Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,16 @@
|
|
1 |
import torch
|
2 |
from transformers import RobertaTokenizer, RobertaModel
|
3 |
-
from huggingface_hub import hf_hub_download # <--- NEW IMPORT
|
4 |
import numpy as np
|
5 |
from scipy.special import softmax
|
6 |
import gradio as gr
|
7 |
import re
|
8 |
-
|
9 |
|
10 |
# Define the model class with dimension reduction
|
11 |
class CodeClassifier(torch.nn.Module):
|
12 |
def __init__(self, base_model, num_labels=6):
|
13 |
super(CodeClassifier, self).__init__()
|
14 |
-
self.base = base_model
|
15 |
self.reduction = torch.nn.Linear(768, 512)
|
16 |
self.classifier = torch.nn.Linear(512, num_labels)
|
17 |
|
@@ -20,62 +19,21 @@ class CodeClassifier(torch.nn.Module):
|
|
20 |
reduced = self.reduction(outputs.pooler_output)
|
21 |
return self.classifier(reduced)
|
22 |
|
23 |
-
#
|
24 |
-
|
25 |
-
# Hugging Face Model ID where your .pt file is located
|
26 |
-
HF_MODEL_REPO_ID = 'martynattakit/CodeSentinel-Model'
|
27 |
-
# The exact filename of your .pt file in that repository
|
28 |
-
HF_MODEL_FILENAME = 'best_model.pt' # <--- CONFIRM THIS IS THE EXACT FILENAME YOU UPLOADED
|
29 |
-
|
30 |
-
# Load the base tokenizer (from Hugging Face Hub as before)
|
31 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
32 |
tokenizer = RobertaTokenizer.from_pretrained('microsoft/codebert-base')
|
33 |
-
|
34 |
-
# Initialize the
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
#
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
repo_id=HF_MODEL_REPO_ID,
|
46 |
-
filename=HF_MODEL_FILENAME,
|
47 |
-
# If your model repo is private, you might need to ensure
|
48 |
-
# that huggingface-cli login has been run in your environment.
|
49 |
-
)
|
50 |
-
print(f"Model downloaded to: {downloaded_model_path}")
|
51 |
-
|
52 |
-
# Load the state dictionary from the downloaded .pt file
|
53 |
-
state_dict = torch.load(downloaded_model_path, map_location=device)
|
54 |
-
|
55 |
-
# Handle 'module.' prefix if the model was saved with DataParallel
|
56 |
-
new_state_dict = {}
|
57 |
-
for k, v in state_dict.items():
|
58 |
-
if k.startswith('module.'):
|
59 |
-
new_state_dict[k[7:]] = v # remove 'module.' prefix
|
60 |
-
else:
|
61 |
-
new_state_dict[k] = v
|
62 |
-
model.load_state_dict(new_state_dict)
|
63 |
-
print(f"Successfully loaded model state into CodeClassifier.")
|
64 |
-
|
65 |
-
except Exception as e:
|
66 |
-
print(f"Error during model download or loading: {e}")
|
67 |
-
print("Please ensure:")
|
68 |
-
print(f"1. The repository '{HF_MODEL_REPO_ID}' exists and is public (or you're logged in with `huggingface-cli login`).")
|
69 |
-
print(f"2. The file '{HF_MODEL_FILENAME}' exists within that repository on Hugging Face and is spelled exactly correctly.")
