David Pomerenke
commited on
Commit
·
4f572a5
1
Parent(s):
e92634d
Metrics selector & refactoring
Browse files- app.py +253 -106
- evals.py +28 -26
- results.json +210 -210
app.py
CHANGED
@@ -2,22 +2,74 @@ import json
|
|
2 |
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
-
import plotly.graph_objects as go
|
6 |
import plotly.express as px
|
|
|
7 |
import pycountry
|
8 |
|
9 |
with open("results.json") as f:
|
10 |
results = json.load(f)
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def mean(lst):
|
14 |
return sum(lst) / len(lst)
|
15 |
|
16 |
|
17 |
-
def create_leaderboard_df(
|
18 |
# Sort languages by average BLEU to determine resource categories
|
19 |
-
|
20 |
-
sorted_langs = sorted(
|
21 |
n_langs = len(sorted_langs)
|
22 |
high_cutoff = n_langs // 4 # top 25%
|
23 |
low_cutoff = n_langs - n_langs // 4 # bottom 25%
|
@@ -45,7 +97,7 @@ def create_leaderboard_df(results):
|
|
45 |
"Mid-Resource": [],
|
46 |
"Low-Resource": [],
|
47 |
}
|
48 |
-
model_scores[model][category].append(score[
|
49 |
|
50 |
# Calculate average scores and create DataFrame
|
51 |
leaderboard_data = []
|
@@ -79,17 +131,17 @@ def create_leaderboard_df(results):
|
|
79 |
leaderboard_data.append(
|
80 |
{
|
81 |
"Model": f"[{model_name}](https://openrouter.ai/{model})",
|
82 |
-
"Overall
|
83 |
-
"High-Resource
|
84 |
-
"Mid-Resource
|
85 |
-
"Low-Resource
|
86 |
"Languages Tested": len(all_scores),
|
87 |
}
|
88 |
)
|
89 |
|
90 |
# Sort by overall BLEU
|
91 |
df = pd.DataFrame(leaderboard_data)
|
92 |
-
df = df.sort_values("Overall
|
93 |
|
94 |
# Add rank and medals
|
95 |
df["Rank"] = range(1, len(df) + 1)
|
@@ -102,10 +154,10 @@ def create_leaderboard_df(results):
|
|
102 |
[
|
103 |
"Rank",
|
104 |
"Model",
|
105 |
-
"Overall
|
106 |
-
"High-Resource
|
107 |
-
"Mid-Resource
|
108 |
-
"Low-Resource
|
109 |
"Languages Tested",
|
110 |
]
|
111 |
]
|
@@ -126,19 +178,34 @@ def create_leaderboard_df(results):
|
|
126 |
)
|
127 |
|
128 |
|
129 |
-
def create_model_comparison_plot(
|
130 |
top_languages = sorted(results, key=lambda x: x["speakers"], reverse=True)[:10]
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
df = pd.DataFrame(scores_flat)
|
137 |
-
fig = px.bar(df, x="language", y="
|
138 |
fig.update_layout(
|
139 |
-
title=
|
140 |
xaxis_title=None,
|
141 |
-
yaxis_title=
|
142 |
barmode="group",
|
143 |
height=500,
|
144 |
legend=dict(
|
@@ -152,17 +219,18 @@ def create_model_comparison_plot(results):
|
|
152 |
return fig
|
153 |
|
154 |
|
155 |
-
def create_language_stats_df(
|
156 |
# Create a list to store flattened data
|
157 |
flat_data = []
|
158 |
|
159 |
for lang in results:
|
160 |
# Find the best model and its BLEU score
|
161 |
-
|
162 |
-
lang["scores"] or [{"overall_score": None, "model": None}],
|
|
|
163 |
)
|
164 |
|
165 |
-
model =
|
166 |
model_name = model.split("/")[-1] if model else "N/A"
|
167 |
model_link = (
|
168 |
f"<a href='https://openrouter.ai/{model}' style='text-decoration: none; color: inherit;'>{model_name}</a>"
|
@@ -181,14 +249,14 @@ def create_language_stats_df(results):
|
|
181 |
"Overall": round(lang["overall_score"], 3)
|
182 |
if lang["overall_score"] is not None
|
183 |
else "N/A",
|
184 |
-
"Trans-lation": round(lang["
|
185 |
-
if lang["
|
186 |
else "N/A",
|
187 |
-
"Classi-fication": round(lang["
|
188 |
-
if lang["
|
189 |
else "N/A",
|
190 |
-
"MLM": round(lang["
|
191 |
-
if lang["
|
192 |
else "N/A",
|
193 |
"Best Model": model_link,
|
194 |
"CommonVoice Hours": commonvoice_link,
|
@@ -201,27 +269,54 @@ def create_language_stats_df(results):
|
|
201 |
label="Language Results",
|
202 |
show_search="search",
|
203 |
datatype=[
|
204 |
-
"markdown",
|
205 |
-
"number",
|
206 |
# "number", # Models Tested
|
207 |
-
"number",
|
208 |
-
"number",
|
209 |
-
"number",
|
210 |
-
"number",
|
211 |
-
"markdown",
|
212 |
-
"markdown",
|
213 |
],
|
214 |
)
|
215 |
|
216 |
|
217 |
-
def create_scatter_plot(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
fig = go.Figure()
|
219 |
|
|
|
220 |
x_vals = [
|
221 |
-
|
222 |
] # Convert to millions
|
223 |
-
y_vals = [
|
224 |
-
labels = [
|
|
|
|
|
|
|
225 |
|
226 |
fig.add_trace(
|
227 |
go.Scatter(
|
@@ -230,16 +325,14 @@ def create_scatter_plot(results):
|
|
230 |
mode="markers+text",
|
231 |
text=labels,
|
232 |
textposition="top center",
|
233 |
-
hovertemplate=
|
234 |
-
+ "Speakers: %{x:.1f}M<br>"
|
235 |
-
+ "BLEU Score: %{y:.3f}<extra></extra>",
|
236 |
)
|
237 |
)
|
238 |
|
239 |
fig.update_layout(
|
240 |
title=None,
|
241 |
xaxis_title="Number of Speakers (Millions)",
|
242 |
-
yaxis_title=
|
243 |
height=500,
|
244 |
showlegend=False,
|
245 |
)
|
@@ -247,7 +340,7 @@ def create_scatter_plot(results):
|
|
247 |
# Use log scale for x-axis since speaker numbers vary widely
|
248 |
fig.update_xaxes(type="log")
|
249 |
|
250 |
-
return
|
251 |
|
252 |
|
253 |
def format_number(n):
|
@@ -258,8 +351,10 @@ def format_number(n):
|
|
258 |
return f"{n/1_000:.0f}K"
|
259 |
return str(n)
|
260 |
|
|
|
261 |
def get_population_data():
|
262 |
import xml.etree.ElementTree as ET
|
|
|
263 |
from language_data.util import data_filename
|
264 |
|
265 |
filename = data_filename("supplementalData.xml")
|
@@ -268,17 +363,46 @@ def get_population_data():
|
|
268 |
|
269 |
data = {}
|
270 |
for territory in territories:
|
271 |
-
t_code = territory.attrib[
|
272 |
-
t_population = float(territory.attrib[
|
273 |
data[t_code] = t_population
|
274 |
return data
|
275 |
|
276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
# Collect all country data
|
278 |
population_data = get_population_data()
|
279 |
country_data = {}
|
280 |
for lang in results:
|
281 |
-
|
|
|
282 |
continue
|
283 |
|
284 |
for country_code, speakers in lang["population"].items():
|
@@ -293,17 +417,19 @@ def create_world_map(results):
|
|
293 |
country_data[iso3_code] = {
|
294 |
"total_speakers": 0,
|
295 |
"population": population_data.get(country_code, 0),
|
296 |
-
"
|
297 |
"languages": [],
|
298 |
}
|
299 |
|
300 |
country_data[iso3_code]["total_speakers"] += speakers
|
301 |
-
country_data[iso3_code]["
|
|
|
|
|
302 |
country_data[iso3_code]["languages"].append(
|
303 |
{
|
304 |
"name": lang["language_name"],
|
305 |
"speakers": speakers,
|
306 |
-
"
|
307 |
}
|
308 |
)
|
309 |
except (KeyError, AttributeError):
|
@@ -312,33 +438,11 @@ def create_world_map(results):
|
|
312 |
|
313 |
# Calculate final weighted averages and prepare hover text
|
314 |
countries = []
|
315 |
-
|
316 |
hover_texts = []
