File size: 24,814 Bytes
63202a2 63fd3b1 ed78196 63202a2 7f54946 4f572a5 29c8ef6 63202a2 e9a19be 63202a2 4f572a5 e9a19be 4f572a5 e9a19be 4f572a5 e9a19be 4f572a5 e9a19be 4f572a5 e9a19be 4f572a5 e9a19be 4f572a5 e9a19be 8f4448c 4973af4 8f4448c e9a19be 4973af4 e9a19be 4f572a5 a65282b df383f6 4f572a5 ed78196 63fd3b1 e9a19be 63fd3b1 ed78196 e9a19be ed78196 df383f6 ed78196 63fd3b1 ed78196 df383f6 ed78196 df383f6 ed78196 df383f6 ed78196 df383f6 ed78196 df383f6 4f572a5 ed78196 4f572a5 ed78196 4f572a5 ed78196 df383f6 ed78196 4f572a5 e9a19be 4f572a5 63fd3b1 4f572a5 8f4448c 63fd3b1 4f572a5 7f54946 4f572a5 63202a2 4f572a5 29c8ef6 4f572a5 a65282b 29c8ef6 63202a2 a65282b 4f572a5 ed78196 e9a19be ed78196 4f572a5 e9a19be ed78196 e9a19be 29c8ef6 ed78196 df383f6 ed78196 1167b2d e9a19be 8f4448c 4f572a5 ed78196 8f4448c 4f572a5 7fc657e 4f572a5 e92634d e9a19be 1167b2d ed78196 df383f6 e9a19be df383f6 e9a19be 29c8ef6 4f572a5 1167b2d 4f572a5 8633921 4f572a5 29c8ef6 df383f6 ed78196 4f572a5 e9a19be 4f572a5 63fd3b1 4f572a5 8f4448c 4f572a5 d597fe1 a65282b 4f572a5 7f54946 4f572a5 7f54946 4f572a5 a65282b 4f572a5 a65282b d597fe1 29c8ef6 d597fe1 63fd3b1 d597fe1 a65282b d597fe1 a65282b d597fe1 a65282b 4f572a5 d597fe1 a65282b 29c8ef6 4f572a5 0c05388 4f572a5 0c05388 4f572a5 0c05388 29c8ef6 63fd3b1 4f572a5 63fd3b1 4f572a5 29c8ef6 0c05388 29c8ef6 e9a19be 4f572a5 63fd3b1 29c8ef6 0c05388 4f572a5 29c8ef6 4f572a5 63fd3b1 4f572a5 29c8ef6 63fd3b1 29c8ef6 4f572a5 29c8ef6 4f572a5 29c8ef6 0c05388 29c8ef6 4f572a5 29c8ef6 4f572a5 29c8ef6 0c05388 4f572a5 29c8ef6 4f572a5 29c8ef6 4f572a5 29c8ef6 4f572a5 29c8ef6 4f572a5 29c8ef6 4f572a5 29c8ef6 63fd3b1 29c8ef6 63fd3b1 29c8ef6 63fd3b1 4f572a5 63fd3b1 4f572a5 29c8ef6 63202a2 4f572a5 63fd3b1 e9a19be 4f572a5 e9a19be 4f572a5 a65282b 4f572a5 a65282b 4f572a5 e9a19be 4f572a5 a65282b 4f572a5 63202a2 ed78196 0a5d23d 63fd3b1 ed78196 63fd3b1 4f572a5 e9a19be 4f572a5 63fd3b1 4f572a5 63fd3b1 4f572a5 63fd3b1 4f572a5 0a5d23d a65282b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
import json
from functools import partial
import gradio as gr
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import pycountry
with open("results.json") as f:
languages = json.load(f)
languages_with_scores = [
lang for lang in languages if lang["t2t_score"] is not None
]
# Global constants for metric mappings
METRICS = [
{
"display_name": "Overall Text-to-Text Performance",
"field_name": "t2t_score",
"label": "Overall Score",
"explanation": """
**Overall Score for Text-to-Text Performance**: A weighted combination of all metrics, providing a holistic view of model performance across different language tasks.
