File size: 3,887 Bytes
fbfb0eb
 
 
 
 
 
8a621d3
fbfb0eb
 
 
 
 
8a621d3
2a8fcc0
 
fbfb0eb
 
 
 
 
 
8a621d3
fbfb0eb
 
8a621d3
 
 
 
 
 
 
 
 
 
 
 
fbfb0eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a621d3
fbfb0eb
 
 
8a621d3
fbfb0eb
 
 
 
 
 
 
8a621d3
fbfb0eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import torch
from transformers import RobertaTokenizer, RobertaModel
import numpy as np
from scipy.special import softmax
import gradio as gr
import re
from huggingface_hub import hf_hub_download

# Define the model class with dimension reduction
class CodeClassifier(torch.nn.Module):
    def __init__(self, base_model, num_labels=6):
        super(CodeClassifier, self).__init__()
        self.base = base_model
        self.reduction = torch.nn.Linear(768, 512)
        self.classifier = torch.nn.Linear(512, num_labels)

    def forward(self, input_ids, attention_mask):
        outputs = self.base(input_ids=input_ids, attention_mask=attention_mask)
        reduced = self.reduction(outputs.pooler_output)
        return self.classifier(reduced)

# Load base model and tokenizer from Hugging Face Model Hub
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = RobertaTokenizer.from_pretrained('microsoft/codebert-base')
base_model = RobertaModel.from_pretrained('microsoft/codebert-base')
# Initialize the CodeClassifier with the base model
model = CodeClassifier(base_model)
# Load the checkpoint from Hugginface Model Hub
checkpoint_path = hf_hub_download(repo_id="martynattakit/CodeSentinel-Model", filename="best_model.pt")
checkpoint = torch.load(checkpoint_path, map_location=device)

# Load the state dict, focusing on classifier weights
model_state = checkpoint.get('model_state_dict', checkpoint)
model.load_state_dict(model_state, strict=False)
print("Loaded state dict keys:", model.state_dict().keys())
print("Classifier weight shape:", model.classifier.weight.shape)
model.eval()
model.to(device)

# Label mapping with descriptions
label_map = {
    0: ('none', 'No Vulnerability Detected'),
    1: ('cwe-121', 'Stack-based Buffer Overflow'),
    2: ('cwe-78', 'OS Command Injection'),
    3: ('cwe-190', 'Integer Overflow or Wraparound'),
    4: ('cwe-191', 'Integer Underflow'),
    5: ('cwe-122', 'Heap-based Buffer Overflow')
}

def load_c_file(file):
    try:
        if file is None:
            return ""
        with open(file.name, 'r', encoding='utf-8') as f:
            content = f.read()
        return content
    except Exception as e:
        return f"Error reading file: {str(e)}"

def clean_code(code):
    code = re.sub(r'/\*.*?\*/', '', code, flags=re.DOTALL)
    code = re.sub(r'//.*$', '', code, flags=re.MULTILINE)
    code = ' '.join(code.split())
    return code

def evaluate_code(code):
    try:
        if len(code) >= 1500000:
            return "Code too large"
        
        cleaned_code = clean_code(code)
        inputs = tokenizer(cleaned_code, return_tensors="pt", truncation=True, padding=True, max_length=256).to(device)
        print("Input shape:", inputs['input_ids'].shape)
        
        with torch.no_grad():
            outputs = model(**inputs)
            print("Raw logits:", outputs.cpu().numpy())
            probs = softmax(outputs.cpu().numpy(), axis=1)
            pred = np.argmax(probs, axis=1)[0]
            cwe, description = label_map[pred]
            return f"{cwe} {description}"
    
    except Exception as e:
        return f"Error during prediction: {str(e)}"

with gr.Blocks() as web:
    with gr.Row():
        with gr.Column(scale=1):
            code_box = gr.Textbox(lines=20, label="** C/C++ Code", placeholder="Paste your C or C++ code here...")
        with gr.Column(scale=1):
            cc_file = gr.File(label="Upload C/C++ File (.c or .cpp)", file_types=[".c", ".cpp"])
            check_btn = gr.Button("Check")

    with gr.Row():
        gr.Markdown("### Result:")

    with gr.Row():
        with gr.Column(scale=1):
            label_box = gr.Textbox(label="Vulnerability", interactive=False)

    cc_file.change(fn=load_c_file, inputs=cc_file, outputs=code_box)
    check_btn.click(fn=evaluate_code, inputs=code_box, outputs=[label_box])

web.launch()