|
317 |
|
318 |
-
def make_black_bar(value, max_width=10):
|
319 |
-
filled = int(value * max_width)
|
320 |
-
return "⬛️" * filled + "⬜️" * (max_width - filled)
|
321 |
-
|
322 |
-
def make_colored_bar(value, max_width=10):
|
323 |
-
"""Create a colored bar using Unicode blocks
|
324 |
-
🟦 for high values (>0.35)
|
325 |
-
🟨 for medium values (0.25-0.35)
|
326 |
-
🟥 for low values (<0.25)
|
327 |
-
⬜ for empty space
|
328 |
-
"""
|
329 |
-
filled = int(value * max_width)
|
330 |
-
filled = max(0, min(filled, max_width))
|
331 |
-
empty = max_width - filled
|
332 |
-
|
333 |
-
if value > 0.35:
|
334 |
-
return "🟦" * filled + "⬜" * empty
|
335 |
-
elif value > 0.25:
|
336 |
-
return "🟨" * filled + "⬜" * empty
|
337 |
-
else:
|
338 |
-
return "🟥" * filled + "⬜" * empty
|
339 |
-
|
340 |
for country_code, data in country_data.items():
|
341 |
-
weighted_avg = data["
|
342 |
|
343 |
try:
|
344 |
country_name = pycountry.countries.get(alpha_3=country_code).name
|
@@ -357,38 +461,39 @@ def create_world_map(results):
|
|
357 |
for lang in main_langs:
|
358 |
percentage = (lang["speakers"] / data["population"]) * 100
|
359 |
speaker_bar = make_black_bar(percentage / 100)
|
360 |
-
|
|
|
|
|
361 |
|
362 |
lang_rows.append(
|
363 |
f"<b>{lang['name']}</b><br>"
|
364 |
f"{speaker_bar} {format_number(lang['speakers'])} speakers<br>"
|
365 |
-
f"{
|
366 |
)
|
367 |
|
368 |
# Add summary for other languages if any
|
369 |
if other_langs:
|
370 |
other_speakers = sum(lang["speakers"] for lang in other_langs)
|
371 |
other_percentage = (other_speakers / data["population"]) * 100
|
372 |
-
|
373 |
other_langs
|
374 |
)
|
375 |
|
376 |
speaker_bar = make_black_bar(other_percentage / 100)
|
377 |
-
|
|
|
|
|
378 |
|
379 |
lang_rows.append(
|
380 |
f"<b>+{len(other_langs)} other languages</b><br>"
|
381 |
f"{speaker_bar} {format_number(other_speakers)} speakers<br>"
|
382 |
-
f"{
|
383 |
)
|
384 |
|
385 |
-
hover_text = (
|
386 |
-
f"<b>{country_name}</b><br><br>"
|
387 |
-
f"{'<br>'.join(lang_rows)}"
|
388 |
-
)
|
389 |
|
390 |
countries.append(country_code)
|
391 |
-
|
392 |
hover_texts.append(hover_text)
|
393 |
|
394 |
# Create the choropleth map
|
@@ -396,12 +501,12 @@ def create_world_map(results):
|
|
396 |
data=go.Choropleth(
|
397 |
locations=countries,
|
398 |
locationmode="ISO-3",
|
399 |
-
z=
|
400 |
text=hover_texts,
|
401 |
hoverinfo="text",
|
402 |
colorscale=[[0, "#ff9999"], [1, "#99ccff"]],
|
403 |
colorbar=dict(
|
404 |
-
title=
|
405 |
orientation="h", # horizontal orientation
|
406 |
y=-0.2, # position below map
|
407 |
yanchor="bottom",
|
@@ -410,13 +515,11 @@ def create_world_map(results):
|
|
410 |
xanchor="center",
|
411 |
thickness=20, # make it a bit thicker when horizontal
|
412 |
),
|
413 |
-
zmin=0.1,
|
414 |
-
zmax=0.5,
|
415 |
)
|
416 |
)
|
417 |
|
418 |
fig.update_layout(
|
419 |
-
title=dict(text="
|
420 |
geo=dict(
|
421 |
showframe=True,
|
422 |
showcoastlines=True,
|
@@ -437,22 +540,48 @@ def create_world_map(results):
|
|
437 |
|
438 |
return fig
|
439 |
|
|
|
|
|
|
|
440 |
|
441 |
# Create the visualization components
|
442 |
-
with gr.Blocks(title="AI Language
|
443 |
-
gr.Markdown("# AI Language
|
444 |
gr.Markdown(
|
445 |
-
"Comparing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
446 |
)
|
|
|
447 |
|
448 |
-
|
449 |
-
|
|
|
|
|
|
|
|
|
450 |
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
456 |
|
457 |
gr.Markdown(
|
458 |
"""
|
@@ -475,5 +604,23 @@ with gr.Blocks(title="AI Language Translation Benchmark") as demo:
|
|
475 |
""",
|
476 |
container=True,
|
477 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
478 |
|
479 |
demo.launch()
|
|
|
2 |
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
|
|
5 |
import plotly.express as px
|
6 |
+
import plotly.graph_objects as go
|
7 |
import pycountry
|
8 |
|
9 |
with open("results.json") as f:
|
10 |
results = json.load(f)
|
11 |
|
12 |
+
# Global constants for metric mappings
|
13 |
+
METRICS = {
|
14 |
+
"overall_performance": {
|
15 |
+
"display_name": "Overall Performance",
|
16 |
+
"field_name": "overall_score",
|
17 |
+
"label": "Overall Performance Score",
|
18 |
+
"explanation": """
|
19 |
+
**Overall Performance**: A weighted combination of all metrics, providing a holistic view of model performance across different language tasks.
|
20 |
+
Higher scores indicate better overall language capabilities.
|
21 |
+
""",
|
22 |
+
},
|
23 |
+
"translation_bleu": {
|
24 |
+
"display_name": "Translation (BLEU)",
|
25 |
+
"field_name": "mt_bleu",
|
26 |
+
"label": "BLEU Score",
|
27 |
+
"explanation": """
|
28 |
+
**Translation BLEU**: BiLingual Evaluation Understudy (BLEU) measures how similar AI-generated translations are to human reference translations.
|
29 |
+
It calculates n-gram precision and applies a brevity penalty. Scores range from 0 to 1, with higher values indicating better translation quality.
|
30 |
+
""",
|
31 |
+
},
|
32 |
+
"translation_chrf": {
|
33 |
+
"display_name": "Translation (ChrF)",
|
34 |
+
"field_name": "mt_chrf",
|
35 |
+
"label": "ChrF Score",
|
36 |
+
"explanation": """
|
37 |
+
**Translation ChrF**: Character n-gram F-score evaluates translations at the character level rather than word level.
|
38 |
+
This metric is particularly valuable for morphologically rich languages and can better capture partial word matches.
|
39 |
+
Higher scores (0-1) indicate better translations.
|
40 |
+
""",
|
41 |
+
},
|
42 |
+
"classification_accuracy": {
|
43 |
+
"display_name": "Classification (Accuracy)",
|
44 |
+
"field_name": "cls_acc",
|
45 |
+
"label": "Classification Accuracy",
|
46 |
+
"explanation": """
|
47 |
+
**Classification Accuracy**: Measures how accurately models can classify text into predefined categories.
|
48 |
+
This evaluates a model's understanding of content and context across different languages.
|
49 |
+
Reported as a percentage where higher values indicate better classification performance.
|
50 |
+
""",
|
51 |
+
},
|
52 |
+
"mlm_chrf": {
|
53 |
+
"display_name": "Masked Language Modeling (ChrF)",
|
54 |
+
"field_name": "mlm_chrf",
|
55 |
+
"label": "MLM ChrF Score",
|
56 |
+
"explanation": """
|
57 |
+
**Masked Language Modeling ChrF**: Evaluates how well models can predict masked (hidden) portions of text.
|
58 |
+
This tests a model's understanding of language structure and semantics by measuring the character-level similarity
|
59 |
+
between predicted and actual text. Higher scores indicate better language understanding.
