File size: 5,640 Bytes
524b722
 
 
 
 
36704dc
524b722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff9698f
524b722
 
 
 
 
 
 
 
 
 
 
 
 
a2ced42
ff9698f
524b722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36704dc
524b722
 
ff9698f
524b722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36704dc
524b722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff9698f
 
524b722
28aae5c
524b722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f24a61
524b722
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os
import subprocess
from threading import Thread

import random
import torch
import spaces
import gradio as gr
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    TextIteratorStreamer,
)

subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True,
)

MODEL_ID = "speakleash/Bielik-7B-Instruct-v0.1"
CHAT_TEMPLATE = "ChatML"
MODEL_NAME = MODEL_ID.split("/")[-1]
CONTEXT_LENGTH = 1024
COLOR = os.environ.get("COLOR")
EMOJI = os.environ.get("EMOJI")
DESCRIPTION = os.environ.get("DESCRIPTION")

# Load model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID,
    device_map="auto",
    torch_dtype="auto",
    attn_implementation="flash_attention_2",
)


@spaces.GPU()
def generate(
    instruction,
    stop_tokens,
    temperature,
    max_new_tokens,
    top_k,
    repetition_penalty,
    top_p,
):
    streamer = TextIteratorStreamer(
        tokenizer, skip_prompt=True, skip_special_tokens=True
    )
    enc = tokenizer([instruction], return_tensors="pt", padding=True, truncation=True)
    input_ids, attention_mask = enc.input_ids, enc.attention_mask

    if input_ids.shape[1] > CONTEXT_LENGTH:
        input_ids = input_ids[:, -CONTEXT_LENGTH:]

    generate_kwargs = dict(
        {
            "input_ids": input_ids.to(device),
            "attention_mask": attention_mask.to(device),
        },
        streamer=streamer,
        do_sample=True if temperature else False,
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_k=top_k,
        repetition_penalty=repetition_penalty,
        top_p=top_p,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()
    outputs = []
    for new_token in streamer:
        outputs.append(new_token)
        if new_token in stop_tokens:
            break
        yield "".join(outputs)


def predict(
    message,
    history,
    system_prompt,
    temperature,
    max_new_tokens,
    top_k,
    repetition_penalty,
    top_p,
):
    repetition_penalty = float(repetition_penalty)
    print(
        "LLL",
        [
            message,
            history,
            system_prompt,
            temperature,
            max_new_tokens,
            top_k,
            repetition_penalty,
            top_p,
        ],
    )
    # Format history with a given chat template
    if CHAT_TEMPLATE == "ChatML":
        stop_tokens = ["<|endoftext|>", "<|im_end|>"]
        instruction = "<|im_start|>system\n" + system_prompt + "\n<|im_end|>\n"
        for human, assistant in history:
            instruction += (
                "<|im_start|>user\n"
                + human
                + "\n<|im_end|>\n<|im_start|>assistant\n"
                + assistant
            )
        instruction += (
            "\n<|im_start|>user\n" + message + "\n<|im_end|>\n<|im_start|>assistant\n"
        )
    elif CHAT_TEMPLATE == "Mistral Instruct":
        stop_tokens = ["</s>", "[INST]", "[INST] ", "<s>", "[/INST]", "[/INST] "]
        instruction = "<s>[INST] " + system_prompt
        for human, assistant in history:
            instruction += human + " [/INST] " + assistant + "</s>[INST]"
        instruction += " " + message + " [/INST]"
    elif CHAT_TEMPLATE == "Bielik":
        stop_tokens = ["</s>"]
        prompt_builder = ["<s>[INST] "]
        if system_prompt:
            prompt_builder.append(f"<<SYS>>\n{system_prompt}\n<</SYS>>\n\n")
        for human, assistant in history:
            prompt_builder.append(f"{human} [/INST] {assistant}</s>[INST] ")
        prompt_builder.append(f"{message} [/INST]")
        instruction = "".join(prompt_builder)
    else:
        raise Exception(
            "Incorrect chat template, select 'ChatML' or 'Mistral Instruct'"
        )
    print(instruction)

    for output_text in generate(
        instruction,
        stop_tokens,
        temperature,
        max_new_tokens,
        top_k,
        repetition_penalty,
        top_p,
    ):
        yield output_text


# Create Gradio interface
def update_examples():
    exs = [["Kim jesteś?"], ["Ile to jest 9+2-1?"], ["Napisz mi coś miłego."]]
    random.shuffle(exs)
    return gr.Dataset(samples=exs)


with gr.Blocks() as demo:
    chatbot = gr.Chatbot(label="Chatbot", render=False)
    chat = gr.ChatInterface(
        predict,
        chatbot=chatbot,
        title=EMOJI + " " + MODEL_NAME + " - online chat demo",
        description=DESCRIPTION,
        examples=[["Kim jesteś?"], ["Ile to jest 9+2-1?"], ["Napisz mi coś miłego."]],
        additional_inputs_accordion=gr.Accordion(
            label="⚙️ Parameters", open=False, render=False
        ),
        additional_inputs=[
            gr.Textbox("", label="System prompt", render=False),
            gr.Slider(0, 1, 0.6, label="Temperature", render=False),
            gr.Slider(128, 4096, 1024, label="Max new tokens", render=False),
            gr.Slider(1, 80, 40, step=1, label="Top K sampling", render=False),
            gr.Slider(0, 2, 1.1, label="Repetition penalty", render=False),
            gr.Slider(0, 1, 0.95, label="Top P sampling", render=False),
        ],
        theme=gr.themes.Soft(primary_hue=COLOR),
    )
    demo.load(update_examples, None, chat.examples_handler.dataset)

demo.queue(max_size=20).launch()