|
70 |
-
# Exiting here is good for deployment environments like Hugging Face Spaces,
|
71 |
-
# as it makes the error clear early on.
|
72 |
-
exit()
|
73 |
-
|
74 |
-
# --- END OF MODIFIED LOADING LOGIC ---
|
75 |
-
|
76 |
-
|
77 |
-
print("Loaded state dict keys (after loading .pt):", model.state_dict().keys())
|
78 |
-
print("Classifier weight shape (after loading .pt):", model.classifier.weight.shape)
|
79 |
model.eval()
|
80 |
model.to(device)
|
81 |
|
@@ -109,11 +67,11 @@ def evaluate_code(code):
|
|
109 |
try:
|
110 |
if len(code) >= 1500000:
|
111 |
return "Code too large"
|
112 |
-
|
113 |
cleaned_code = clean_code(code)
|
114 |
inputs = tokenizer(cleaned_code, return_tensors="pt", truncation=True, padding=True, max_length=256).to(device)
|
115 |
print("Input shape:", inputs['input_ids'].shape)
|
116 |
-
|
117 |
with torch.no_grad():
|
118 |
outputs = model(**inputs)
|
119 |
print("Raw logits:", outputs.cpu().numpy())
|
@@ -121,7 +79,7 @@ def evaluate_code(code):
|
|
121 |
pred = np.argmax(probs, axis=1)[0]
|
122 |
cwe, description = label_map[pred]
|
123 |
return f"{cwe} {description}"
|
124 |
-
|
125 |
except Exception as e:
|
126 |
return f"Error during prediction: {str(e)}"
|
127 |
|
|
|
1 |
import torch
|
2 |
from transformers import RobertaTokenizer, RobertaModel
|
|
|
3 |
import numpy as np
|
4 |
from scipy.special import softmax
|
5 |
import gradio as gr
|
6 |
import re
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
|
9 |
# Define the model class with dimension reduction
|
10 |
class CodeClassifier(torch.nn.Module):
|
11 |
def __init__(self, base_model, num_labels=6):
|
12 |
super(CodeClassifier, self).__init__()
|
13 |
+
self.base = base_model
|
14 |
self.reduction = torch.nn.Linear(768, 512)
|
15 |
self.classifier = torch.nn.Linear(512, num_labels)
|
16 |
|
|
|
19 |
reduced = self.reduction(outputs.pooler_output)
|
20 |
return self.classifier(reduced)
|
21 |
|
22 |
+
# Load base model and tokenizer from Hugging Face Model Hub
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
24 |
tokenizer = RobertaTokenizer.from_pretrained('microsoft/codebert-base')
|
25 |
+
base_model = RobertaModel.from_pretrained('microsoft/codebert-base')
|
26 |
+
# Initialize the CodeClassifier with the base model
|
27 |
+
model = CodeClassifier(base_model)
|
28 |
+
# Load the checkpoint from Hugginface Model Hub
|
29 |
+
checkpoint_path = hf_hub_download(repo_id="martynattakit/CodeSentinel-Model", filename="best_model.pt")
|
30 |
+
checkpoint = torch.load(checkpoint_path, map_location=device)
|
31 |
+
|
32 |
+
# Load the state dict, focusing on classifier weights
|
33 |
+
model_state = checkpoint.get('model_state_dict', checkpoint)
|
34 |
+
model.load_state_dict(model_state, strict=False)
|
35 |
+
print("Loaded state dict keys:", model.state_dict().keys())
|
36 |
+
print("Classifier weight shape:", model.classifier.weight.shape)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
model.eval()
|
38 |
model.to(device)
|
39 |
|
|
|
67 |
try:
|
68 |
if len(code) >= 1500000:
|
69 |
return "Code too large"
|
70 |
+
|
71 |
cleaned_code = clean_code(code)
|
72 |
inputs = tokenizer(cleaned_code, return_tensors="pt", truncation=True, padding=True, max_length=256).to(device)
|
73 |
print("Input shape:", inputs['input_ids'].shape)
|
74 |
+
|
75 |
with torch.no_grad():
|
76 |
outputs = model(**inputs)
|
77 |
print("Raw logits:", outputs.cpu().numpy())
|
|
|
79 |
pred = np.argmax(probs, axis=1)[0]
|
80 |
cwe, description = label_map[pred]
|
81 |
return f"{cwe} {description}"
|
82 |
+
|
83 |
except Exception as e:
|
84 |
return f"Error during prediction: {str(e)}"
|
85 |
|