|
60 |
+
""",
|
61 |
+
},
|
62 |
+
}
|
63 |
+
|
64 |
|
65 |
def mean(lst):
|
66 |
return sum(lst) / len(lst)
|
67 |
|
68 |
|
69 |
+
def create_leaderboard_df(metric):
|
70 |
# Sort languages by average BLEU to determine resource categories
|
71 |
+
langs_with_score = [lang for lang in results if lang[metric['field_name']] is not None]
|
72 |
+
sorted_langs = sorted(langs_with_score, key=lambda x: x[metric['field_name']], reverse=True)
|
73 |
n_langs = len(sorted_langs)
|
74 |
high_cutoff = n_langs // 4 # top 25%
|
75 |
low_cutoff = n_langs - n_langs // 4 # bottom 25%
|
|
|
97 |
"Mid-Resource": [],
|
98 |
"Low-Resource": [],
|
99 |
}
|
100 |
+
model_scores[model][category].append(score[metric['field_name']])
|
101 |
|
102 |
# Calculate average scores and create DataFrame
|
103 |
leaderboard_data = []
|
|
|
131 |
leaderboard_data.append(
|
132 |
{
|
133 |
"Model": f"[{model_name}](https://openrouter.ai/{model})",
|
134 |
+
"Overall Score": overall_avg,
|
135 |
+
"High-Resource Score": high_avg,
|
136 |
+
"Mid-Resource Score": mid_avg,
|
137 |
+
"Low-Resource Score": low_avg,
|
138 |
"Languages Tested": len(all_scores),
|
139 |
}
|
140 |
)
|
141 |
|
142 |
# Sort by overall BLEU
|
143 |
df = pd.DataFrame(leaderboard_data)
|
144 |
+
df = df.sort_values("Overall Score", ascending=False)
|
145 |
|
146 |
# Add rank and medals
|
147 |
df["Rank"] = range(1, len(df) + 1)
|
|
|
154 |
[
|
155 |
"Rank",
|
156 |
"Model",
|
157 |
+
"Overall Score",
|
158 |
+
"High-Resource Score",
|
159 |
+
"Mid-Resource Score",
|
160 |
+
"Low-Resource Score",
|
161 |
"Languages Tested",
|
162 |
]
|
163 |
]
|
|
|
178 |
)
|
179 |
|
180 |
|
181 |
+
def create_model_comparison_plot(metric):
|
182 |
top_languages = sorted(results, key=lambda x: x["speakers"], reverse=True)[:10]
|
183 |
+
|
184 |
+
# Create appropriate title and y-axis label based on metric
|
185 |
+
title = f"{metric['display_name']} by Model and Language"
|
186 |
+
y_label = metric['label']
|
187 |
+
|
188 |
+
# Flatten the data for the selected metric
|
189 |
+
scores_flat = []
|
190 |
+
for lang in top_languages:
|
191 |
+
for score in lang["scores"]:
|
192 |
+
# Get the value directly using the field name
|
193 |
+
value = score[metric['field_name']]
|
194 |
+
if value is not None:
|
195 |
+
scores_flat.append(
|
196 |
+
{
|
197 |
+
"language": lang["language_name"],
|
198 |
+
"model": score["model"],
|
199 |
+
"value": value,
|
200 |
+
}
|
201 |
+
)
|
202 |
+
|
203 |
df = pd.DataFrame(scores_flat)
|
204 |
+
fig = px.bar(df, x="language", y="value", color="model", barmode="group")
|
205 |
fig.update_layout(
|
206 |
+
title=title,
|
207 |
xaxis_title=None,
|
208 |
+
yaxis_title=y_label,
|
209 |
barmode="group",
|
210 |
height=500,
|
211 |
legend=dict(
|
|
|
219 |
return fig
|
220 |
|
221 |
|
222 |
+
def create_language_stats_df(metric):
|
223 |
# Create a list to store flattened data
|
224 |
flat_data = []
|
225 |
|
226 |
for lang in results:
|
227 |
# Find the best model and its BLEU score
|
228 |
+
best_model = max(
|
229 |
+
lang["scores"] or [{"overall_score": None, "model": None}],
|
230 |
+
key=lambda x: x["overall_score"],
|
231 |
)
|
232 |
|
233 |
+
model = best_model["model"]
|
234 |
model_name = model.split("/")[-1] if model else "N/A"
|
235 |
model_link = (
|
236 |
f"<a href='https://openrouter.ai/{model}' style='text-decoration: none; color: inherit;'>{model_name}</a>"
|
|
|
249 |
"Overall": round(lang["overall_score"], 3)
|
250 |
if lang["overall_score"] is not None
|
251 |
else "N/A",
|
252 |
+
"Trans-lation": round(lang["mt_bleu"], 3)
|
253 |
+
if lang["mt_bleu"] is not None
|
254 |
else "N/A",
|
255 |
+
"Classi-fication": round(lang["cls_acc"], 3)
|
256 |
+
if lang["cls_acc"] is not None
|
257 |
else "N/A",
|
258 |
+
"MLM": round(lang["mlm_chrf"], 3)
|
259 |
+
if lang["mlm_chrf"] is not None
|
260 |
else "N/A",
|
261 |
"Best Model": model_link,
|
262 |
"CommonVoice Hours": commonvoice_link,
|
|
|
269 |
label="Language Results",
|
270 |
show_search="search",
|
271 |
datatype=[
|
272 |
+
"markdown", # Language
|
273 |
+
"number", # Speakers
|
274 |
# "number", # Models Tested
|
275 |
+
"number", # Overall
|
276 |
+
"number", # Translation
|
277 |
+
"number", # Classification
|
278 |
+
"number", # MLM
|
279 |
+
"markdown", # Best Model
|
280 |
+
"markdown", # CommonVoice Hours
|
281 |
],
|
282 |
)
|
283 |
|
284 |
|
285 |
+
def create_scatter_plot(metric):
|
286 |
+
# Filter results to include only languages with sufficient speakers
|
287 |
+
filtered_results = [lang for lang in results if lang["speakers"] >= 10_000]
|
288 |
+
|
289 |
+
# Create a list to store data for the scatter plot
|
290 |
+
scatter_data = []
|
291 |
+
|
292 |
+
for lang in filtered_results:
|
293 |
+
# Calculate average score for this metric across all models
|
294 |
+
scores = [
|
295 |
+
score[metric['field_name']]
|
296 |
+
for score in lang["scores"]
|
297 |
+
if score[metric['field_name']] is not None
|
298 |
+
]
|
299 |
+
if scores: # Only include if we have valid scores
|
300 |
+
avg_score = sum(scores) / len(scores)
|
301 |
+
scatter_data.append(
|
302 |
+
{
|
303 |
+
"language": lang["language_name"],
|
304 |
+
"speakers": lang["speakers"],
|
305 |
+
"score": avg_score,
|
306 |
+
}
|
307 |
+
)
|
308 |
+
|
309 |
fig = go.Figure()
|
310 |
|
311 |
+
# Convert speakers to millions for display
|
312 |
x_vals = [
|
313 |
+
data["speakers"] / 1_000_000 for data in scatter_data
|
314 |
] # Convert to millions
|
315 |
+
y_vals = [data["score"] for data in scatter_data]
|
316 |
+
labels = [data["language"] for data in scatter_data]
|
317 |
+
|
318 |
+
# Create hover template
|
319 |
+
hover_template = f"<b>%{{text}}</b><br>Speakers: %{{x:.1f}}M<br>{metric['label']}: %{{y:.3f}}<extra></extra>"
|
320 |
|
321 |
fig.add_trace(
|
322 |
go.Scatter(
|
|
|
325 |
mode="markers+text",
|
326 |
text=labels,
|
327 |
textposition="top center",
|
328 |
+
hovertemplate=hover_template,
|
|
|
|
|
329 |
)
|
330 |
)
|
331 |
|
332 |
fig.update_layout(
|
333 |
title=None,
|
334 |
xaxis_title="Number of Speakers (Millions)",
|
335 |
+
yaxis_title=metric['label'],
|
336 |
height=500,
|
337 |
showlegend=False,
|
338 |
)
|
|
|
340 |
# Use log scale for x-axis since speaker numbers vary widely
|
341 |
fig.update_xaxes(type="log")
|
342 |
|
343 |
+
return fig
|
344 |
|
345 |
|
346 |
def format_number(n):
|
|
|
351 |
return f"{n/1_000:.0f}K"
|
352 |
return str(n)
|
353 |
|
354 |
+
|
355 |
def get_population_data():
|
356 |
import xml.etree.ElementTree as ET
|
357 |
+
|
358 |
from language_data.util import data_filename
|
359 |
|
360 |
filename = data_filename("supplementalData.xml")
|
|
|
363 |
|
364 |
data = {}
|
365 |
for territory in territories:
|
366 |
+
t_code = territory.attrib["type"]
|
367 |
+
t_population = float(territory.attrib["population"])
|
368 |
data[t_code] = t_population
|
369 |
return data
|
370 |
|
371 |
+
# Helper functions for visualization
|
372 |
+
def make_black_bar(value, max_width=10):
|
373 |
+
filled = int(value * max_width)
|
374 |
+
return "⬛️" * filled + "⬜️" * (max_width - filled)
|
375 |
+
|
376 |
+
|
377 |
+
def make_colored_bar(score, max_width=10):
|
378 |
+
"""Create a colored bar using Unicode blocks based on normalized score
|
379 |
+
🟦 for high values (>0.35)
|
380 |
+
🟨 for medium values (0.25-0.35)
|
381 |
+
🟥 for low values (<0.25)
|
382 |
+
⬜ for empty space
|
383 |
+
|
384 |
+
This function handles both normalization and bar creation.
