David Pomerenke
commited on
Commit
·
a65282b
1
Parent(s):
d597fe1
Nice tables and plots
Browse files- app.py +124 -41
- evals.py +3 -3
- results.json +302 -92
app.py
CHANGED
@@ -2,12 +2,12 @@ import gradio as gr
|
|
2 |
import json
|
3 |
import pandas as pd
|
4 |
import plotly.graph_objects as go
|
5 |
-
from plotly.subplots import make_subplots
|
6 |
|
7 |
# Load and process results
|
8 |
with open("results.json") as f:
|
9 |
results = json.load(f)
|
10 |
|
|
|
11 |
def create_model_comparison_plot(results):
|
12 |
# Extract all unique models
|
13 |
models = set()
|
@@ -15,96 +15,179 @@ def create_model_comparison_plot(results):
|
|
15 |
for score in lang["scores"]:
|
16 |
models.add(score["model"])
|
17 |
models = list(models)
|
18 |
-
|
19 |
# Create traces for each model
|
20 |
traces = []
|
21 |
for model in models:
|
22 |
x_vals = [] # languages
|
23 |
y_vals = [] # BLEU scores
|
24 |
-
|
25 |
for lang in results:
|
26 |
-
model_score = next(
|
|
|
|
|
27 |
if model_score is not None:
|
28 |
x_vals.append(lang["language_name"])
|
29 |
y_vals.append(model_score)
|
30 |
-
|
31 |
-
traces.append(
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
37 |
fig = go.Figure(data=traces)
|
38 |
fig.update_layout(
|
39 |
title="BLEU Scores by Model and Language",
|
40 |
xaxis_title="Language",
|
41 |
yaxis_title="BLEU Score",
|
42 |
-
barmode=
|
43 |
-
height=500
|
44 |
)
|
45 |
return fig
|
46 |
|
|
|
47 |
def create_scatter_plot(results):
|
48 |
fig = go.Figure()
|
49 |
-
|
50 |
x_vals = [lang["speakers"] / 1_000_000 for lang in results] # Convert to millions
|
51 |
y_vals = [lang["bleu"] for lang in results]
|
52 |
labels = [lang["language_name"] for lang in results]
|
53 |
-
|
54 |
-
fig.add_trace(
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
65 |
fig.update_layout(
|
66 |
title="Language Coverage: Speakers vs BLEU Score",
|
67 |
xaxis_title="Number of Speakers (Millions)",
|
68 |
yaxis_title="Average BLEU Score",
|
69 |
height=500,
|
70 |
-
showlegend=False
|
71 |
)
|
72 |
-
|
73 |
# Use log scale for x-axis since speaker numbers vary widely
|
74 |
fig.update_xaxes(type="log")
|
75 |
-
|
76 |
return fig
|
77 |
|
|
|
78 |
def create_results_df(results):
|
79 |
# Create a list to store flattened data
|
80 |
flat_data = []
|
81 |
-
|
82 |
for lang in results:
|
|
|
|
|
|
|
83 |
row = {
|
84 |
"Language": lang["language_name"],
|
85 |
"Speakers (M)": round(lang["speakers"] / 1_000_000, 1),
|
86 |
-
"
|
|
|
|
|
|
|
87 |
}
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
for score in lang["scores"]:
|
90 |
-
model_name = score["model"].split(
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
# Create the visualization components
|
98 |
with gr.Blocks(title="AI Language Translation Benchmark") as demo:
|
99 |
gr.Markdown("# AI Language Translation Benchmark")
|
100 |
-
gr.Markdown(
|
101 |
-
|
|
|
|
|
102 |
df = create_results_df(results)
|
|
|
103 |
bar_plot = create_model_comparison_plot(results)
|
104 |
scatter_plot = create_scatter_plot(results)
|
105 |
-
|
106 |
-
gr.DataFrame(value=
|
107 |
gr.Plot(value=bar_plot, label="Model Comparison")
|
|
|
108 |
gr.Plot(value=scatter_plot, label="Language Coverage")
|
109 |
|
110 |
-
demo.launch()
|
|
|
2 |
import json
|
3 |
import pandas as pd
|
4 |
import plotly.graph_objects as go
|
|
|
5 |
|
6 |
# Load and process results
|
7 |
with open("results.json") as f:
|
8 |
results = json.load(f)
|
9 |
|
10 |
+
|
11 |
def create_model_comparison_plot(results):
|
12 |
# Extract all unique models
|
13 |
models = set()
|
|
|
15 |