Higher scores indicate better overall language capabilities.
""",
},
{
"display_name": "Translation (BLEU)",
"field_name": "mt_bleu",
"label": "BLEU Score",
"explanation": """
**Translation BLEU**: BiLingual Evaluation Understudy (BLEU) measures how similar AI-generated translations are to human reference translations.
It calculates n-gram precision and applies a brevity penalty. Scores range from 0 to 1, with higher values indicating better translation quality.
""",
},
{
"display_name": "Translation (ChrF)",
"field_name": "mt_chrf",
"label": "ChrF Score",
"explanation": """
**Translation ChrF**: Character n-gram F-score evaluates translations at the character level rather than word level.
This metric is particularly valuable for morphologically rich languages and can better capture partial word matches.
Higher scores (0-1) indicate better translations.
""",
},
{
"display_name": "Classification (Accuracy)",
"field_name": "cls_acc",
"label": "Classification Accuracy",
"explanation": """
**Classification Accuracy**: Measures how accurately models can classify text into predefined categories.
This evaluates a model's understanding of content and context across different languages.
Reported as a percentage where higher values indicate better classification performance.
""",
},
{
"display_name": "Masked Language Modeling (ChrF)",
"field_name": "mlm_chrf",
"label": "MLM ChrF Score",
"explanation": """
**Masked Language Modeling ChrF**: Evaluates how well models can predict masked (hidden) portions of text.
This tests a model's understanding of language structure and semantics by measuring the character-level similarity
between predicted and actual text. Higher scores indicate better language understanding.
""",
},
{
"display_name": "Overall Speech-to-Text Performance",
"field_name": "s2t_score",
"label": "Overall Score",
"explanation": """
**Overall Score for Speech-to-Text Performance**: A weighted combination of all metrics, providing a holistic view of model performance across different language tasks.
Higher scores indicate better overall language capabilities.
""",
},
{
"display_name": "Automatic Speech Recognition (WER)",
"field_name": "asr_wer",
"label": "WER",
"explanation": """
**Automatic Speech Recognition Word Error Rate**: Measures the accuracy of speech-to-text transcription.
It calculates the minimum number of word edits (insertions, deletions, substitutions) needed to transform the
transcription into the reference text, divided by the number of words in the reference.
Lower scores indicate better performance, with 0 being perfect transcription.
""",
},
{
"display_name": "Automatic Speech Recognition ChrF",
"field_name": "asr_chrf",
"label": "ChrF",
"explanation": """
**Automatic Speech Recognition ChrF**: Character n-gram F-score evaluates translations at the character level rather than word level.
This metric is particularly valuable for morphologically rich languages and can better capture partial word matches.
Higher scores (0-1) indicate better translations.