|
385 |
+
"""
|
386 |
+
|
387 |
+
# Create the bar based on normalized value
|
388 |
+
filled = int(score * max_width)
|
389 |
+
filled = max(0, min(filled, max_width))
|
390 |
+
empty = max_width - filled
|
391 |
+
|
392 |
+
if score > 0.35:
|
393 |
+
return "🟦" * filled + "⬜" * empty
|
394 |
+
elif score > 0.25:
|
395 |
+
return "🟨" * filled + "⬜" * empty
|
396 |
+
else:
|
397 |
+
return "🟥" * filled + "⬜" * empty
|
398 |
+
|
399 |
+
def create_world_map(metric):
|
400 |
# Collect all country data
|
401 |
population_data = get_population_data()
|
402 |
country_data = {}
|
403 |
for lang in results:
|
404 |
+
# Skip languages without the required data
|
405 |
+
if "population" not in lang or lang[metric['field_name']] is None:
|
406 |
continue
|
407 |
|
408 |
for country_code, speakers in lang["population"].items():
|
|
|
417 |
country_data[iso3_code] = {
|
418 |
"total_speakers": 0,
|
419 |
"population": population_data.get(country_code, 0),
|
420 |
+
"weighted_score_sum": 0,
|
421 |
"languages": [],
|
422 |
}
|
423 |
|
424 |
country_data[iso3_code]["total_speakers"] += speakers
|
425 |
+
country_data[iso3_code]["weighted_score_sum"] += (
|
426 |
+
speakers * lang[metric['field_name']]
|
427 |
+
)
|
428 |
country_data[iso3_code]["languages"].append(
|
429 |
{
|
430 |
"name": lang["language_name"],
|
431 |
"speakers": speakers,
|
432 |
+
"score": lang[metric['field_name']],
|
433 |
}
|
434 |
)
|
435 |
except (KeyError, AttributeError):
|
|
|
438 |
|
439 |
# Calculate final weighted averages and prepare hover text
|
440 |
countries = []
|
441 |
+
scores = []
|
442 |
hover_texts = []
|
443 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
444 |
for country_code, data in country_data.items():
|
445 |
+
weighted_avg = data["weighted_score_sum"] / data["total_speakers"]
|
446 |
|
447 |
try:
|
448 |
country_name = pycountry.countries.get(alpha_3=country_code).name
|
|
|
461 |
for lang in main_langs:
|
462 |
percentage = (lang["speakers"] / data["population"]) * 100
|
463 |
speaker_bar = make_black_bar(percentage / 100)
|
464 |
+
|
465 |
+
# Use the integrated make_colored_bar function directly
|
466 |
+
score_bar = make_colored_bar(lang["score"])
|
467 |
|
468 |
lang_rows.append(
|
469 |
f"<b>{lang['name']}</b><br>"
|
470 |
f"{speaker_bar} {format_number(lang['speakers'])} speakers<br>"
|
471 |
+
f"{score_bar} {lang['score']:.3f} {metric['label']}<br>"
|
472 |
)
|
473 |
|
474 |
# Add summary for other languages if any
|
475 |
if other_langs:
|
476 |
other_speakers = sum(lang["speakers"] for lang in other_langs)
|
477 |
other_percentage = (other_speakers / data["population"]) * 100
|
478 |
+
other_avg_score = sum(lang["score"] for lang in other_langs) / len(
|
479 |
other_langs
|
480 |
)
|
481 |
|
482 |
speaker_bar = make_black_bar(other_percentage / 100)
|
483 |
+
|
484 |
+
# Use the integrated make_colored_bar function directly
|
485 |
+
score_bar = make_colored_bar(other_avg_score)
|
486 |
|
487 |
lang_rows.append(
|
488 |
f"<b>+{len(other_langs)} other languages</b><br>"
|
489 |
f"{speaker_bar} {format_number(other_speakers)} speakers<br>"
|
490 |
+
f"{score_bar} {other_avg_score:.3f} {metric['label']}<br>"
|
491 |
)
|
492 |
|
493 |
+
hover_text = f"<b>{country_name}</b><br><br>" f"{'<br>'.join(lang_rows)}"
|
|
|
|
|
|
|
494 |
|
495 |
countries.append(country_code)
|
496 |
+
scores.append(weighted_avg)
|
497 |
hover_texts.append(hover_text)
|
498 |
|
499 |
# Create the choropleth map
|
|
|
501 |
data=go.Choropleth(
|
502 |
locations=countries,
|
503 |
locationmode="ISO-3",
|
504 |
+
z=scores,
|
505 |
text=hover_texts,
|
506 |
hoverinfo="text",
|
507 |
colorscale=[[0, "#ff9999"], [1, "#99ccff"]],
|
508 |
colorbar=dict(
|
509 |
+
title=metric['label'],
|
510 |
orientation="h", # horizontal orientation
|
511 |
y=-0.2, # position below map
|
512 |
yanchor="bottom",
|
|
|
515 |
xanchor="center",
|
516 |
thickness=20, # make it a bit thicker when horizontal
|
517 |
),
|
|
|
|
|
518 |
)
|
519 |
)
|
520 |
|
521 |
fig.update_layout(
|
522 |
+
title=dict(text=f"{metric['display_name']} by Country", x=0.5, xanchor="center"),
|
523 |
geo=dict(
|
524 |
showframe=True,
|
525 |
showcoastlines=True,
|
|
|
540 |
|
541 |
return fig
|
542 |
|
543 |
+
def create_metric_explanation(metric):
|
544 |
+
return gr.Markdown(metric['explanation'])
|
545 |
+
|
546 |
|
547 |
# Create the visualization components
|
548 |
+
with gr.Blocks(title="AI Language Proficiency Benchmark") as demo:
|
549 |
+
gr.Markdown("# AI Language Proficiency Benchmark")
|
550 |
gr.Markdown(
|
551 |
+
"Comparing language proficiency across different models and languages."
|
552 |
+
)
|
553 |
+
start_metric = METRICS["overall_performance"]
|
554 |
+
|
555 |
+
metric = gr.Dropdown(
|
556 |
+
choices=[
|
557 |
+
metric_info["display_name"]
|
558 |
+
for metric_info in METRICS.values()
|
559 |
+
],
|
560 |
+
value=start_metric["display_name"],
|
561 |
+
label="Select Metric",
|
562 |
+
interactive=True,
|
563 |
)
|
564 |
+
metric_explanation = create_metric_explanation(start_metric)
|
565 |
|
566 |
+
gr.Markdown("## Model Comparison")
|
567 |
+
create_leaderboard_df(start_metric)
|
568 |
+
model_comparison_plot = gr.Plot(
|
569 |
+
value=create_model_comparison_plot(start_metric),
|
570 |
+
label="Model Comparison",
|
571 |
+
)
|
572 |
|
573 |
+
gr.Markdown("## Language Stats")
|
574 |
+
create_language_stats_df(start_metric)
|
575 |
+
scatter_plot = gr.Plot(
|
576 |
+
value=create_scatter_plot(start_metric),
|
577 |
+
label="Speaker Population vs. Metric",
|
578 |
+
)
|
579 |
+
world_map = gr.Plot(
|
580 |
+
value=create_world_map(start_metric),
|
581 |
+
label="World Map",
|
582 |
+
container=False,
|
583 |
+
elem_classes="fullwidth-plot",
|
584 |
+
)
|
585 |
|
586 |
gr.Markdown(
|
587 |
"""
|
|
|
604 |
""",
|
605 |
container=True,
|
606 |
)
|
607 |
+
|
608 |
+
def update_component(fn, metric_choice):
|
609 |
+
metric = [m for m in METRICS.values() if m["display_name"] == metric_choice][0]
|
610 |
+
return fn(metric)
|
611 |
+
|
612 |
+
from functools import partial
|
613 |
+
|
614 |
+
# Connect the dropdown to update all plots
|
615 |
+
metric.change(fn=partial(update_component, create_metric_explanation), inputs=metric, outputs=metric_explanation)
|
616 |
+
metric.change(
|
617 |
+
fn=partial(update_component, create_model_comparison_plot), inputs=metric, outputs=model_comparison_plot
|
618 |
+
)
|
619 |
+
metric.change(
|
620 |
+
fn=partial(update_component, create_scatter_plot), inputs=metric, outputs=scatter_plot
|
621 |
+
)
|
622 |
+
metric.change(
|
623 |
+
fn=partial(update_component, create_world_map), inputs=metric, outputs=world_map
|
624 |
+
)
|
625 |
|
626 |
demo.launch()
|
evals.py
CHANGED
@@ -209,8 +209,8 @@ async def translate_and_evaluate(model, original_language_bcp_47, sentence_nr):
|
|
209 |
return {
|
210 |
"model": model,
|
211 |
"bcp_47": original_language["bcp_47"],
|
212 |
-
"
|
213 |
-
"
|
214 |
"sentence_nr": sentence_nr,