for score in lang["scores"]:
|
16 |
models.add(score["model"])
|
17 |
models = list(models)
|
18 |
+
|
19 |
# Create traces for each model
|
20 |
traces = []
|
21 |
for model in models:
|
22 |
x_vals = [] # languages
|
23 |
y_vals = [] # BLEU scores
|
24 |
+
|
25 |
for lang in results:
|
26 |
+
model_score = next(
|
27 |
+
(s["bleu"] for s in lang["scores"] if s["model"] == model), None
|
28 |
+
)
|
29 |
if model_score is not None:
|
30 |
x_vals.append(lang["language_name"])
|
31 |
y_vals.append(model_score)
|
32 |
+
|
33 |
+
traces.append(
|
34 |
+
go.Bar(
|
35 |
+
name=model.split("/")[-1],
|
36 |
+
x=x_vals,
|
37 |
+
y=y_vals,
|
38 |
+
)
|
39 |
+
)
|
40 |
+
|
41 |
fig = go.Figure(data=traces)
|
42 |
fig.update_layout(
|
43 |
title="BLEU Scores by Model and Language",
|
44 |
xaxis_title="Language",
|
45 |
yaxis_title="BLEU Score",
|
46 |
+
barmode="group",
|
47 |
+
height=500,
|
48 |
)
|
49 |
return fig
|
50 |
|
51 |
+
|
52 |
def create_scatter_plot(results):
|
53 |
fig = go.Figure()
|
54 |
+
|
55 |
x_vals = [lang["speakers"] / 1_000_000 for lang in results] # Convert to millions
|
56 |
y_vals = [lang["bleu"] for lang in results]
|
57 |
labels = [lang["language_name"] for lang in results]
|
58 |
+
|
59 |
+
fig.add_trace(
|
60 |
+
go.Scatter(
|
61 |
+
x=x_vals,
|
62 |
+
y=y_vals,
|
63 |
+
mode="markers+text",
|
64 |
+
text=labels,
|
65 |
+
textposition="top center",
|
66 |
+
hovertemplate="<b>%{text}</b><br>"
|
67 |
+
+ "Speakers: %{x:.1f}M<br>"
|
68 |
+
+ "BLEU Score: %{y:.3f}<extra></extra>",
|
69 |
+
)
|
70 |
+
)
|
71 |
+
|
72 |
fig.update_layout(
|
73 |
title="Language Coverage: Speakers vs BLEU Score",
|
74 |
xaxis_title="Number of Speakers (Millions)",
|
75 |
yaxis_title="Average BLEU Score",
|
76 |
height=500,
|
77 |
+
showlegend=False,
|
78 |
)
|
79 |
+
|
80 |
# Use log scale for x-axis since speaker numbers vary widely
|
81 |
fig.update_xaxes(type="log")
|
82 |
+
|
83 |
return fig
|
84 |
|
85 |
+
|
86 |
def create_results_df(results):
|
87 |
# Create a list to store flattened data
|
88 |
flat_data = []
|
89 |
+
|
90 |
for lang in results:
|
91 |
+
# Find the best model and its BLEU score
|
92 |
+
best_score = max(lang["scores"] or [{"bleu": None, "model": None}], key=lambda x: x["bleu"])
|
93 |
+
|
94 |
row = {
|
95 |
"Language": lang["language_name"],
|
96 |
"Speakers (M)": round(lang["speakers"] / 1_000_000, 1),
|
97 |
+
"Models Tested": len(lang["scores"]),
|
98 |
+
"Average BLEU": round(lang["bleu"], 3) if lang["bleu"] is not None else "N/A",
|
99 |
+
"Best Model": best_score["model"] if best_score["model"] is not None else "N/A",
|
100 |
+
"Best Model BLEU": round(best_score["bleu"], 3) if best_score["bleu"] is not None else "N/A",
|
101 |
}
|
102 |
+
flat_data.append(row)
|
103 |
+
|
104 |
+
return pd.DataFrame(flat_data)
|
105 |
+
|
106 |
+
|
107 |
+
def create_leaderboard_df(results):
|
108 |
+
# Sort languages by average BLEU to determine resource categories
|
109 |
+
langs_with_bleu = [lang for lang in results if lang["bleu"] is not None]
|
110 |
+
sorted_langs = sorted(langs_with_bleu, key=lambda x: x["bleu"], reverse=True)
|
111 |
+
n_langs = len(sorted_langs)
|
112 |
+
high_cutoff = n_langs // 4 # top 25%
|
113 |
+
low_cutoff = n_langs - n_langs // 4 # bottom 25%
|
114 |
+
|
115 |
+
# Create sets of languages for each category
|
116 |
+
high_resource = {lang["language_name"] for lang in sorted_langs[:high_cutoff]}
|
117 |
+
low_resource = {lang["language_name"] for lang in sorted_langs[low_cutoff:]}
|
118 |
+
|
119 |
+
# Get all model scores with categorization
|
