Spaces:
Running
Running
Shiyu Zhao
commited on
Commit
·
ca736d2
1
Parent(s):
c4923ca
Update space
Browse files
app.py
CHANGED
@@ -14,6 +14,7 @@ from email.mime.text import MIMEText
|
|
14 |
from huggingface_hub import HfApi
|
15 |
import shutil
|
16 |
import tempfile
|
|
|
17 |
|
18 |
from stark_qa import load_qa
|
19 |
from stark_qa.evaluator import Evaluator
|
@@ -30,31 +31,32 @@ except Exception as e:
|
|
30 |
|
31 |
|
32 |
def process_single_instance(args):
|
|
|
33 |
idx, eval_csv, qa_dataset, evaluator, eval_metrics = args
|
34 |
-
query, query_id, answer_ids, meta_info = qa_dataset[idx]
|
35 |
-
|
36 |
try:
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
if isinstance(pred_rank, str):
|
44 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
pred_rank = eval(pred_rank)
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
result["idx"], result["query_id"] = idx, query_id
|
57 |
-
return result
|
58 |
|
59 |
|
60 |
def compute_metrics(csv_path: str, dataset: str, split: str, num_workers: int = 4):
|
@@ -63,6 +65,7 @@ def compute_metrics(csv_path: str, dataset: str, split: str, num_workers: int =
|
|
63 |
'mag': [i for i in range(1172724, 1872968)],
|
64 |
'prime': [i for i in range(129375)]
|
65 |
}
|
|
|
66 |
try:
|
67 |
eval_csv = pd.read_csv(csv_path)
|
68 |
if 'query_id' not in eval_csv.columns:
|
@@ -77,11 +80,14 @@ def compute_metrics(csv_path: str, dataset: str, split: str, num_workers: int =
|
|
77 |
if split not in ['test', 'test-0.1', 'human_generated_eval']:
|
78 |
raise ValueError(f"Invalid split '{split}', expected one of ['test', 'test-0.1', 'human_generated_eval'].")
|
79 |
|
|
|
80 |
evaluator = Evaluator(candidate_ids_dict[dataset])
|
81 |
eval_metrics = ['hit@1', 'hit@5', 'recall@20', 'mrr']
|
|
|
82 |
qa_dataset = load_qa(dataset, human_generated_eval=split == 'human_generated_eval')
|
83 |
split_idx = qa_dataset.get_idx_split()
|
84 |
all_indices = split_idx[split].tolist()
|
|
|
85 |
|
86 |
results_list = []
|
87 |
# query_ids = []
|
@@ -102,28 +108,50 @@ def compute_metrics(csv_path: str, dataset: str, split: str, num_workers: int =
|
|
102 |
# metric: np.mean(eval_csv[eval_csv['query_id'].isin(query_ids)][metric]) for metric in eval_metrics
|
103 |
# }
|
104 |
# return final_result
|
105 |
-
batch_size =
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
args = [(idx, eval_csv, qa_dataset, evaluator, eval_metrics)
|
110 |
for idx in batch_indices]
|
111 |
|
112 |
with ProcessPoolExecutor(max_workers=num_workers) as executor:
|
113 |
futures = [executor.submit(process_single_instance, arg)
|
114 |
for arg in args]
|
115 |
-
for future in as_completed(futures)
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
results_df = pd.DataFrame(results_list)
|
120 |
final_results = {
|
121 |
metric: results_df[metric].mean()
|
122 |
for metric in eval_metrics
|
123 |
}
|
124 |
|
|
|
|
|
125 |
return final_results
|
126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
except pd.errors.EmptyDataError:
|
128 |
return "Error: The CSV file is empty or could not be read. Please check the file and try again."