|
215 |
}
|
216 |
|
@@ -316,7 +316,7 @@ async def mlm_and_evaluate(model, language_bcp_47, nr):
|
|
316 |
return {
|
317 |
"model": model,
|
318 |
"bcp_47": language["bcp_47"],
|
319 |
-
"
|
320 |
"sentence_nr": nr,
|
321 |
}
|
322 |
|
@@ -352,7 +352,7 @@ async def main():
|
|
352 |
classification_scores = await tqdm_asyncio.gather(
|
353 |
*classification_scores, miniters=1
|
354 |
)
|
355 |
-
print("evaluate
|
356 |
mlm_scores = [
|
357 |
mlm_and_evaluate(model, language.bcp_47, i)
|
358 |
for i in range(n_sentences)
|
@@ -362,9 +362,9 @@ async def main():
|
|
362 |
and (model == fast_model or language.bcp_47 in detailed_languages.bcp_47.values)
|
363 |
]
|
364 |
mlm_scores = await tqdm_asyncio.gather(*mlm_scores, miniters=1)
|
365 |
-
|
366 |
for language in languages.itertuples():
|
367 |
-
|
368 |
for model in models:
|
369 |
translations_for_model = [
|
370 |
score
|
@@ -381,36 +381,38 @@ async def main():
|
|
381 |
for score in mlm_scores
|
382 |
if score["bcp_47"] == language.bcp_47 and score["model"] == model
|
383 |
]
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
overall_score = (
|
389 |
if translations_for_model:
|
390 |
-
|
391 |
{
|
392 |
"model": model,
|
393 |
-
"
|
394 |
-
"
|
395 |
-
"
|
396 |
-
"
|
397 |
"overall_score": overall_score,
|
398 |
}
|
399 |
)
|
400 |
-
if
|
401 |
-
|
402 |
{
|
403 |
"language_name": language.language_name,
|
404 |
"bcp_47": language.bcp_47,
|
405 |
"speakers": language.speakers,
|
406 |
-
"scores":
|
407 |
-
"
|
408 |
-
"
|
409 |
-
"
|
410 |
-
|
411 |
-
"overall_score": mean(
|
412 |
-
[s["overall_score"] for s in results_for_language]
|
413 |
),
|
|
|
|
|
|
|
|
|
414 |
"commonvoice_hours": language.commonvoice_hours
|
415 |
if not pd.isna(language.commonvoice_hours)
|
416 |
else None,
|
@@ -421,7 +423,7 @@ async def main():
|
|
421 |
}
|
422 |
)
|
423 |
with open("results.json", "w") as f:
|
424 |
-
json.dump(
|
425 |
|
426 |
|
427 |
if __name__ == "__main__":
|
|
|
209 |
return {
|
210 |
"model": model,
|
211 |
"bcp_47": original_language["bcp_47"],
|
212 |
+
"mt_bleu": bleu_score["bleu"],
|
213 |
+
"mt_chrf": chrf_score["score"],
|
214 |
"sentence_nr": sentence_nr,
|
215 |
}
|
216 |
|
|
|
316 |
return {
|
317 |
"model": model,
|
318 |
"bcp_47": language["bcp_47"],
|
319 |
+
"mlm_chrf": chrf_score["score"],
|
320 |
"sentence_nr": nr,
|
321 |
}
|
322 |
|
|
|
352 |
classification_scores = await tqdm_asyncio.gather(
|
353 |
*classification_scores, miniters=1
|
354 |
)
|
355 |
+
print("evaluate masked language modeling")
|
356 |
mlm_scores = [
|
357 |
mlm_and_evaluate(model, language.bcp_47, i)
|
358 |
for i in range(n_sentences)
|
|
|
362 |
and (model == fast_model or language.bcp_47 in detailed_languages.bcp_47.values)
|
363 |
]
|
364 |
mlm_scores = await tqdm_asyncio.gather(*mlm_scores, miniters=1)
|
365 |
+
all_results = []
|
366 |
for language in languages.itertuples():
|
367 |
+
results = []
|
368 |
for model in models:
|
369 |
translations_for_model = [
|
370 |
score
|
|
|
381 |
for score in mlm_scores
|
382 |
if score["bcp_47"] == language.bcp_47 and score["model"] == model
|
383 |
]
|
384 |
+
mt_bleu = mean([s["mt_bleu"] for s in translations_for_model])
|
385 |
+
mt_chrf = mean([s["mt_chrf"] for s in translations_for_model])
|
386 |
+
cls_acc = mean([s["true"] == s["pred"] for s in classifications_for_model])
|
387 |
+
mlm_chrf = mean([s["mlm_chrf"] for s in mlm_for_model])
|
388 |
+
overall_score = (mt_chrf / 100 + cls_acc + mlm_chrf / 100) / 3
|
389 |
if translations_for_model:
|
390 |
+
results.append(
|
391 |
{
|
392 |
"model": model,
|
393 |
+
"mt_bleu": mt_bleu,
|
394 |
+
"mt_chrf": mt_chrf,
|
395 |
+
"cls_acc": cls_acc,
|
396 |
+
"mlm_chrf": mlm_chrf,
|
397 |
"overall_score": overall_score,
|
398 |
}
|
399 |
)
|
400 |
+
if results:
|
401 |
+
all_results.append(
|
402 |
{
|
403 |
"language_name": language.language_name,
|
404 |
"bcp_47": language.bcp_47,
|
405 |
"speakers": language.speakers,
|
406 |
+
"scores": results,
|
407 |
+
"mt_bleu": mean([s["mt_bleu"] for s in results]),
|
408 |
+
"mt_chrf": mean([s["mt_chrf"] for s in results]),
|
409 |
+
"cls_acc": mean(
|
410 |
+
[s["cls_acc"] for s in results]
|
|
|
|
|
411 |
),
|
412 |
+
"mlm_chrf": mean(
|
413 |
+
[s["mlm_chrf"] for s in results]
|
414 |
+
),
|
415 |
+
"overall_score": mean([s["overall_score"] for s in results]),
|
416 |
"commonvoice_hours": language.commonvoice_hours
|
417 |
if not pd.isna(language.commonvoice_hours)
|
418 |
else None,
|
|
|
423 |
}
|
424 |
)
|
425 |
with open("results.json", "w") as f:
|
426 |
+
json.dump(all_results, f, indent=2, ensure_ascii=False)
|
427 |
|
428 |
|
429 |
if __name__ == "__main__":
|
results.json
CHANGED
@@ -6,50 +6,50 @@
|
|
6 |
"scores": [
|
7 |
{
|
8 |
"model": "openai/gpt-4o-mini",
|
9 |
-
"
|
10 |
-
"
|
11 |
-
"
|
12 |
-
"
|
13 |
-
"overall_score": 0.
|
14 |
},
|
15 |
{
|
16 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
17 |
-
"
|
18 |
-
"
|
19 |
-
"
|
20 |
-
"
|
21 |
-
"overall_score": 0.
|
22 |
},
|
23 |
{
|
24 |
"model": "mistralai/mistral-small-24b-instruct-2501",
|
25 |
-
"
|
26 |
-
"
|
27 |
-
"
|
28 |
-
"
|
29 |
-
"overall_score": 0.
|
30 |
},
|
31 |
{
|
32 |
"model": "google/gemini-2.0-flash-001",
|
33 |
-
"
|
34 |
-
"
|
35 |
-
"
|
36 |
-
"
|
37 |
-
"overall_score": 0.
|
38 |
},
|
39 |
{
|
40 |
"model": "microsoft/phi-4",
|
41 |
-
"
|
42 |
-
"
|
43 |
-
"
|
44 |
-
"
|
45 |
-
"overall_score": 0.
|
46 |
}
|
47 |
],
|
48 |
-
"
|
49 |
-
"
|
50 |
-
"
|
51 |
-
"
|
52 |
-
"overall_score": 0.
|
53 |
"commonvoice_hours": 2651.0,
|
54 |
"commonvoice_locale": "en",
|
55 |
"population": {
|
@@ -217,18 +217,18 @@
|
|
217 |
"scores": [
|
218 |
{
|
219 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
220 |
-
"
|
221 |
-
"
|
222 |
-
"
|
223 |
-
"
|
224 |
-
"overall_score": 0.
|
225 |
}
|
226 |
],
|
227 |
-
"
|
228 |
-
"
|
229 |
-
"
|
230 |
-
"
|
231 |
-
"overall_score": 0.
|
232 |
"commonvoice_hours": 422.0,
|
233 |
"commonvoice_locale": "zh-TW",
|
234 |
"population": {
|
@@ -261,18 +261,18 @@
|
|
261 |
"scores": [
|
262 |
{
|
263 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
264 |
-
"
|
265 |
-
"
|
266 |
-
"
|
267 |
-
"
|
268 |
-
"overall_score": 0.
|
269 |
}
|
270 |
],
|
271 |
-
"
|
272 |
-
"
|
273 |
-
"
|
274 |
-
"
|
275 |
-
"overall_score": 0.
|
276 |
"commonvoice_hours": 16.0,
|
277 |
"commonvoice_locale": "hi-IN",
|
278 |
"population": {
|
@@ -291,18 +291,18 @@
|
|
291 |
"scores": [
|
292 |
{
|
293 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
294 |
-
"
|
295 |
-
"
|
296 |
-
"
|
297 |
-
"
|
298 |
-
"overall_score": 0.
|
299 |
}
|
300 |
],
|
301 |
-
"
|
302 |
-
"
|
303 |
-
"
|
304 |
-
"
|
305 |
-
"overall_score": 0.
|
306 |
"commonvoice_hours": 446.0,
|
307 |
"commonvoice_locale": "es",
|
308 |
"population": {
|
@@ -354,18 +354,18 @@
|
|
354 |
"scores": [
|
355 |
{
|
356 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
357 |
-
"
|
358 |
-
"
|
359 |
-
"
|
360 |
-
"
|
361 |
-
"overall_score": 0.