120 |
+
model_scores = {}
|
121 |
+
for lang in results:
|
122 |
+
category = ("High-Resource" if lang["language_name"] in high_resource else
|
123 |
+
"Low-Resource" if lang["language_name"] in low_resource else
|
124 |
+
"Mid-Resource")
|
125 |
+
|
126 |
for score in lang["scores"]:
|
127 |
+
model_name = score["model"].split("/")[-1]
|
128 |
+
if model_name not in model_scores:
|
129 |
+
model_scores[model_name] = {
|
130 |
+
"High-Resource": [],
|
131 |
+
"Mid-Resource": [],
|
132 |
+
"Low-Resource": []
|
133 |
+
}
|
134 |
+
model_scores[model_name][category].append(score["bleu"])
|
135 |
+
|
136 |
+
# Calculate average scores and create DataFrame
|
137 |
+
leaderboard_data = []
|
138 |
+
for model, categories in model_scores.items():
|
139 |
+
# Calculate averages for each category
|
140 |
+
high_avg = round(sum(categories["High-Resource"]) / len(categories["High-Resource"]), 3) if categories["High-Resource"] else 0
|
141 |
+
mid_avg = round(sum(categories["Mid-Resource"]) / len(categories["Mid-Resource"]), 3) if categories["Mid-Resource"] else 0
|
142 |
+
low_avg = round(sum(categories["Low-Resource"]) / len(categories["Low-Resource"]), 3) if categories["Low-Resource"] else 0
|
143 |
|
144 |
+
# Calculate overall average
|
145 |
+
all_scores = (categories["High-Resource"] +
|
146 |
+
categories["Mid-Resource"] +
|
147 |
+
categories["Low-Resource"])
|
148 |
+
overall_avg = round(sum(all_scores) / len(all_scores), 3)
|
149 |
+
|
150 |
+
leaderboard_data.append({
|
151 |
+
"Model": model,
|
152 |
+
"Overall BLEU": overall_avg,
|
153 |
+
"High-Resource BLEU": high_avg,
|
154 |
+
"Mid-Resource BLEU": mid_avg,
|
155 |
+
"Low-Resource BLEU": low_avg,
|
156 |
+
"Languages Tested": len(all_scores),
|
157 |
+
})
|
158 |
|
159 |
+
# Sort by overall BLEU
|
160 |
+
df = pd.DataFrame(leaderboard_data)
|
161 |
+
df = df.sort_values("Overall BLEU", ascending=False)
|
162 |
+
|
163 |
+
# Add rank and medals
|
164 |
+
df["Rank"] = range(1, len(df) + 1)
|
165 |
+
df["Rank"] = df["Rank"].apply(
|
166 |
+
lambda x: "🥇" if x == 1 else "🥈" if x == 2 else "🥉" if x == 3 else str(x)
|
167 |
+
)
|
168 |
+
|
169 |
+
# Reorder columns
|
170 |
+
df = df[["Rank", "Model", "Overall BLEU", "High-Resource BLEU",
|
171 |
+
"Mid-Resource BLEU", "Low-Resource BLEU", "Languages Tested"]]
|
172 |
+
|
173 |
+
return df
|
174 |
+
|
175 |
|
176 |
# Create the visualization components
|
177 |
with gr.Blocks(title="AI Language Translation Benchmark") as demo:
|
178 |
gr.Markdown("# AI Language Translation Benchmark")
|
179 |
+
gr.Markdown(
|
180 |
+
"Comparing translation performance across different AI models and languages"
|
181 |
+
)
|
182 |
+
|
183 |
df = create_results_df(results)
|
184 |
+
leaderboard_df = create_leaderboard_df(results)
|
185 |
bar_plot = create_model_comparison_plot(results)
|
186 |
scatter_plot = create_scatter_plot(results)
|
187 |
+
|
188 |
+
gr.DataFrame(value=leaderboard_df, label="Model Leaderboard", show_search=False)
|
189 |
gr.Plot(value=bar_plot, label="Model Comparison")
|
190 |
+
gr.DataFrame(value=df, label="Language Results", show_search="search")
|
191 |
gr.Plot(value=scatter_plot, label="Language Coverage")
|
192 |
|
193 |
+
demo.launch()
|
evals.py
CHANGED
@@ -95,7 +95,7 @@ languages = pd.merge(benchmark_languages, languages, on="language_code", how="ou
|
|
95 |
languages = pd.merge(languages, script_names, on="script_code", how="left")
|
96 |
languages["in_benchmark"] = languages["in_benchmark"].fillna(False)
|
97 |
languages = languages.sort_values(by="speakers", ascending=False)
