Spaces:
Running
Running
Shiyu Zhao
commited on
Commit
·
743ad0c
1
Parent(s):
d6d7173
Update space
Browse files
app.py
CHANGED
@@ -15,10 +15,10 @@ from huggingface_hub import HfApi
|
|
15 |
import shutil
|
16 |
import tempfile
|
17 |
import time
|
18 |
-
from concurrent.futures import ThreadPoolExecutor
|
19 |
from queue import Queue
|
20 |
import threading
|
21 |
-
|
22 |
from stark_qa import load_qa
|
23 |
from stark_qa.evaluator import Evaluator
|
24 |
|
@@ -32,150 +32,113 @@ try:
|
|
32 |
except Exception as e:
|
33 |
raise RuntimeError(f"Failed to initialize HuggingFace Hub storage: {e}")
|
34 |
|
|
|
|
|
35 |
|
36 |
def process_single_instance(args):
|
37 |
-
"""Process a single instance with progress tracking"""
|
38 |
idx, eval_csv, qa_dataset, evaluator, eval_metrics = args
|
|
|
39 |
try:
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
try:
|
46 |
-
pred_rank = eval_csv[eval_csv['query_id'] == query_id]['pred_rank'].item()
|
47 |
-
except Exception as e:
|
48 |
-
print(f"Error getting pred_rank for query_id {query_id}: {str(e)}")
|
49 |
-
raise
|
50 |
-
|
51 |
-
if isinstance(pred_rank, str):
|
52 |
pred_rank = eval(pred_rank)
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
result["idx"], result["query_id"] = idx, query_id
|
59 |
-
return result
|
60 |
-
except Exception as e:
|
61 |
-
print(f"Error in process_single_instance for idx {idx}: {str(e)}")
|
62 |
-
raise
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
def compute_metrics(csv_path: str, dataset: str, split: str,
|
66 |
candidate_ids_dict = {
|
67 |
'amazon': [i for i in range(957192)],
|
68 |
'mag': [i for i in range(1172724, 1872968)],
|
69 |
'prime': [i for i in range(129375)]
|
70 |
}
|
71 |
-
|
72 |
try:
|
|
|
73 |
eval_csv = pd.read_csv(csv_path)
|
74 |
if 'query_id' not in eval_csv.columns:
|
75 |
raise ValueError('No `query_id` column found in the submitted csv.')
|
76 |
if 'pred_rank' not in eval_csv.columns:
|
77 |
raise ValueError('No `pred_rank` column found in the submitted csv.')
|
78 |
-
|
|
|
79 |
eval_csv = eval_csv[['query_id', 'pred_rank']]
|
80 |
|
|
|
81 |
if dataset not in candidate_ids_dict:
|
82 |
raise ValueError(f"Invalid dataset '{dataset}', expected one of {list(candidate_ids_dict.keys())}.")
|
83 |
if split not in ['test', 'test-0.1', 'human_generated_eval']:
|
84 |
raise ValueError(f"Invalid split '{split}', expected one of ['test', 'test-0.1', 'human_generated_eval'].")
|
85 |
|
86 |
-
#
|
87 |
evaluator = Evaluator(candidate_ids_dict[dataset])
|
88 |
eval_metrics = ['hit@1', 'hit@5', 'recall@20', 'mrr']
|
89 |
-
|
|
|
90 |
qa_dataset = load_qa(dataset, human_generated_eval=split == 'human_generated_eval')
|
91 |
split_idx = qa_dataset.get_idx_split()
|
92 |
all_indices = split_idx[split].tolist()
|
93 |
-
print(f"Dataset loaded, processing {len(all_indices)} instances")
|
94 |
-
|
95 |
-
# results_list = []
|
96 |
-
# query_ids = []
|
97 |
-
|
98 |
-
# # Prepare args for each worker
|
99 |
-
# args = [(idx, eval_csv, qa_dataset, evaluator, eval_metrics) for idx in all_indices]
|
100 |
|
101 |
-
#
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
# results_list.append(result)
|
106 |
-
# query_ids.append(result['query_id'])
|
107 |
|
108 |
-
#
|
109 |
-
|
110 |
-
# final_results = {
|
111 |
-
# metric: np.mean(eval_csv[eval_csv['query_id'].isin(query_ids)][metric]) for metric in eval_metrics
|
112 |
-
# }
|
113 |
-
# return final_result
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
with ThreadPoolExecutor(max_workers=num_workers) as executor:
|
122 |
-
futures = [
|
123 |