|
362 |
}
|
363 |
],
|
364 |
-
"
|
365 |
-
"
|
366 |
-
"
|
367 |
-
"
|
368 |
-
"overall_score": 0.
|
369 |
"commonvoice_hours": 91.0,
|
370 |
"commonvoice_locale": "ar",
|
371 |
"population": {
|
@@ -416,18 +416,18 @@
|
|
416 |
"scores": [
|
417 |
{
|
418 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
419 |
-
"
|
420 |
-
"
|
421 |
-
"
|
422 |
-
"
|
423 |
-
"overall_score": 0.
|
424 |
}
|
425 |
],
|
426 |
-
"
|
427 |
-
"
|
428 |
-
"
|
429 |
-
"
|
430 |
-
"overall_score": 0.
|
431 |
"commonvoice_hours": 77.0,
|
432 |
"commonvoice_locale": "ur",
|
433 |
"population": {
|
@@ -445,18 +445,18 @@
|
|
445 |
"scores": [
|
446 |
{
|
447 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
448 |
-
"
|
449 |
-
"
|
450 |
-
"
|
451 |
-
"
|
452 |
-
"overall_score": 0.
|
453 |
}
|
454 |
],
|
455 |
-
"
|
456 |
-
"
|
457 |
-
"
|
458 |
-
"
|
459 |
-
"overall_score": 0.
|
460 |
"commonvoice_hours": 1052.0,
|
461 |
"commonvoice_locale": "fr",
|
462 |
"population": {
|
@@ -531,18 +531,18 @@
|
|
531 |
"scores": [
|
532 |
{
|
533 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
534 |
-
"
|
535 |
-
"
|
536 |
-
"
|
537 |
-
"
|
538 |
-
"overall_score": 0.
|
539 |
}
|
540 |
],
|
541 |
-
"
|
542 |
-
"
|
543 |
-
"
|
544 |
-
"
|
545 |
-
"overall_score": 0.
|
546 |
"commonvoice_hours": 49.0,
|
547 |
"commonvoice_locale": "bn",
|
548 |
"population": {
|
@@ -560,18 +560,18 @@
|
|
560 |
"scores": [
|
561 |
{
|
562 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
563 |
-
"
|
564 |
-
"
|
565 |
-
"
|
566 |
-
"
|
567 |
-
"overall_score": 0.
|
568 |
}
|
569 |
],
|
570 |
-
"
|
571 |
-
"
|
572 |
-
"
|
573 |
-
"
|
574 |
-
"overall_score": 0.
|
575 |
"commonvoice_hours": 177.0,
|
576 |
"commonvoice_locale": "pt",
|
577 |
"population": {
|
@@ -600,18 +600,18 @@
|
|
600 |
"scores": [
|
601 |
{
|
602 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
603 |
-
"
|
604 |
-
"
|
605 |
-
"
|
606 |
-
"
|
607 |
-
"overall_score": 0.
|
608 |
}
|
609 |
],
|
610 |
-
"
|
611 |
-
"
|
612 |
-
"
|
613 |
-
"
|
614 |
-
"overall_score": 0.
|
615 |
"commonvoice_hours": 2.3,
|
616 |
"commonvoice_locale": "pa-IN",
|
617 |
"population": {
|
@@ -630,18 +630,18 @@
|
|
630 |
"scores": [
|
631 |
{
|
632 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
633 |
-
"
|
634 |
-
"
|
635 |
-
"
|
636 |
-
"
|
637 |
-
"overall_score": 0.
|
638 |
}
|
639 |
],
|
640 |
-
"
|
641 |
-
"
|
642 |
-
"
|
643 |
-
"
|
644 |
-
"overall_score": 0.
|
645 |
"commonvoice_hours": 242.0,
|
646 |
"commonvoice_locale": "ru",
|
647 |
"population": {
|
@@ -677,18 +677,18 @@
|
|
677 |
"scores": [
|
678 |
{
|
679 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
680 |
-
"
|
681 |
-
"
|
682 |
-
"
|
683 |
-
"
|
684 |
-
"overall_score": 0.
|
685 |
}
|
686 |
],
|
687 |
-
"
|
688 |
-
"
|
689 |
-
"
|
690 |
-
"
|
691 |
-
"overall_score": 0.
|
692 |
"commonvoice_hours": 411.0,
|
693 |
"commonvoice_locale": "sw",
|
694 |
"population": {
|
@@ -710,18 +710,18 @@
|
|
710 |
"scores": [
|
711 |
{
|
712 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
713 |
-
"
|
714 |
-
"
|
715 |
-
"
|
716 |
-
"
|
717 |
-
"overall_score": 0.
|
718 |
}
|
719 |
],
|
720 |
-
"
|
721 |
-
"
|
722 |
-
"
|
723 |
-
"
|
724 |
-
"overall_score": 0.
|
725 |
"commonvoice_hours": 33.0,
|
726 |
"commonvoice_locale": "id",
|
727 |
"population": {
|
@@ -736,18 +736,18 @@
|
|
736 |
"scores": [
|
737 |
{
|
738 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
739 |
-
"
|
740 |
-
"
|
741 |
-
"
|
742 |
-
"
|
743 |
-
"overall_score": 0.
|
744 |
}
|
745 |
],
|
746 |
-
"
|
747 |
-
"
|
748 |
-
"
|
749 |
-
"
|
750 |
-
"overall_score": 0.
|
751 |
"commonvoice_hours": 1358.0,
|
752 |
"commonvoice_locale": "de",
|
753 |
"population": {
|
@@ -787,18 +787,18 @@
|
|
787 |
"scores": [
|
788 |
{
|
789 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
790 |
-
"
|
791 |
-
"
|
792 |
-
"
|
793 |
-
"
|
794 |
-
"overall_score": 0.
|
795 |
}
|
796 |
],
|
797 |
-
"
|
798 |
-
"
|
799 |
-
"
|
800 |
-
"
|
801 |
-
"overall_score": 0.
|
802 |
"commonvoice_hours": 222.0,
|
803 |
"commonvoice_locale": "ja",
|
804 |
"population": {
|
@@ -814,18 +814,18 @@
|
|
814 |
"scores": [
|
815 |
{
|
816 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
817 |
-
"
|
818 |
-
"
|
819 |
-
"
|
820 |
-
"
|
821 |
-
"overall_score": 0.
|
822 |
}
|
823 |
],
|
824 |
-
"
|
825 |
-
"
|
826 |
-
"
|
827 |
-
"
|
828 |
-
"overall_score": 0.
|
829 |
"commonvoice_hours": 0.3,
|
830 |
"commonvoice_locale": "te",
|
831 |
"population": {
|
@@ -839,18 +839,18 @@
|
|
839 |
"scores": [
|
840 |
{
|
841 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
842 |
-
"
|
843 |
-
"
|
844 |
-
"
|
845 |
-
"
|
846 |
-
"overall_score": 0.
|
847 |
}
|
848 |
],
|
849 |
-
"
|
850 |
-
"
|
851 |
-
"
|
852 |
-
"
|
853 |
-
"overall_score": 0.
|
854 |
"commonvoice_hours": 20.0,
|
855 |
"commonvoice_locale": "mr",
|
856 |
"population": {
|
@@ -864,18 +864,18 @@
|
|
864 |
"scores": [
|
865 |
{
|
866 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
867 |
-
"
|
868 |
-
"
|
869 |
-
"
|
870 |
-
"
|
871 |
-
"overall_score": 0.
|
872 |
}
|
873 |
],
|
874 |
-
"
|
875 |
-
"
|
876 |
-
"
|
877 |
-
"
|
878 |
-
"overall_score": 0.
|
879 |
"commonvoice_hours": 0.0,
|
880 |
"commonvoice_locale": "jv",
|
881 |
"population": {
|
@@ -890,18 +890,18 @@
|
|
890 |
"scores": [
|
891 |
{
|
892 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
893 |
-
"
|
894 |
-
"
|
895 |
-
"
|
896 |
-
"
|
897 |
-
"overall_score": 0.
|
898 |
}
|
899 |
],
|
900 |
-
"
|
901 |
-
"
|
902 |
-
"
|
903 |
-
"
|
904 |
-
"overall_score": 0.