|
98 |
-
languages = languages.iloc[:
|
99 |
|
100 |
# sample languages to translate to
|
101 |
target_languages_NEW = languages[languages["in_benchmark"]].sample(
|
@@ -103,7 +103,7 @@ target_languages_NEW = languages[languages["in_benchmark"]].sample(
|
|
103 |
)
|
104 |
# sample languages to analyze with all models
|
105 |
detailed_languages = languages[languages["in_benchmark"]].sample(
|
106 |
-
n=
|
107 |
)
|
108 |
|
109 |
|
@@ -214,7 +214,7 @@ async def main():
|
|
214 |
"language_code": language.language_code,
|
215 |
"speakers": language.speakers if not pd.isna(language.speakers) else 0,
|
216 |
"scores": scores,
|
217 |
-
"bleu": mean([s["bleu"] for s in scores])
|
218 |
# "bert_score": mean([s["bert_score"] for s in scores]),
|
219 |
}
|
220 |
)
|
|
|
95 |
languages = pd.merge(languages, script_names, on="script_code", how="left")
|
96 |
languages["in_benchmark"] = languages["in_benchmark"].fillna(False)
|
97 |
languages = languages.sort_values(by="speakers", ascending=False)
|
98 |
+
languages = languages.iloc[:30]
|
99 |
|
100 |
# sample languages to translate to
|
101 |
target_languages_NEW = languages[languages["in_benchmark"]].sample(
|
|
|
103 |
)
|
104 |
# sample languages to analyze with all models
|
105 |
detailed_languages = languages[languages["in_benchmark"]].sample(
|
106 |
+
n=10, random_state=42
|
107 |
)
|
108 |
|
109 |
|
|
|
214 |
"language_code": language.language_code,
|
215 |
"speakers": language.speakers if not pd.isna(language.speakers) else 0,
|
216 |
"scores": scores,
|
217 |
+
"bleu": mean([s["bleu"] for s in scores]) if scores else None,
|
218 |
# "bert_score": mean([s["bert_score"] for s in scores]),
|
219 |
}
|
220 |
)
|
results.json
CHANGED
@@ -6,62 +6,42 @@
|
|
6 |
"scores": [
|
7 |
{
|
8 |
"model": "openai/gpt-4o-mini",
|
9 |
-
"bleu": 0.
|
10 |
},
|
11 |
{
|
12 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
13 |
-
"bleu": 0.
|
14 |
},
|
15 |
{
|
16 |
"model": "mistralai/mistral-small-24b-instruct-2501",
|
17 |
-
"bleu": 0.
|
18 |
},
|
19 |
{
|
20 |
"model": "google/gemini-2.0-flash-001",
|
21 |
-
"bleu": 0.
|
22 |
},
|
23 |
{
|
24 |
"model": "deepseek/deepseek-chat",
|
25 |
-
"bleu": 0.
|
26 |
},
|
27 |
{
|
28 |
"model": "microsoft/phi-4",
|
29 |
-
"bleu": 0.
|
30 |
}
|
31 |
],
|
32 |
-
"bleu": 0.
|
33 |
},
|
34 |
{
|
35 |
"language_name": "Mandarin Chinese",
|
36 |
"language_code": "cmn",
|
37 |
"speakers": 1074000000.0,
|
38 |
"scores": [
|
39 |
-
{
|
40 |
-
"model": "openai/gpt-4o-mini",
|
41 |
-
"bleu": 0.38427885971806375
|
42 |
-
},
|
43 |
{
|
44 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
45 |
-
"bleu": 0.
|
46 |
-
},
|
47 |
-
{
|
48 |
-
"model": "mistralai/mistral-small-24b-instruct-2501",
|
49 |
-
"bleu": 0.40933363203497697
|
50 |
-
},
|
51 |
-
{
|
52 |
-
"model": "google/gemini-2.0-flash-001",
|
53 |
-
"bleu": 0.4486368724887284
|
54 |
-
},
|
55 |
-
{
|
56 |
-
"model": "deepseek/deepseek-chat",
|
57 |
-
"bleu": 0.4354691779014211
|
58 |
-
},
|
59 |
-
{
|
60 |
-
"model": "microsoft/phi-4",
|
61 |
-
"bleu": 0.3597312915524714
|
62 |
}
|
63 |
],
|
64 |
-
"bleu": 0.
|
65 |
},
|
66 |
{
|
67 |
"language_name": "Spanish",
|
@@ -70,10 +50,10 @@
|
|
70 |
"scores": [
|
71 |
{
|
72 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
73 |
-
"bleu": 0.
|
74 |
}
|
75 |
],
|
76 |
-
"bleu": 0.
|
77 |
},
|
78 |
{
|
79 |
"language_name": "Hindi",
|
@@ -82,10 +62,10 @@
|
|
82 |
"scores": [
|
83 |
{
|
84 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
85 |
-
"bleu": 0.
|
86 |
}
|
87 |
],
|
88 |
-
"bleu": 0.
