive=False))
# Submission section
gr.Markdown("---")
gr.Markdown("## Submit Your Results")
gr.Markdown("""
Submit your results to be included in the leaderboard. Please ensure your submission meets all requirements.
For questions, contact stark-qa@cs.stanford.edu. Detailed instructions can be referred at [submission instructions](https://docs.google.com/document/d/11coGjTmOEi9p9-PUq1oy0eTOj8f_8CVQhDl5_0FKT14/edit?usp=sharing).
""")
with gr.Row():
with gr.Column():
method_name = gr.Textbox(
label="Method Name (max 25 chars)*",
placeholder="e.g., MyRetrievalModel-v1"
)
dataset = gr.Dropdown(
choices=["amazon", "mag", "prime"],
label="Dataset*",
value="prime"
)
split = gr.Dropdown(
choices=["test", "test-0.1", "human_generated_eval"],
label="Split*",
value="human_generated_eval"
)
team_name = gr.Textbox(
label="Team Name (max 25 chars)*",
placeholder="e.g., Stanford NLP"
)
contact_email = gr.Textbox(
label="Contact Email(s)*",
placeholder="email@example.com; another@example.com"
)
model_type = gr.Dropdown(
choices=list(model_types.keys()),
label="Model Type*",
value="Others",
info="Select the appropriate category for your model"
)
model_description = gr.Textbox(
label="Model Description*",
lines=2,
placeholder="Briefly describe how your retriever model works..."
)
with gr.Column():
code_repo = gr.Textbox(
label="Code Repository*",
placeholder="https://github.com/snap-stanford/stark-leaderboard"
)
hardware = gr.Textbox(
label="Hardware Specifications*",
placeholder="e.g., 4x NVIDIA A100 80GB"
)
with gr.Row():
honor_code = gr.Checkbox(
label="By submitting these results, you confirm that they are truthful and reproducible, and you verify the integrity of your submission.",
value=False)
csv_file = gr.File(
label="Prediction CSV*",
file_types=[".csv"],
type="filepath"
)
paper_link = gr.Textbox(
label="Paper Link (Optional)",
placeholder="https://arxiv.org/abs/..."
)
def update_submit_button(honor_checked):
"""Update submit button state based on honor code checkbox"""
return gr.Button.update(interactive=honor_checked)
submit_btn = gr.Button("Submit", variant="primary")
result = gr.Textbox(label="Submission Status", interactive=False)
# Set up event handlers
model_type_filter.change(
update_tables,
inputs=[model_type_filter],
outputs=all_dfs
)
# Add forum section
gr.Markdown("---")
gr.Markdown("## Recent Submissions and Updates")
forum_display = gr.Markdown(forum.format_posts_for_display())
refresh_btn = gr.Button("Refresh Forum")
# Event handler for forum refresh
refresh_btn.click(
lambda: forum.format_posts_for_display(),
inputs=[],
outputs=[forum_display]
)
# Event handler for submission button
submit_btn.click(
fn=process_submission,
inputs=[
method_name, team_name, dataset, split, contact_email,
code_repo, csv_file, model_description, hardware, paper_link, model_type, honor_code
],
outputs=[result, forum_display]
).then( # Chain the forum refresh after submission
fn=lambda: forum.format_posts_for_display(),
inputs=[],
outputs=[forum_display]
)
# Initial table update
demo.load(
update_tables,
inputs=[model_type_filter],
outputs=all_dfs
)
# Launch the application
demo.launch() |