|
129 |
except FileNotFoundError:
|
|
|
14 |
from huggingface_hub import HfApi
|
15 |
import shutil
|
16 |
import tempfile
|
17 |
+
import time
|
18 |
|
19 |
from stark_qa import load_qa
|
20 |
from stark_qa.evaluator import Evaluator
|
|
|
31 |
|
32 |
|
33 |
def process_single_instance(args):
|
34 |
+
"""Process a single instance with progress tracking"""
|
35 |
idx, eval_csv, qa_dataset, evaluator, eval_metrics = args
|
|
|
|
|
36 |
try:
|
37 |
+
query, query_id, answer_ids, meta_info = qa_dataset[idx]
|
38 |
+
|
39 |
+
# Print progress for debugging
|
40 |
+
print(f"Processing query_id: {query_id}")
|
41 |
+
|
|
|
|
|
42 |
try:
|
43 |
+
pred_rank = eval_csv[eval_csv['query_id'] == query_id]['pred_rank'].item()
|
44 |
+
except Exception as e:
|
45 |
+
print(f"Error getting pred_rank for query_id {query_id}: {str(e)}")
|
46 |
+
raise
|
47 |
+
|
48 |
+
if isinstance(pred_rank, str):
|
49 |
pred_rank = eval(pred_rank)
|
50 |
+
|
51 |
+
pred_dict = {pred_rank[i]: -i for i in range(min(100, len(pred_rank)))}
|
52 |
+
answer_ids = torch.LongTensor(answer_ids)
|
53 |
+
result = evaluator.evaluate(pred_dict, answer_ids, metrics=eval_metrics)
|
54 |
+
|
55 |
+
result["idx"], result["query_id"] = idx, query_id
|
56 |
+
return result
|
57 |
+
except Exception as e:
|
58 |
+
print(f"Error in process_single_instance for idx {idx}: {str(e)}")
|
59 |
+
raise
|
|
|
|
|
60 |
|
61 |
|
62 |
def compute_metrics(csv_path: str, dataset: str, split: str, num_workers: int = 4):
|
|
|
65 |
'mag': [i for i in range(1172724, 1872968)],
|
66 |
'prime': [i for i in range(129375)]
|
67 |
}
|
68 |
+
start_time = time.time()
|
69 |
try:
|
70 |
eval_csv = pd.read_csv(csv_path)
|
71 |
if 'query_id' not in eval_csv.columns:
|
|
|
80 |
if split not in ['test', 'test-0.1', 'human_generated_eval']:
|
81 |
raise ValueError(f"Invalid split '{split}', expected one of ['test', 'test-0.1', 'human_generated_eval'].")
|
82 |
|
83 |
+
print("Initializing evaluator...")
|
84 |
evaluator = Evaluator(candidate_ids_dict[dataset])
|
85 |
eval_metrics = ['hit@1', 'hit@5', 'recall@20', 'mrr']
|
86 |
+
print("Loading QA dataset...")
|
87 |
qa_dataset = load_qa(dataset, human_generated_eval=split == 'human_generated_eval')
|
88 |
split_idx = qa_dataset.get_idx_split()
|
89 |
all_indices = split_idx[split].tolist()
|
90 |
+
print(f"Dataset loaded, processing {len(all_indices)} instances")
|
91 |
|
92 |
results_list = []
|
93 |
# query_ids = []
|
|
|
108 |
# metric: np.mean(eval_csv[eval_csv['query_id'].isin(query_ids)][metric]) for metric in eval_metrics
|
109 |
# }
|
110 |
# return final_result
|
111 |
+
batch_size = 50 # Smaller batch size for more frequent updates
|
112 |
+
total_batches = (len(all_indices) + batch_size - 1) // batch_size
|
113 |
+
|
114 |
+
for batch_num in range(total_batches):
|
115 |
+
batch_start = batch_num * batch_size
|
116 |
+
batch_end = min((batch_num + 1) * batch_size, len(all_indices))
|
117 |
+
batch_indices = all_indices[batch_start:batch_end]
|
118 |
+
|
119 |
+
print(f"\nProcessing batch {batch_num + 1}/{total_batches}")
|
120 |
+
print(f"Batch size: {len(batch_indices)}")
|
121 |
+
|
122 |
args = [(idx, eval_csv, qa_dataset, evaluator, eval_metrics)
|
123 |
for idx in batch_indices]
|
124 |
|
125 |
with ProcessPoolExecutor(max_workers=num_workers) as executor:
|
126 |
futures = [executor.submit(process_single_instance, arg)
|
127 |
for arg in args]
|
128 |
+
for future in tqdm(as_completed(futures),
|
129 |
+
total=len(futures),
|
130 |
+
desc=f"Batch {batch_num + 1}"):
|
131 |
+
try:
|
132 |
+
result = future.result()
|
133 |
+
results_list.append(result)
|
134 |
+
except Exception as e:
|
135 |
+
print(f"Error processing result: {str(e)}")
|
136 |
+
raise
|
137 |
+
|
138 |
+
print("\nComputing final metrics...")
|
139 |
results_df = pd.DataFrame(results_list)
|
140 |
final_results = {
|
141 |
metric: results_df[metric].mean()
|
142 |
for metric in eval_metrics
|
143 |
}
|
144 |
|
145 |
+
elapsed_time = time.time() - start_time
|
146 |
+
print(f"\nMetrics computation completed in {elapsed_time:.2f} seconds")
|
147 |
return final_results
|
148 |
|
149 |
+
except Exception as error:
|
150 |
+
elapsed_time = time.time() - start_time
|
151 |
+
error_msg = f"Error in compute_metrics ({elapsed_time:.2f}s): {str(error)}"
|
152 |
+
print(error_msg)
|
153 |
+
return error_msg
|
154 |
+
|
155 |
except pd.errors.EmptyDataError:
|
156 |
return "Error: The CSV file is empty or could not be read. Please check the file and try again."
|
157 |
except FileNotFoundError:
|