|
905 |
"commonvoice_hours": 5.9,
|
906 |
"commonvoice_locale": "vi",
|
907 |
"population": {
|
|
|
6 |
"scores": [
|
7 |
{
|
8 |
"model": "openai/gpt-4o-mini",
|
9 |
+
"mt_bleu": 0.5245466124037277,
|
10 |
+
"mt_chrf": 65.25187717981981,
|
11 |
+
"cls_acc": 0.5666666666666667,
|
12 |
+
"mlm_chrf": 97.84704595784264,
|
13 |
+
"overall_score": 0.7325519660144305
|
14 |
},
|
15 |
{
|
16 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
17 |
+
"mt_bleu": 0.48750797044187216,
|
18 |
+
"mt_chrf": 63.24229348441665,
|
19 |
+
"cls_acc": 0.6,
|
20 |
+
"mlm_chrf": 93.62602669879945,
|
21 |
+
"overall_score": 0.7228944006107203
|
22 |
},
|
23 |
{
|
24 |
"model": "mistralai/mistral-small-24b-instruct-2501",
|
25 |
+
"mt_bleu": 0.486501959595472,
|
26 |
+
"mt_chrf": 63.8187259254881,
|
27 |
+
"cls_acc": 0.5333333333333333,
|
28 |
+
"mlm_chrf": 79.91140615317198,
|
29 |
+
"overall_score": 0.656878218039978
|
30 |
},
|
31 |
{
|
32 |
"model": "google/gemini-2.0-flash-001",
|
33 |
+
"mt_bleu": 0.6060954569411976,
|
34 |
+
"mt_chrf": 71.2288943066563,
|
35 |
+
"cls_acc": 0.8666666666666667,
|
36 |
+
"mlm_chrf": 98.79868693366329,
|
37 |
+
"overall_score": 0.8556474930232877
|
38 |
},
|
39 |
{
|
40 |
"model": "microsoft/phi-4",
|
41 |
+
"mt_bleu": 0.5199836121545649,
|
42 |
+
"mt_chrf": 66.05410510011644,
|
43 |
+
"cls_acc": 0.7,
|
44 |
+
"mlm_chrf": 97.2290729316734,
|
45 |
+
"overall_score": 0.7776105934392995
|
46 |
}
|
47 |
],
|
48 |
+
"mt_bleu": 0.5249271223073668,
|
49 |
+
"mt_chrf": 65.91917919929946,
|
50 |
+
"cls_acc": 0.6533333333333333,
|
51 |
+
"mlm_chrf": 93.48244773503015,
|
52 |
+
"overall_score": 0.7491165342255433,
|
53 |
"commonvoice_hours": 2651.0,
|
54 |
"commonvoice_locale": "en",
|
55 |
"population": {
|
|
|
217 |
"scores": [
|
218 |
{
|
219 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
220 |
+
"mt_bleu": 0.38557580495281013,
|
221 |
+
"mt_chrf": 61.11151378837755,
|
222 |
+
"cls_acc": 0.5666666666666667,
|
223 |
+
"mlm_chrf": 94.55849047452216,
|
224 |
+
"overall_score": 0.7077889030985546
|
225 |
}
|
226 |
],
|
227 |
+
"mt_bleu": 0.38557580495281013,
|
228 |
+
"mt_chrf": 61.11151378837755,
|
229 |
+
"cls_acc": 0.5666666666666667,
|
230 |
+
"mlm_chrf": 94.55849047452216,
|
231 |
+
"overall_score": 0.7077889030985546,
|
232 |
"commonvoice_hours": 422.0,
|
233 |
"commonvoice_locale": "zh-TW",
|
234 |
"population": {
|
|
|
261 |
"scores": [
|
262 |
{
|
263 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
264 |
+
"mt_bleu": 0.32404902340686065,
|
265 |
+
"mt_chrf": 53.54085104449268,
|
266 |
+
"cls_acc": 0.5,
|
267 |
+
"mlm_chrf": 96.17240172798218,
|
268 |
+
"overall_score": 0.6657108425749162
|
269 |
}
|
270 |
],
|
271 |
+
"mt_bleu": 0.32404902340686065,
|
272 |
+
"mt_chrf": 53.54085104449268,
|
273 |
+
"cls_acc": 0.5,
|
274 |
+
"mlm_chrf": 96.17240172798218,
|
275 |
+
"overall_score": 0.6657108425749162,
|
276 |
"commonvoice_hours": 16.0,
|
277 |
"commonvoice_locale": "hi-IN",
|
278 |
"population": {
|
|
|
291 |
"scores": [
|
292 |
{
|
293 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
294 |
+
"mt_bleu": 0.31587937116142056,
|
295 |
+
"mt_chrf": 52.142851262301726,
|
296 |
+
"cls_acc": 0.5,
|
297 |
+
"mlm_chrf": 96.92768852306384,
|
298 |
+
"overall_score": 0.6635684659512185
|
299 |
}
|
300 |
],
|
301 |
+
"mt_bleu": 0.31587937116142056,
|
302 |
+
"mt_chrf": 52.142851262301726,
|
303 |
+
"cls_acc": 0.5,
|
304 |
+
"mlm_chrf": 96.92768852306384,
|
305 |
+
"overall_score": 0.6635684659512185,
|
306 |
"commonvoice_hours": 446.0,
|
307 |
"commonvoice_locale": "es",
|
308 |
"population": {
|
|
|
354 |
"scores": [
|
355 |
{
|
356 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
357 |
+
"mt_bleu": 0.39547934933771334,
|
358 |
+
"mt_chrf": 57.51652731936118,
|
359 |
+
"cls_acc": 0.4666666666666667,
|
360 |
+
"mlm_chrf": 94.97026443937914,
|
361 |
+
"overall_score": 0.6638448614180232
|
362 |
}
|
363 |
],
|
364 |
+
"mt_bleu": 0.39547934933771334,
|
365 |
+
"mt_chrf": 57.51652731936118,
|
366 |
+
"cls_acc": 0.4666666666666667,
|
367 |
+
"mlm_chrf": 94.97026443937914,
|
368 |
+
"overall_score": 0.6638448614180232,
|
369 |
"commonvoice_hours": 91.0,
|
370 |
"commonvoice_locale": "ar",
|
371 |
"population": {
|
|
|
416 |
"scores": [
|
417 |
{
|
418 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
419 |
+
"mt_bleu": 0.26585004461425726,
|
420 |
+
"mt_chrf": 47.37157150967947,
|
421 |
+
"cls_acc": 0.43333333333333335,
|
422 |
+
"mlm_chrf": 94.38802161979918,
|
423 |
+
"overall_score": 0.6169764215427066
|
424 |
}
|
425 |
],
|
426 |
+
"mt_bleu": 0.26585004461425726,
|
427 |
+
"mt_chrf": 47.37157150967947,
|
428 |
+
"cls_acc": 0.43333333333333335,
|
429 |
+
"mlm_chrf": 94.38802161979918,
|
430 |
+
"overall_score": 0.6169764215427066,
|
431 |
"commonvoice_hours": 77.0,
|
432 |
"commonvoice_locale": "ur",
|
433 |
"population": {
|
|
|
445 |
"scores": [
|
446 |
{
|
447 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
448 |
+
"mt_bleu": 0.3510210872150948,
|
449 |
+
"mt_chrf": 55.795595938804894,
|
450 |
+
"cls_acc": 0.5666666666666667,
|
451 |
+
"mlm_chrf": 97.12318847922649,
|
452 |
+
"overall_score": 0.6986181702823268
|
453 |
}
|
454 |
],
|
455 |
+
"mt_bleu": 0.3510210872150948,
|
456 |
+
"mt_chrf": 55.795595938804894,
|
457 |
+
"cls_acc": 0.5666666666666667,
|
458 |
+
"mlm_chrf": 97.12318847922649,
|
459 |
+
"overall_score": 0.6986181702823268,
|
460 |
"commonvoice_hours": 1052.0,
|
461 |
"commonvoice_locale": "fr",
|
462 |
"population": {
|
|
|
531 |
"scores": [
|
532 |
{
|
533 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
534 |
+
"mt_bleu": 0.2874920154082786,
|
535 |
+
"mt_chrf": 51.49279116112809,
|
536 |
+
"cls_acc": 0.4,
|
537 |
+
"mlm_chrf": 90.6067262108039,
|
538 |
+
"overall_score": 0.6069983912397733
|
539 |
}
|
540 |
],
|
541 |
+
"mt_bleu": 0.2874920154082786,
|
542 |
+
"mt_chrf": 51.49279116112809,
|
543 |
+
"cls_acc": 0.4,
|
544 |
+
"mlm_chrf": 90.6067262108039,
|
545 |
+
"overall_score": 0.6069983912397733,
|
546 |
"commonvoice_hours": 49.0,
|
547 |
"commonvoice_locale": "bn",
|
548 |
"population": {
|
|
|
560 |
"scores": [
|
561 |
{
|
562 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
563 |
+
"mt_bleu": 0.33491649454450034,
|
564 |
+
"mt_chrf": 54.60211868234021,
|
565 |
+
"cls_acc": 0.5666666666666667,
|
566 |
+
"mlm_chrf": 96.52676764996336,
|
567 |
+
"overall_score": 0.6926518433299008
|
568 |
}
|
569 |
],
|
570 |
+
"mt_bleu": 0.33491649454450034,
