Spaces:
Sleeping
Sleeping
File size: 5,640 Bytes
524b722 36704dc 524b722 ff9698f 524b722 a2ced42 ff9698f 524b722 36704dc 524b722 ff9698f 524b722 36704dc 524b722 ff9698f 524b722 28aae5c 524b722 5f24a61 524b722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import os
import subprocess
from threading import Thread
import random
import torch
import spaces
import gradio as gr
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
TextIteratorStreamer,
)
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
MODEL_ID = "speakleash/Bielik-7B-Instruct-v0.1"
CHAT_TEMPLATE = "ChatML"
MODEL_NAME = MODEL_ID.split("/")[-1]
CONTEXT_LENGTH = 1024
COLOR = os.environ.get("COLOR")
EMOJI = os.environ.get("EMOJI")
DESCRIPTION = os.environ.get("DESCRIPTION")
# Load model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
quantization_config = BitsAndBytesConfig(
load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
device_map="auto",
torch_dtype="auto",
attn_implementation="flash_attention_2",
)
@spaces.GPU()
def generate(
instruction,
stop_tokens,
temperature,
max_new_tokens,
top_k,
repetition_penalty,
top_p,
):
streamer = TextIteratorStreamer(
tokenizer, skip_prompt=True, skip_special_tokens=True
)
enc = tokenizer([instruction], return_tensors="pt", padding=True, truncation=True)
input_ids, attention_mask = enc.input_ids, enc.attention_mask
if input_ids.shape[1] > CONTEXT_LENGTH:
input_ids = input_ids[:, -CONTEXT_LENGTH:]
generate_kwargs = dict(
{
"input_ids": input_ids.to(device),
"attention_mask": attention_mask.to(device),
},
streamer=streamer,
do_sample=True if temperature else False,
temperature=temperature,
max_new_tokens=max_new_tokens,
top_k=top_k,
repetition_penalty=repetition_penalty,
top_p=top_p,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for new_token in streamer:
outputs.append(new_token)
if new_token in stop_tokens:
break
yield "".join(outputs)
def predict(
message,
history,
system_prompt,
temperature,
max_new_tokens,
top_k,
repetition_penalty,
top_p,
):
repetition_penalty = float(repetition_penalty)
print(
"LLL",
[
message,
history,
system_prompt,
temperature,
max_new_tokens,
top_k,
repetition_penalty,
top_p,
],
)
# Format history with a given chat template
if CHAT_TEMPLATE == "ChatML":
stop_tokens = ["<|endoftext|>", "<|im_end|>"]
instruction = "<|im_start|>system\n" + system_prompt + "\n<|im_end|>\n"
for human, assistant in history:
instruction += (
"<|im_start|>user\n"
+ human
+ "\n<|im_end|>\n<|im_start|>assistant\n"
+ assistant
)
instruction += (
"\n<|im_start|>user\n" + message + "\n<|im_end|>\n<|im_start|>assistant\n"
)
elif CHAT_TEMPLATE == "Mistral Instruct":
stop_tokens = ["</s>", "[INST]", "[INST] ", "<s>", "[/INST]", "[/INST] "]
instruction = "<s>[INST] " + system_prompt
for human, assistant in history:
instruction += human + " [/INST] " + assistant + "</s>[INST]"
instruction += " " + message + " [/INST]"
elif CHAT_TEMPLATE == "Bielik":
stop_tokens = ["</s>"]
prompt_builder = ["<s>[INST] "]
if system_prompt:
prompt_builder.append(f"<<SYS>>\n{system_prompt}\n<</SYS>>\n\n")
for human, assistant in history:
prompt_builder.append(f"{human} [/INST] {assistant}</s>[INST] ")
prompt_builder.append(f"{message} [/INST]")
instruction = "".join(prompt_builder)
else:
raise Exception(
"Incorrect chat template, select 'ChatML' or 'Mistral Instruct'"
)
print(instruction)
for output_text in generate(
instruction,
stop_tokens,
temperature,
max_new_tokens,
top_k,
repetition_penalty,
top_p,
):
yield output_text
# Create Gradio interface
def update_examples():
exs = [["Kim jesteś?"], ["Ile to jest 9+2-1?"], ["Napisz mi coś miłego."]]
random.shuffle(exs)
return gr.Dataset(samples=exs)
with gr.Blocks() as demo:
chatbot = gr.Chatbot(label="Chatbot", render=False)
chat = gr.ChatInterface(
predict,
chatbot=chatbot,
title=EMOJI + " " + MODEL_NAME + " - online chat demo",
description=DESCRIPTION,
examples=[["Kim jesteś?"], ["Ile to jest 9+2-1?"], ["Napisz mi coś miłego."]],
additional_inputs_accordion=gr.Accordion(
label="⚙️ Parameters", open=False, render=False
),
additional_inputs=[
gr.Textbox("", label="System prompt", render=False),
gr.Slider(0, 1, 0.6, label="Temperature", render=False),
gr.Slider(128, 4096, 1024, label="Max new tokens", render=False),
gr.Slider(1, 80, 40, step=1, label="Top K sampling", render=False),
gr.Slider(0, 2, 1.1, label="Repetition penalty", render=False),
gr.Slider(0, 1, 0.95, label="Top P sampling", render=False),
],
theme=gr.themes.Soft(primary_hue=COLOR),
)
demo.load(update_examples, None, chat.examples_handler.dataset)
demo.queue(max_size=20).launch()
|