""",
},
]
def mean(lst):
return sum(lst) / len(lst)
def create_leaderboard_df(metric):
# Sort languages by average BLEU to determine resource categories
langs_with_score = [
lang for lang in languages_with_scores if lang[metric["field_name"]] is not None
]
sorted_langs = sorted(
langs_with_score, key=lambda x: x[metric["field_name"]], reverse=True
)
n_langs = len(sorted_langs)
high_cutoff = n_langs // 4 # top 25%
low_cutoff = n_langs - n_langs // 4 # bottom 25%
# Create sets of languages for each category
high_resource = {lang["language_name"] for lang in sorted_langs[:high_cutoff]}
low_resource = {lang["language_name"] for lang in sorted_langs[low_cutoff:]}
# Get all model scores with categorization
model_scores = {}
for lang in languages_with_scores:
category = (
"High-Resource"
if lang["language_name"] in high_resource
else "Low-Resource"
if lang["language_name"] in low_resource
else "Mid-Resource"
)
for score in lang["scores"]:
model = score["model"]
if model not in model_scores:
model_scores[model] = {
"High-Resource": [],
"Mid-Resource": [],
"Low-Resource": [],
}
model_scores[model][category].append(score[metric["field_name"]])
# Calculate average scores and create DataFrame
leaderboard_data = []
for model, categories in model_scores.items():
# Calculate averages for each category
high_avg = (
round(mean(categories["High-Resource"]), 3)
if categories["High-Resource"]
else 0
)
mid_avg = (
round(mean(categories["Mid-Resource"]), 3)
if categories["Mid-Resource"]
else 0
)
low_avg = (
round(mean(categories["Low-Resource"]), 3)
if categories["Low-Resource"]
else 0
)
# Calculate overall average
all_scores = (
categories["High-Resource"]
+ categories["Mid-Resource"]
+ categories["Low-Resource"]
)
overall_avg = round(sum(all_scores) / len(all_scores), 3)
model_name = model.split("/")[-1]
leaderboard_data.append(
{
"Model": f"[{model_name}](https://openrouter.ai/{model})",
"Overall Score": overall_avg,
"High-Resource Score": high_avg,
"Mid-Resource Score": mid_avg,
"Low-Resource Score": low_avg,
"Languages Tested": len(all_scores),
}
)
# Sort by overall BLEU
df = pd.DataFrame(leaderboard_data)
df = df.sort_values("Overall Score", ascending=False)
# Add rank and medals
df["Rank"] = range(1, len(df) + 1)
df["Rank"] = df["Rank"].apply(
lambda x: "π₯" if x == 1 else "π₯" if x == 2 else "π₯" if x == 3 else str(x)
)
# Reorder columns
df = df[
[
"Rank",
"Model",
"Overall Score",
"High-Resource Score",
"Mid-Resource Score",
"Low-Resource Score",
"Languages Tested",
]
]
return gr.DataFrame(
value=df,
label="Model Leaderboard",
show_search=False,
datatype=[
"number",
"markdown",
"number",
"number",
"number",
"number",
"number",
],
)
def create_model_comparison_plot(metric):
top_languages = sorted(languages_with_scores, key=lambda x: x["speakers"], reverse=True)[:10]
# Create appropriate title and y-axis label based on metric
title = f"{metric['display_name']} by Model and Language"
y_label = metric["label"]
# Flatten the data for the selected metric
scores_flat = []
for lang in top_languages:
for score in lang["scores"]:
# Get the value directly using the field name
if metric["field_name"] not in score:
continue
value = score[metric["field_name"]]
if value is not None:
scores_flat.append(
{
"language": lang["language_name"],
"model": score["model"],
"value": value,
}
)
df = pd.DataFrame(scores_flat)
fig = px.bar(df, x="language", y="value", color="model", barmode="group")
fig.update_layout(
title=title,
xaxis_title=None,
yaxis_title=y_label,
barmode="group",
height=500,
legend=dict(
orientation="h", # horizontal orientation
yanchor="bottom",
y=-0.3, # position below plot
xanchor="center",
x=0.5, # center horizontally
),
)
return fig
def create_language_stats_df(metric):
# Create a list to store flattened data
flat_data = []
for lang in languages:
# Find the best model and its BLEU score
best_model = max(
lang["scores"] or [{"t2t_score": None, "model": None}],
key=lambda x: x.get("t2t_score", 0),
) if lang["t2t_score"] is not None else None
model = best_model["model"] if best_model else None
model_name = model.split("/")[-1] if model else "N/A"
