martynattakit's picture
Update app.py
8a621d3 verified
import torch
from transformers import RobertaTokenizer, RobertaModel
import numpy as np
from scipy.special import softmax
import gradio as gr
import re
from huggingface_hub import hf_hub_download
# Define the model class with dimension reduction
class CodeClassifier(torch.nn.Module):
def __init__(self, base_model, num_labels=6):
super(CodeClassifier, self).__init__()
self.base = base_model
self.reduction = torch.nn.Linear(768, 512)
self.classifier = torch.nn.Linear(512, num_labels)
def forward(self, input_ids, attention_mask):
outputs = self.base(input_ids=input_ids, attention_mask=attention_mask)
reduced = self.reduction(outputs.pooler_output)
return self.classifier(reduced)
# Load base model and tokenizer from Hugging Face Model Hub
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = RobertaTokenizer.from_pretrained('microsoft/codebert-base')
base_model = RobertaModel.from_pretrained('microsoft/codebert-base')
# Initialize the CodeClassifier with the base model
model = CodeClassifier(base_model)
# Load the checkpoint from Hugginface Model Hub
checkpoint_path = hf_hub_download(repo_id="martynattakit/CodeSentinel-Model", filename="best_model.pt")
checkpoint = torch.load(checkpoint_path, map_location=device)
# Load the state dict, focusing on classifier weights
model_state = checkpoint.get('model_state_dict', checkpoint)
model.load_state_dict(model_state, strict=False)
print("Loaded state dict keys:", model.state_dict().keys())
print("Classifier weight shape:", model.classifier.weight.shape)
model.eval()
model.to(device)
# Label mapping with descriptions
label_map = {
0: ('none', 'No Vulnerability Detected'),
1: ('cwe-121', 'Stack-based Buffer Overflow'),
2: ('cwe-78', 'OS Command Injection'),
3: ('cwe-190', 'Integer Overflow or Wraparound'),
4: ('cwe-191', 'Integer Underflow'),
5: ('cwe-122', 'Heap-based Buffer Overflow')
}
def load_c_file(file):
try:
if file is None:
return ""
with open(file.name, 'r', encoding='utf-8') as f:
content = f.read()
return content
except Exception as e:
return f"Error reading file: {str(e)}"
def clean_code(code):
code = re.sub(r'/\*.*?\*/', '', code, flags=re.DOTALL)
code = re.sub(r'//.*$', '', code, flags=re.MULTILINE)
code = ' '.join(code.split())
return code
def evaluate_code(code):
try:
if len(code) >= 1500000:
return "Code too large"
cleaned_code = clean_code(code)
inputs = tokenizer(cleaned_code, return_tensors="pt", truncation=True, padding=True, max_length=256).to(device)
print("Input shape:", inputs['input_ids'].shape)
with torch.no_grad():
outputs = model(**inputs)
print("Raw logits:", outputs.cpu().numpy())
probs = softmax(outputs.cpu().numpy(), axis=1)
pred = np.argmax(probs, axis=1)[0]
cwe, description = label_map[pred]
return f"{cwe} {description}"
except Exception as e:
return f"Error during prediction: {str(e)}"
with gr.Blocks() as web:
with gr.Row():
with gr.Column(scale=1):
code_box = gr.Textbox(lines=20, label="** C/C++ Code", placeholder="Paste your C or C++ code here...")
with gr.Column(scale=1):
cc_file = gr.File(label="Upload C/C++ File (.c or .cpp)", file_types=[".c", ".cpp"])
check_btn = gr.Button("Check")
with gr.Row():
gr.Markdown("### Result:")
with gr.Row():
with gr.Column(scale=1):
label_box = gr.Textbox(label="Vulnerability", interactive=False)
cc_file.change(fn=load_c_file, inputs=cc_file, outputs=code_box)
check_btn.click(fn=evaluate_code, inputs=code_box, outputs=[label_box])
web.launch()