-
executor.submit(process_single_instance,
|
124 |
-
(idx, eval_csv, qa_dataset, evaluator, eval_metrics))
|
125 |
-
for idx in batch_indices
|
126 |
-
]
|
127 |
-
for future in futures:
|
128 |
result = future.result()
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
with tqdm(total=len(all_indices), desc="Processing instances") as pbar:
|
140 |
-
completed = 0
|
141 |
-
while completed < len(all_indices):
|
142 |
-
progress_queue.get()
|
143 |
-
completed += 1
|
144 |
-
pbar.update(1)
|
145 |
-
|
146 |
-
# Start progress monitoring thread
|
147 |
-
progress_thread = threading.Thread(target=update_progress)
|
148 |
-
progress_thread.start()
|
149 |
-
|
150 |
-
# Process batches
|
151 |
-
for i in range(0, len(all_indices), batch_size):
|
152 |
-
batch_indices = all_indices[i:min(i + batch_size, len(all_indices))]
|
153 |
-
batch_results = process_batch(batch_indices)
|
154 |
-
results_list.extend(batch_results)
|
155 |
-
remaining_indices -= len(batch_indices)
|
156 |
-
print(f"\rBatch {i//batch_size + 1}/{total_batches} completed. Remaining: {remaining_indices}")
|
157 |
-
|
158 |
-
progress_thread.join()
|
159 |
-
|
160 |
-
# Compute final metrics
|
161 |
-
if not results_list:
|
162 |
-
raise ValueError("No valid results were produced")
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
elapsed_time = time.time() - start_time
|
171 |
-
print(f"\nMetrics computation completed in {elapsed_time:.2f} seconds")
|
172 |
return final_results
|
173 |
|
|
|
|
|
|
|
|
|
174 |
except Exception as error:
|
175 |
-
|
176 |
-
error_msg = f"Error in compute_metrics ({elapsed_time:.2f}s): {str(error)}"
|
177 |
-
print(error_msg)
|
178 |
-
return error_msg
|
179 |
|
180 |
|
181 |
|
|
|
15 |
import shutil
|
16 |
import tempfile
|
17 |
import time
|
18 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
19 |
from queue import Queue
|
20 |
import threading
|
21 |
+
from threading import Lock
|
22 |
from stark_qa import load_qa
|
23 |
from stark_qa.evaluator import Evaluator
|
24 |
|
|
|
32 |
except Exception as e:
|
33 |
raise RuntimeError(f"Failed to initialize HuggingFace Hub storage: {e}")
|
34 |
|
35 |
+
# Global lock for thread-safe operations
|
36 |
+
result_lock = Lock()
|
37 |
|
38 |
def process_single_instance(args):
|
|
|
39 |
idx, eval_csv, qa_dataset, evaluator, eval_metrics = args
|
40 |
+
query, query_id, answer_ids, meta_info = qa_dataset[idx]
|
41 |
try:
|
42 |
+
# Using loc instead of direct boolean indexing for thread safety
|
43 |
+
with result_lock:
|
44 |
+
matching_rows = eval_csv.loc[eval_csv['query_id'] == query_id]
|
45 |
+
if matching_rows.empty:
|
46 |
+
raise IndexError(f'Error when processing query_id={query_id}, please make sure the predicted results exist for this query.')
|
47 |
+
pred_rank = matching_rows['pred_rank'].iloc[0]
|
48 |
+
except IndexError:
|
49 |
+
raise IndexError(f'Error when processing query_id={query_id}, please make sure the predicted results exist for this query.')
|
50 |
+
except Exception as e:
|
51 |
+
raise RuntimeError(f'Unexpected error occurred while fetching prediction rank for query_id={query_id}: {e}')
|
52 |
+
|
53 |
+
if isinstance(pred_rank, str):
|
54 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
pred_rank = eval(pred_rank)
|
56 |
+
except SyntaxError as e:
|
57 |
+
raise ValueError(f'Failed to parse pred_rank as a list for query_id={query_id}: {e}')
|
58 |
+
|
59 |
+
if not isinstance(pred_rank, list):
|
60 |
+
raise TypeError(f'Error when processing query_id={query_id}, expected pred_rank to be a list but got {type(pred_rank)}.')