|
89 |
},
|
90 |
{
|
91 |
"language_name": "Bengali",
|
@@ -94,10 +74,10 @@
|
|
94 |
"scores": [
|
95 |
{
|
96 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
97 |
-
"bleu": 0.
|
98 |
}
|
99 |
],
|
100 |
-
"bleu": 0.
|
101 |
},
|
102 |
{
|
103 |
"language_name": "Portuguese",
|
@@ -106,10 +86,10 @@
|
|
106 |
"scores": [
|
107 |
{
|
108 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
109 |
-
"bleu": 0.
|
110 |
}
|
111 |
],
|
112 |
-
"bleu": 0.
|
113 |
},
|
114 |
{
|
115 |
"language_name": "French",
|
@@ -118,10 +98,10 @@
|
|
118 |
"scores": [
|
119 |
{
|
120 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
121 |
-
"bleu": 0.
|
122 |
}
|
123 |
],
|
124 |
-
"bleu": 0.
|
125 |
},
|
126 |
{
|
127 |
"language_name": "Indonesian",
|
@@ -130,10 +110,10 @@
|
|
130 |
"scores": [
|
131 |
{
|
132 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
133 |
-
"bleu": 0.
|
134 |
}
|
135 |
],
|
136 |
-
"bleu": 0.
|
137 |
},
|
138 |
{
|
139 |
"language_name": "Russian",
|
@@ -142,42 +122,62 @@
|
|
142 |
"scores": [
|
143 |
{
|
144 |
"model": "openai/gpt-4o-mini",
|
145 |
-
"bleu": 0.
|
146 |
},
|
147 |
{
|
148 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
149 |
-
"bleu": 0.
|
150 |
},
|
151 |
{
|
152 |
"model": "mistralai/mistral-small-24b-instruct-2501",
|
153 |
-
"bleu": 0.
|
154 |
},
|
155 |
{
|
156 |
"model": "google/gemini-2.0-flash-001",
|
157 |
-
"bleu": 0.
|
158 |
},
|
159 |
{
|
160 |
"model": "deepseek/deepseek-chat",
|
161 |
-
"bleu": 0.
|
162 |
},
|
163 |
{
|
164 |
"model": "microsoft/phi-4",
|
165 |
-
"bleu": 0.
|
166 |
}
|
167 |
],
|
168 |
-
"bleu": 0.
|
169 |
},
|
170 |
{
|
171 |
"language_name": "Japanese",
|
172 |
"language_code": "jpn",
|
173 |
"speakers": 128000000.0,
|
174 |
"scores": [
|
|
|
|
|
|
|
|
|
175 |
{
|
176 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
177 |
-
"bleu": 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
}
|
179 |
],
|
180 |
-
"bleu": 0.
|
181 |
},
|
182 |
{
|
183 |
"language_name": "Eastern Punjabi",
|
@@ -186,46 +186,106 @@
|
|
186 |
"scores": [
|
187 |
{
|
188 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
189 |
-
"bleu": 0.
|
190 |
}
|
191 |
],
|
192 |
-
"bleu": 0.
|
193 |
},
|
194 |
{
|
195 |
"language_name": "Standard German",
|
196 |
"language_code": "deu",
|
197 |
"speakers": 105000000.0,
|
198 |
"scores": [
|
|
|
|
|
|
|
|
|
199 |
{
|
200 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
201 |
-
"bleu": 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
}
|
203 |
],
|
204 |
-
"bleu": 0.
|
205 |
},
|
206 |
{
|
207 |
"language_name": "Egyptian Arabic",
|
208 |
"language_code": "arz",
|
209 |
"speakers": 100542400.0,
|
210 |
"scores": [
|
|
|
|
|
|
|
|
|
211 |
{
|
212 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
213 |
-
"bleu": 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
}
|
215 |
],
|
216 |
-
"bleu": 0.
|
217 |
},
|
218 |
{
|
219 |
"language_name": "Urdu",
|
220 |
"language_code": "urd",
|
221 |
"speakers": 94022900.0,
|
222 |
"scores": [
|
|
|
|
|
|
|
|
|
223 |
{
|
224 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
225 |
-
"bleu": 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
}
|
227 |
],
|
228 |
-
"bleu": 0.
|
229 |
},
|
230 |
{
|
231 |
"language_name": "Filipino",
|
@@ -234,109 +294,259 @@
|
|
234 |
"scores": [
|
235 |
{
|
236 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
237 |
-
"bleu": 0.
|
238 |
}
|
239 |
],
|
240 |
-
"bleu": 0.
|
241 |
},
|
242 |
{
|
243 |
"language_name": "Javanese",
|
244 |
"language_code": "jav",
|
245 |
"speakers": 84308740.0,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
"scores": [
|
247 |
{
|
248 |
"model": "openai/gpt-4o-mini",
|
249 |
-
"bleu": 0.