model_link = (
f"<a href='https://openrouter.ai/{model}' style='text-decoration: none; color: inherit;'>{model_name}</a>"
if model
else "N/A"
)
commonvoice_link = (
f"<!--{lang['commonvoice_hours']:07} (for sorting)--> <a href='https://commonvoice.mozilla.org/{lang['commonvoice_locale']}/speak' style='text-decoration: none; color: inherit;'>ποΈ {lang['commonvoice_hours']}</a>"
if lang["commonvoice_hours"]
else "N/A"
)
row = {
"Language": f"**{lang['language_name']}**",
"Speakers (M)": round(lang["speakers"] / 1_000_000, 1),
# "Models Tested": len(lang["scores"]),
# "Overall": round(lang["overall_score"], 3)
# if lang["overall_score"] is not None
# else "N/A",
"Translation": round(lang["mt_bleu"], 3)
if lang["mt_bleu"] is not None
else "N/A",
"Classification": round(lang["cls_acc"], 3)
if lang["cls_acc"] is not None
else "N/A",
"MLM": round(lang["mlm_chrf"], 3)
if lang["mlm_chrf"] is not None
else "N/A",
"ASR": round(lang["asr_wer"], 3) if lang["asr_wer"] is not None else "N/A",
"Best Model": model_link,
"CommonVoice Hours": commonvoice_link,
}
flat_data.append(row)
df = pd.DataFrame(flat_data)
return gr.DataFrame(
value=df,
label="Language Results",
show_search="search",
pinned_columns=1,
column_widths=[
"100px",
"100px",
"100px",
"100px",
"100px",
"100px",
"100px",
"100px",
"100px",
"100px",
],
datatype=[
"markdown", # Language
"number", # Speakers
# "number", # Models Tested
"number", # Overall
"number", # Translation
"number", # Classification
"number", # MLM
"number", # ASR
"markdown", # Best Model
"markdown", # CommonVoice Hours
],
)
def create_scatter_plot(metric):
# Filter results to include only languages with sufficient speakers
filtered_results = [lang for lang in languages_with_scores if lang["speakers"] >= 10_000]
# Create a list to store data for the scatter plot
scatter_data = []
for lang in filtered_results:
# Calculate average score for this metric across all models
scores = [
score[metric["field_name"]]
for score in lang["scores"]
if metric["field_name"] in score and score[metric["field_name"]] is not None
]
if scores: # Only include if we have valid scores
avg_score = sum(scores) / len(scores)
scatter_data.append(
{
"language": lang["language_name"],
"speakers": lang["speakers"],
"score": avg_score,
}
)
fig = go.Figure()
# Convert speakers to millions for display
x_vals = [
data["speakers"] / 1_000_000 for data in scatter_data
] # Convert to millions
y_vals = [data["score"] for data in scatter_data]
labels = [data["language"] for data in scatter_data]
# Create hover template
hover_template = f"<b>%{{text}}</b><br>Speakers: %{{x:.1f}}M<br>{metric['label']}: %{{y:.3f}}<extra></extra>"
fig.add_trace(
go.Scatter(
x=x_vals,
y=y_vals,
mode="markers+text",
text=labels,
textposition="top center",
hovertemplate=hover_template,
)
)
fig.update_layout(
title=None,
xaxis_title="Number of Speakers (Millions)",
yaxis_title=metric["label"],
height=500,
showlegend=False,
)
# Use log scale for x-axis since speaker numbers vary widely
fig.update_xaxes(type="log")
return fig
def format_number(n):
"""Format number with K/M suffix"""
if n >= 1_000_000:
return f"{n/1_000_000:.1f}M"
elif n >= 1_000:
return f"{n/1_000:.0f}K"
return str(n)
def get_population_data():
import xml.etree.ElementTree as ET
from language_data.util import data_filename
filename = data_filename("supplementalData.xml")
root = ET.fromstring(open(filename).read())
territories = root.findall("./territoryInfo/territory")
data = {}
for territory in territories:
t_code = territory.attrib["type"]
t_population = float(territory.attrib["population"])
data[t_code] = t_population
return data
# Helper functions for visualization
def make_black_bar(value, max_width=10):
filled = int(value * max_width)
return "β¬οΈ" * filled + "β¬οΈ" * (max_width - filled)
def make_colored_bar(score, max_width=10):
"""Create a colored bar using Unicode blocks based on normalized score
π¦ for high values (>0.35)
π¨ for medium values (0.25-0.35)
π₯ for low values (<0.25)
β¬ for empty space
This function handles both normalization and bar creation.