|
571 |
+
"mt_chrf": 54.60211868234021,
|
572 |
+
"cls_acc": 0.5666666666666667,
|
573 |
+
"mlm_chrf": 96.52676764996336,
|
574 |
+
"overall_score": 0.6926518433299008,
|
575 |
"commonvoice_hours": 177.0,
|
576 |
"commonvoice_locale": "pt",
|
577 |
"population": {
|
|
|
600 |
"scores": [
|
601 |
{
|
602 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
603 |
+
"mt_bleu": 0.3078917767345886,
|
604 |
+
"mt_chrf": 50.505686987696365,
|
605 |
+
"cls_acc": 0.5333333333333333,
|
606 |
+
"mlm_chrf": 90.10119297923285,
|
607 |
+
"overall_score": 0.6464673776675418
|
608 |
}
|
609 |
],
|
610 |
+
"mt_bleu": 0.3078917767345886,
|
611 |
+
"mt_chrf": 50.505686987696365,
|
612 |
+
"cls_acc": 0.5333333333333333,
|
613 |
+
"mlm_chrf": 90.10119297923285,
|
614 |
+
"overall_score": 0.6464673776675418,
|
615 |
"commonvoice_hours": 2.3,
|
616 |
"commonvoice_locale": "pa-IN",
|
617 |
"population": {
|
|
|
630 |
"scores": [
|
631 |
{
|
632 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
633 |
+
"mt_bleu": 0.32647288591882895,
|
634 |
+
"mt_chrf": 53.107657805277526,
|
635 |
+
"cls_acc": 0.5666666666666667,
|
636 |
+
"mlm_chrf": 96.21400287169976,
|
637 |
+
"overall_score": 0.6866277578121466
|
638 |
}
|
639 |
],
|
640 |
+
"mt_bleu": 0.32647288591882895,
|
641 |
+
"mt_chrf": 53.107657805277526,
|
642 |
+
"cls_acc": 0.5666666666666667,
|
643 |
+
"mlm_chrf": 96.21400287169976,
|
644 |
+
"overall_score": 0.6866277578121466,
|
645 |
"commonvoice_hours": 242.0,
|
646 |
"commonvoice_locale": "ru",
|
647 |
"population": {
|
|
|
677 |
"scores": [
|
678 |
{
|
679 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
680 |
+
"mt_bleu": 0.29267168415814176,
|
681 |
+
"mt_chrf": 49.16720485265401,
|
682 |
+
"cls_acc": 0.5,
|
683 |
+
"mlm_chrf": 94.82776161604177,
|
684 |
+
"overall_score": 0.646649888228986
|
685 |
}
|
686 |
],
|
687 |
+
"mt_bleu": 0.29267168415814176,
|
688 |
+
"mt_chrf": 49.16720485265401,
|
689 |
+
"cls_acc": 0.5,
|
690 |
+
"mlm_chrf": 94.82776161604177,
|
691 |
+
"overall_score": 0.646649888228986,
|
692 |
"commonvoice_hours": 411.0,
|
693 |
"commonvoice_locale": "sw",
|
694 |
"population": {
|
|
|
710 |
"scores": [
|
711 |
{
|
712 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
713 |
+
"mt_bleu": 0.30782604302717903,
|
714 |
+
"mt_chrf": 52.62467814017025,
|
715 |
+
"cls_acc": 0.6,
|
716 |
+
"mlm_chrf": 95.83373661382923,
|
717 |
+
"overall_score": 0.6948613825133316
|
718 |
}
|
719 |
],
|
720 |
+
"mt_bleu": 0.30782604302717903,
|
721 |
+
"mt_chrf": 52.62467814017025,
|
722 |
+
"cls_acc": 0.6,
|
723 |
+
"mlm_chrf": 95.83373661382923,
|
724 |
+
"overall_score": 0.6948613825133316,
|
725 |
"commonvoice_hours": 33.0,
|
726 |
"commonvoice_locale": "id",
|
727 |
"population": {
|
|
|
736 |
"scores": [
|
737 |
{
|
738 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
739 |
+
"mt_bleu": 0.3880450110946665,
|
740 |
+
"mt_chrf": 57.659717194572515,
|
741 |
+
"cls_acc": 0.5666666666666667,
|
742 |
+
"mlm_chrf": 96.78268690494019,
|
743 |
+
"overall_score": 0.7036969025539311
|
744 |
}
|
745 |
],
|
746 |
+
"mt_bleu": 0.3880450110946665,
|
747 |
+
"mt_chrf": 57.659717194572515,
|
748 |
+
"cls_acc": 0.5666666666666667,
|
749 |
+
"mlm_chrf": 96.78268690494019,
|
750 |
+
"overall_score": 0.7036969025539311,
|
751 |
"commonvoice_hours": 1358.0,
|
752 |
"commonvoice_locale": "de",
|
753 |
"population": {
|
|
|
787 |
"scores": [
|
788 |
{
|
789 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
790 |
+
"mt_bleu": 0.2478415746367755,
|
791 |
+
"mt_chrf": 47.19744231900874,
|
792 |
+
"cls_acc": 0.6,
|
793 |
+
"mlm_chrf": 92.47052714876749,
|
794 |
+
"overall_score": 0.6655598982259208
|
795 |
}
|
796 |
],
|
797 |
+
"mt_bleu": 0.2478415746367755,
|
798 |
+
"mt_chrf": 47.19744231900874,
|
799 |
+
"cls_acc": 0.6,
|
800 |
+
"mlm_chrf": 92.47052714876749,
|
801 |
+
"overall_score": 0.6655598982259208,
|
802 |
"commonvoice_hours": 222.0,
|
803 |
"commonvoice_locale": "ja",
|
804 |
"population": {
|
|
|
814 |
"scores": [
|
815 |
{
|
816 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
817 |
+
"mt_bleu": 0.3785489421990512,
|
818 |
+
"mt_chrf": 56.9267557487146,
|
819 |
+
"cls_acc": 0.4,
|
820 |
+
"mlm_chrf": 94.3625059002704,
|
821 |
+
"overall_score": 0.6376308721632834
|
822 |
}
|
823 |
],
|
824 |
+
"mt_bleu": 0.3785489421990512,
|
825 |
+
"mt_chrf": 56.9267557487146,
|
826 |
+
"cls_acc": 0.4,
|
827 |
+
"mlm_chrf": 94.3625059002704,
|
828 |
+
"overall_score": 0.6376308721632834,
|
829 |
"commonvoice_hours": 0.3,
|
830 |
"commonvoice_locale": "te",
|
831 |
"population": {
|
|
|
839 |
"scores": [
|
840 |
{
|
841 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
842 |
+
"mt_bleu": 0.29576799752528954,
|
843 |
+
"mt_chrf": 51.55512571221437,
|
844 |
+
"cls_acc": 0.5666666666666667,
|
845 |
+
"mlm_chrf": 95.03930657100632,
|
846 |
+
"overall_score": 0.6775369964996245
|
847 |
}
|
848 |
],
|
849 |
+
"mt_bleu": 0.29576799752528954,
|
850 |
+
"mt_chrf": 51.55512571221437,
|
851 |
+
"cls_acc": 0.5666666666666667,
|
852 |
+
"mlm_chrf": 95.03930657100632,
|
853 |
+
"overall_score": 0.6775369964996245,
|
854 |
"commonvoice_hours": 20.0,
|
855 |
"commonvoice_locale": "mr",
|
856 |
"population": {
|
|
|
864 |
"scores": [
|
865 |
{
|
866 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
867 |
+
"mt_bleu": 0.26767127029757953,
|
868 |
+
"mt_chrf": 48.9335568346396,
|
869 |
+
"cls_acc": 0.4666666666666667,
|
870 |
+
"mlm_chrf": 91.68807278010077,
|
871 |
+
"overall_score": 0.6242943209380235
|
872 |
}
|
873 |
],
|
874 |
+
"mt_bleu": 0.26767127029757953,
|
875 |
+
"mt_chrf": 48.9335568346396,
|
876 |
+
"cls_acc": 0.4666666666666667,
|
877 |
+
"mlm_chrf": 91.68807278010077,
|
878 |
+
"overall_score": 0.6242943209380235,
|
879 |
"commonvoice_hours": 0.0,
|
880 |
"commonvoice_locale": "jv",
|
881 |
"population": {
|
|
|
890 |
"scores": [
|
891 |
{
|
892 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
893 |
+
"mt_bleu": 0.26736329890789995,
|
894 |
+
"mt_chrf": 49.52763533189073,
|
895 |
+
"cls_acc": 0.5333333333333333,
|
896 |
+
"mlm_chrf": 94.33244905535389,
|
897 |
+
"overall_score": 0.6573113924019266
|
898 |
}
|
899 |
],
|
900 |
+
"mt_bleu": 0.26736329890789995,
|
901 |
+
"mt_chrf": 49.52763533189073,
|
902 |
+
"cls_acc": 0.5333333333333333,
|
903 |
+
"mlm_chrf": 94.33244905535389,
|
904 |
+
"overall_score": 0.6573113924019266,
|
905 |
"commonvoice_hours": 5.9,
|
906 |
"commonvoice_locale": "vi",
|
907 |
"population": {
|