|
250 |
},
|
251 |
{
|
252 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
253 |
-
"bleu": 0.
|
254 |
},
|
255 |
{
|
256 |
"model": "mistralai/mistral-small-24b-instruct-2501",
|
257 |
-
"bleu": 0.
|
258 |
},
|
259 |
{
|
260 |
"model": "google/gemini-2.0-flash-001",
|
261 |
-
"bleu": 0.
|
262 |
},
|
263 |
{
|
264 |
"model": "deepseek/deepseek-chat",
|
265 |
-
"bleu": 0.
|
266 |
},
|
267 |
{
|
268 |
"model": "microsoft/phi-4",
|
269 |
-
"bleu": 0.
|
270 |
}
|
271 |
],
|
272 |
-
"bleu": 0.
|
273 |
},
|
274 |
{
|
275 |
-
"language_name": "
|
276 |
-
"language_code": "
|
277 |
-
"speakers":
|
278 |
"scores": [
|
279 |
{
|
280 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
281 |
-
"bleu": 0.
|
282 |
}
|
283 |
],
|
284 |
-
"bleu": 0.
|
285 |
},
|
286 |
{
|
287 |
-
"language_name": "
|
288 |
-
"language_code": "
|
289 |
-
"speakers":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
"scores": [
|
291 |
{
|
292 |
"model": "openai/gpt-4o-mini",
|
293 |
-
"bleu": 0.
|
294 |
},
|
295 |
{
|
296 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
297 |
-
"bleu": 0.
|
298 |
},
|
299 |
{
|
300 |
"model": "mistralai/mistral-small-24b-instruct-2501",
|
301 |
-
"bleu": 0.
|
302 |
},
|
303 |
{
|
304 |
"model": "google/gemini-2.0-flash-001",
|
305 |
-
"bleu": 0.
|
306 |
},
|
307 |
{
|
308 |
"model": "deepseek/deepseek-chat",
|
309 |
-
"bleu": 0.
|
310 |
},
|
311 |
{
|
312 |
"model": "microsoft/phi-4",
|
313 |
-
"bleu": 0.
|
314 |
}
|
315 |
],
|
316 |
-
"bleu": 0.
|
317 |
},
|
318 |
{
|
319 |
-
"language_name": "
|
320 |
-
"language_code": "
|
321 |
-
"speakers":
|
322 |
"scores": [
|
|
|
|
|
|
|
|
|
323 |
{
|
324 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
325 |
-
"bleu": 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
}
|
327 |
],
|
328 |
-
"bleu": 0.
|
329 |
},
|
330 |
{
|
331 |
-
"language_name": "
|
332 |
-
"language_code": "
|
333 |
-
"speakers":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
"scores": [
|
335 |
{
|
336 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
337 |
-
"bleu": 0.
|
338 |
}
|
339 |
],
|
340 |
-
"bleu": 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
}
|
342 |
]
|
|
|
6 |
"scores": [
|
7 |
{
|
8 |
"model": "openai/gpt-4o-mini",
|
9 |
+
"bleu": 0.47104084248165595
|
10 |
},
|
11 |
{
|
12 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
13 |
+
"bleu": 0.4207265890491719
|
14 |
},
|
15 |
{
|
16 |
"model": "mistralai/mistral-small-24b-instruct-2501",
|
17 |
+
"bleu": 0.4642719176436136
|
18 |
},
|
19 |
{
|
20 |
"model": "google/gemini-2.0-flash-001",
|
21 |
+
"bleu": 0.5237470882988915
|
22 |
},
|
23 |
{
|
24 |
"model": "deepseek/deepseek-chat",
|
25 |
+
"bleu": 0.516570670982587
|
26 |
},
|
27 |
{
|
28 |
"model": "microsoft/phi-4",
|
29 |
+
"bleu": 0.44668905281921456
|
30 |
}
|
31 |
],
|
32 |
+
"bleu": 0.47384102687918905
|
33 |
},
|
34 |
{
|
35 |
"language_name": "Mandarin Chinese",
|
36 |
"language_code": "cmn",
|
37 |
"speakers": 1074000000.0,
|
38 |
"scores": [
|
|
|
|
|
|
|
|
|
39 |
{
|
40 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
41 |
+
"bleu": 0.48254866511762295
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
}
|
43 |
],
|
44 |
+
"bleu": 0.48254866511762295
|
45 |
},
|
46 |
{
|
47 |
"language_name": "Spanish",
|
|
|
50 |
"scores": [
|
51 |
{
|
52 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
53 |
+
"bleu": 0.31606621368361204
|
54 |
}
|
55 |
],
|
56 |
+
"bleu": 0.31606621368361204
|
57 |
},
|
58 |
{
|
59 |
"language_name": "Hindi",
|
|
|
62 |
"scores": [
|
63 |
{
|
64 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
65 |
+
"bleu": 0.3273225856613046
|
66 |
}
|
67 |
],
|
68 |
+
"bleu": 0.3273225856613046
|
69 |
},
|
70 |
{
|
71 |
"language_name": "Bengali",
|
|
|
74 |
"scores": [
|
75 |
{
|