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
pred_dict = {pred_rank[i]: -i for i in range(min(100, len(pred_rank)))}
|
63 |
+
answer_ids = torch.LongTensor(answer_ids)
|
64 |
+
|
65 |
+
# Evaluate metrics
|
66 |
+
result = evaluator.evaluate(pred_dict, answer_ids, metrics=eval_metrics)
|
67 |
+
result["idx"], result["query_id"] = idx, query_id
|
68 |
+
return result
|
69 |
|
70 |
+
def compute_metrics(csv_path: str, dataset: str, split: str, num_threads: int = 4):
|
71 |
candidate_ids_dict = {
|
72 |
'amazon': [i for i in range(957192)],
|
73 |
'mag': [i for i in range(1172724, 1872968)],
|
74 |
'prime': [i for i in range(129375)]
|
75 |
}
|
76 |
+
|
77 |
try:
|
78 |
+
# Read and validate CSV
|
79 |
eval_csv = pd.read_csv(csv_path)
|
80 |
if 'query_id' not in eval_csv.columns:
|
81 |
raise ValueError('No `query_id` column found in the submitted csv.')
|
82 |
if 'pred_rank' not in eval_csv.columns:
|
83 |
raise ValueError('No `pred_rank` column found in the submitted csv.')
|
84 |
+
|
85 |
+
# Filter required columns
|
86 |
eval_csv = eval_csv[['query_id', 'pred_rank']]
|
87 |
|
88 |
+
# Validate input parameters
|
89 |
if dataset not in candidate_ids_dict:
|
90 |
raise ValueError(f"Invalid dataset '{dataset}', expected one of {list(candidate_ids_dict.keys())}.")
|
91 |
if split not in ['test', 'test-0.1', 'human_generated_eval']:
|
92 |
raise ValueError(f"Invalid split '{split}', expected one of ['test', 'test-0.1', 'human_generated_eval'].")
|
93 |
|
94 |
+
# Initialize evaluator and metrics
|
95 |
evaluator = Evaluator(candidate_ids_dict[dataset])
|
96 |
eval_metrics = ['hit@1', 'hit@5', 'recall@20', 'mrr']
|
97 |
+
|
98 |
+
# Load dataset and get split indices
|
99 |
qa_dataset = load_qa(dataset, human_generated_eval=split == 'human_generated_eval')
|
100 |
split_idx = qa_dataset.get_idx_split()
|
101 |
all_indices = split_idx[split].tolist()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
# Thread-safe containers
|
104 |
+
results_list = []
|
105 |
+
query_ids = []
|
106 |
+
results_lock = Lock()
|
|
|
|
|
107 |
|
108 |
+
# Prepare args for each thread
|
109 |
+
args = [(idx, eval_csv, qa_dataset, evaluator, eval_metrics) for idx in all_indices]
|
|
|
|
|
|
|
|
|
110 |
|
111 |
+
# Process using threads
|
112 |
+
with ThreadPoolExecutor(max_workers=num_threads) as executor:
|
113 |
+
futures = [executor.submit(process_single_instance, arg) for arg in args]
|
114 |
+
|
115 |
+
for future in tqdm(as_completed(futures), total=len(futures)):
|
116 |
+
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
result = future.result()
|
118 |
+
with results_lock:
|
119 |
+
results_list.append(result)
|
120 |
+
query_ids.append(result['query_id'])
|
121 |
+
except Exception as e:
|
122 |
+
print(f"Error processing instance: {str(e)}")
|
123 |
+
|
124 |
+
# Concatenate results and compute final metrics
|
125 |
+
with result_lock:
|
126 |
+
results_df = pd.DataFrame(results_list)
|
127 |
+
eval_csv = pd.concat([eval_csv, results_df], ignore_index=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
+
final_results = {
|
130 |
+
metric: np.mean(eval_csv[eval_csv['query_id'].isin(query_ids)][metric])
|
131 |
+
for metric in eval_metrics
|
132 |
+
}
|
133 |
+
|
|
|
|
|
|
|
134 |
return final_results
|
135 |
|
136 |
+
except pd.errors.EmptyDataError:
|
137 |
+
return "Error: The CSV file is empty or could not be read. Please check the file and try again."
|
138 |
+
except FileNotFoundError:
|
139 |
+
return f"Error: The file {csv_path} could not be found. Please check the file path and try again."
|
140 |
except Exception as error:
|
141 |
+
return f"{error}"
|
|
|
|
|
|
|
142 |
|
143 |
|
144 |
|