"""
# Create the bar based on normalized value
filled = int(score * max_width)
filled = max(0, min(filled, max_width))
empty = max_width - filled
if score > 0.35:
return "π¦" * filled + "β¬" * empty
elif score > 0.25:
return "π¨" * filled + "β¬" * empty
else:
return "π₯" * filled + "β¬" * empty
def create_world_map(metric):
# Collect all country data
population_data = get_population_data()
country_data = {}
for lang in languages:
# Skip languages without the required data
if "population" not in lang or lang[metric["field_name"]] is None:
continue
for country_code, speakers in lang["population"].items():
try:
# Convert alpha_2 (2-letter) to alpha_3 (3-letter) code
country = pycountry.countries.get(alpha_2=country_code)
if country is None:
continue
iso3_code = country.alpha_3
if iso3_code not in country_data:
country_data[iso3_code] = {
"total_speakers": 0,
"population": population_data.get(country_code, 0),
"weighted_score_sum": 0,
"languages": [],
}
country_data[iso3_code]["total_speakers"] += speakers
country_data[iso3_code]["weighted_score_sum"] += (
speakers * lang[metric["field_name"]]
)
country_data[iso3_code]["languages"].append(
{
"name": lang["language_name"],
"speakers": speakers,
"score": lang[metric["field_name"]],
}
)
except (KeyError, AttributeError):
# Skip invalid or unrecognized country codes
continue
# Calculate final weighted averages and prepare hover text
countries = []
scores = []
hover_texts = []
for country_code, data in country_data.items():
weighted_avg = data["weighted_score_sum"] / data["total_speakers"]
try:
country_name = pycountry.countries.get(alpha_3=country_code).name
except AttributeError:
country_name = country_code
# Sort languages by number of speakers
langs = sorted(data["languages"], key=lambda x: x["speakers"], reverse=True)
# Take top 5 languages and summarize the rest
main_langs = langs[:5]
other_langs = langs[5:]
# Create language rows with bars
lang_rows = []
for lang in main_langs:
percentage = (lang["speakers"] / data["population"]) * 100
speaker_bar = make_black_bar(percentage / 100)
# Use the integrated make_colored_bar function directly
score_bar = make_colored_bar(lang["score"])
lang_rows.append(
f"<b>{lang['name']}</b><br>"
f"{speaker_bar} {format_number(lang['speakers'])} speakers<br>"
f"{score_bar} {lang['score']:.3f} {metric['label']}<br>"
)
# Add summary for other languages if any
if other_langs:
other_speakers = sum(lang["speakers"] for lang in other_langs)
other_percentage = (other_speakers / data["population"]) * 100
other_avg_score = sum(lang["score"] for lang in other_langs) / len(
other_langs
)
speaker_bar = make_black_bar(other_percentage / 100)
# Use the integrated make_colored_bar function directly
score_bar = make_colored_bar(other_avg_score)
lang_rows.append(
f"<b>+{len(other_langs)} other languages</b><br>"
f"{speaker_bar} {format_number(other_speakers)} speakers<br>"
f"{score_bar} {other_avg_score:.3f} {metric['label']}<br>"
)
hover_text = f"<b>{country_name}</b><br><br>" f"{'<br>'.join(lang_rows)}"
countries.append(country_code)
scores.append(weighted_avg)
hover_texts.append(hover_text)
# Create the choropleth map
fig = go.Figure(
data=go.Choropleth(
locations=countries,
locationmode="ISO-3",
z=scores,
text=hover_texts,
hoverinfo="text",
colorscale=[[0, "#ff9999"], [1, "#99ccff"]],
colorbar=dict(
title=metric["label"],
orientation="h", # horizontal orientation
y=-0.2, # position below map
yanchor="bottom",
len=0.5, # length of colorbar
x=0.5, # center horizontally
xanchor="center",
thickness=20, # make it a bit thicker when horizontal
),
)
)
fig.update_layout(
title=dict(
text=f"{metric['display_name']} by Country", x=0.5, xanchor="center"
),
geo=dict(
showframe=True,
showcoastlines=True,
projection_type="equal earth",
showland=True,
landcolor="#f8f9fa",
coastlinecolor="#e0e0e0",
countrycolor="#e0e0e0",
),
height=600,
margin=dict(l=0, r=0, t=30, b=0),
paper_bgcolor="white",
hoverlabel=dict(
bgcolor="beige",
font_size=12,
),
)
return fig
def create_metric_explanation(metric):
return gr.Markdown(metric["explanation"])
# Create the visualization components
with gr.Blocks(title="AI Language Proficiency Benchmark") as demo:
gr.Markdown("# AI Language Proficiency Benchmark")
gr.Markdown("Comparing language proficiency across different models and languages.")