76 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
77 |
+
"bleu": 0.23110496173302814
|
78 |
}
|
79 |
],
|
80 |
+
"bleu": 0.23110496173302814
|
81 |
},
|
82 |
{
|
83 |
"language_name": "Portuguese",
|
|
|
86 |
"scores": [
|
87 |
{
|
88 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
89 |
+
"bleu": 0.35032125995743685
|
90 |
}
|
91 |
],
|
92 |
+
"bleu": 0.35032125995743685
|
93 |
},
|
94 |
{
|
95 |
"language_name": "French",
|
|
|
98 |
"scores": [
|
99 |
{
|
100 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
101 |
+
"bleu": 0.31625053573185663
|
102 |
}
|
103 |
],
|
104 |
+
"bleu": 0.31625053573185663
|
105 |
},
|
106 |
{
|
107 |
"language_name": "Indonesian",
|
|
|
110 |
"scores": [
|
111 |
{
|
112 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
113 |
+
"bleu": 0.3112185444311794
|
114 |
}
|
115 |
],
|
116 |
+
"bleu": 0.3112185444311794
|
117 |
},
|
118 |
{
|
119 |
"language_name": "Russian",
|
|
|
122 |
"scores": [
|
123 |
{
|
124 |
"model": "openai/gpt-4o-mini",
|
125 |
+
"bleu": 0.32615858913589074
|
126 |
},
|
127 |
{
|
128 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
129 |
+
"bleu": 0.3244999119385425
|
130 |
},
|
131 |
{
|
132 |
"model": "mistralai/mistral-small-24b-instruct-2501",
|
133 |
+
"bleu": 0.315801608032821
|
134 |
},
|
135 |
{
|
136 |
"model": "google/gemini-2.0-flash-001",
|
137 |
+
"bleu": 0.3683733679689521
|
138 |
},
|
139 |
{
|
140 |
"model": "deepseek/deepseek-chat",
|
141 |
+
"bleu": 0.35988734604889566
|
142 |
},
|
143 |
{
|
144 |
"model": "microsoft/phi-4",
|
145 |
+
"bleu": 0.31289371159965956
|
146 |
}
|
147 |
],
|
148 |
+
"bleu": 0.3346024224541269
|
149 |
},
|
150 |
{
|
151 |
"language_name": "Japanese",
|
152 |
"language_code": "jpn",
|
153 |
"speakers": 128000000.0,
|
154 |
"scores": [
|
155 |
+
{
|
156 |
+
"model": "openai/gpt-4o-mini",
|
157 |
+
"bleu": 0.28991739992953497
|
158 |
+
},
|
159 |
{
|
160 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
161 |
+
"bleu": 0.2675679907215641
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"model": "mistralai/mistral-small-24b-instruct-2501",
|
165 |
+
"bleu": 0.21348802780641032
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"model": "google/gemini-2.0-flash-001",
|
169 |
+
"bleu": 0.3345265427223546
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"model": "deepseek/deepseek-chat",
|
173 |
+
"bleu": 0.3101203037558905
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"model": "microsoft/phi-4",
|
177 |
+
"bleu": 0.2585222780278109
|
178 |
}
|
179 |
],
|
180 |
+
"bleu": 0.2790237571605942
|
181 |
},
|
182 |
{
|
183 |
"language_name": "Eastern Punjabi",
|
|
|
186 |
"scores": [
|
187 |
{
|
188 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
189 |
+
"bleu": 0.27325501919134315
|
190 |
}
|
191 |
],
|
192 |
+
"bleu": 0.27325501919134315
|
193 |
},
|
194 |
{
|
195 |
"language_name": "Standard German",
|
196 |
"language_code": "deu",
|
197 |
"speakers": 105000000.0,
|
198 |
"scores": [
|
199 |
+
{
|
200 |
+
"model": "openai/gpt-4o-mini",
|
201 |
+
"bleu": 0.39019323183176663
|
202 |
+
},
|
203 |
{
|
204 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
205 |
+
"bleu": 0.37266353070949576
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"model": "mistralai/mistral-small-24b-instruct-2501",
|
209 |
+
"bleu": 0.3647632576435612
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"model": "google/gemini-2.0-flash-001",
|
213 |
+
"bleu": 0.4466723425292597
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"model": "deepseek/deepseek-chat",
|
217 |
+
"bleu": 0.4045496243095387
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"model": "microsoft/phi-4",
|
221 |
+
"bleu": 0.36047992103881465
|
222 |
}
|
223 |
],
|
224 |
+
"bleu": 0.3898869846770727
|
225 |