start_metric = METRICS[0]
metric = gr.Dropdown(
choices=[metric_info["display_name"] for metric_info in METRICS],
value=start_metric["display_name"],
label="Select Metric",
interactive=True,
)
metric_explanation = create_metric_explanation(start_metric)
gr.Markdown("## Model Comparison")
# create_leaderboard_df(start_metric)
model_comparison_plot = gr.Plot(
value=create_model_comparison_plot(start_metric),
label="Model Comparison",
)
gr.Markdown("## Language Stats")
create_language_stats_df(start_metric)
scatter_plot = gr.Plot(
value=create_scatter_plot(start_metric),
label="Speaker Population vs. Metric",
)
world_map = gr.Plot(
value=create_world_map(start_metric),
label="World Map",
container=False,
elem_classes="fullwidth-plot",
)
gr.Markdown(
"""
## Methodology
### Benchmark Data
We use the [FLORES+](https://huggingface.co/datasets/openlanguagedata/flores_plus) dataset for evaluation, which contains parallel text in over 200 languages, as well as topic labels for each sentence. Where FLORES+ includes multiple scripts for one language, we use only the most common one.
Population and speaker data and language code resolution are from Unicode [CLDR](https://github.com/unicode-org/cldr) via the [langcodes](https://github.com/rspeer/langcodes) package.
### AI Models
We use [OpenRouter](https://openrouter.ai/) to access all relevant AI models via a unified API.
### Evaluation Tasks
Our benchmark includes three core tasks to assess different aspects of language understanding:
1. **Machine Translation**: Models translate text _from_ the evaluated language _to_ a fixed set of target languages. The set of target languages is representative of global speaker populations. Performance is measured using:
- [BLEU Score](https://huggingface.co/metrics/bleu): Measures n-gram precision with a brevity penalty
- [ChrF Score](https://huggingface.co/metrics/chrf): Character-level F-score that better captures morphological variations
2. **Text Classification**: Models classify text into predefined topics after being shown examples. We:
- Group sentences by URL into paragraphs with the same topic
- Use the 5 most common topics, encoded as numbers rather than English labels
- Provide 5 examples of each topic as few-shot examples
- Test the model's ability to classify new text
- Report accuracy as the primary metric
3. **Masked Language Modeling**: Models predict missing portions of text (marked with `<mask>`). We:
- Mask approximately 5% of each sentence at a random position
- Provide 10 examples of complete sentences paired with masked versions in a few-shot setting
- Evaluate predictions using ChrF score against the original text
The overall performance score combines metrics from all tasks to provide a holistic assessment of model capabilities across languages.
""",
container=True,
)
def update_component(fn, metric_choice):
metric = [m for m in METRICS if m["display_name"] == metric_choice][0]
return fn(metric)
metric.change(
fn=partial(update_component, create_metric_explanation),
inputs=metric,
outputs=metric_explanation,
)
metric.change(
fn=partial(update_component, create_model_comparison_plot),
inputs=metric,
outputs=model_comparison_plot,
)
metric.change(
fn=partial(update_component, create_scatter_plot),
inputs=metric,
outputs=scatter_plot,
)
metric.change(
fn=partial(update_component, create_world_map), inputs=metric, outputs=world_map
)
demo.launch()
|