},
|
226 |
{
|
227 |
"language_name": "Egyptian Arabic",
|
228 |
"language_code": "arz",
|
229 |
"speakers": 100542400.0,
|
230 |
"scores": [
|
231 |
+
{
|
232 |
+
"model": "openai/gpt-4o-mini",
|
233 |
+
"bleu": 0.2339779422333898
|
234 |
+
},
|
235 |
{
|
236 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
237 |
+
"bleu": 0.20475486619797384
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"model": "mistralai/mistral-small-24b-instruct-2501",
|
241 |
+
"bleu": 0.20783660453505234
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"model": "google/gemini-2.0-flash-001",
|
245 |
+
"bleu": 0.2840808045687292
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"model": "deepseek/deepseek-chat",
|
249 |
+
"bleu": 0.2786287793608212
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"model": "microsoft/phi-4",
|
253 |
+
"bleu": 0.19969813973959594
|
254 |
}
|
255 |
],
|
256 |
+
"bleu": 0.23482952277259375
|
257 |
},
|
258 |
{
|
259 |
"language_name": "Urdu",
|
260 |
"language_code": "urd",
|
261 |
"speakers": 94022900.0,
|
262 |
"scores": [
|
263 |
+
{
|
264 |
+
"model": "openai/gpt-4o-mini",
|
265 |
+
"bleu": 0.297325653414119
|
266 |
+
},
|
267 |
{
|
268 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
269 |
+
"bleu": 0.24593966310665433
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"model": "mistralai/mistral-small-24b-instruct-2501",
|
273 |
+
"bleu": 0.21988755291389567
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"model": "google/gemini-2.0-flash-001",
|
277 |
+
"bleu": 0.31796430998058983
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"model": "deepseek/deepseek-chat",
|
281 |
+
"bleu": 0.3043614136242901
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"model": "microsoft/phi-4",
|
285 |
+
"bleu": 0.2285337340113323
|
286 |
}
|
287 |
],
|
288 |
+
"bleu": 0.2690020545084802
|
289 |
},
|
290 |
{
|
291 |
"language_name": "Filipino",
|
|
|
294 |
"scores": [
|
295 |
{
|
296 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
297 |
+
"bleu": 0.33268969497468076
|
298 |
}
|
299 |
],
|
300 |
+
"bleu": 0.33268969497468076
|
301 |
},
|
302 |
{
|
303 |
"language_name": "Javanese",
|
304 |
"language_code": "jav",
|
305 |
"speakers": 84308740.0,
|
306 |
+
"scores": [
|
307 |
+
{
|
308 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
309 |
+
"bleu": 0.2528746866064681
|
310 |
+
}
|
311 |
+
],
|
312 |
+
"bleu": 0.2528746866064681
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"language_name": "Marathi",
|
316 |
+
"language_code": "mar",
|
317 |
+
"speakers": 83100000.0,
|
318 |
+
"scores": [
|
319 |
+
{
|
320 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
321 |
+
"bleu": 0.24876051941895777
|
322 |
+
}
|
323 |
+
],
|
324 |
+
"bleu": 0.24876051941895777
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"language_name": "Swahili",
|
328 |
+
"language_code": "swh",
|
329 |
+
"speakers": 82300000.0,
|
330 |
"scores": [
|
331 |
{
|
332 |
"model": "openai/gpt-4o-mini",
|
333 |
+
"bleu": 0.34863560100932933
|
334 |
},
|
335 |
{
|
336 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
337 |
+
"bleu": 0.30524292832054034
|
338 |
},
|
339 |
{
|
340 |
"model": "mistralai/mistral-small-24b-instruct-2501",
|
341 |
+
"bleu": 0.23580256234118713
|
342 |
},
|
343 |
{
|
344 |
"model": "google/gemini-2.0-flash-001",
|
345 |
+
"bleu": 0.3871437234807849
|
346 |
},
|
347 |
{
|
348 |
"model": "deepseek/deepseek-chat",
|
349 |
+
"bleu": 0.3476225063617937
|
350 |
},
|
351 |
{
|
352 |
"model": "microsoft/phi-4",
|
353 |
+
"bleu": 0.21803176063271826
|
354 |
}
|
355 |
],
|
356 |
+
"bleu": 0.3070798470243923
|
357 |
},
|
358 |
{
|
359 |
+
"language_name": "Turkish",
|
360 |
+
"language_code": "tur",
|
361 |
+
"speakers": 82231620.0,
|
362 |
"scores": [
|
363 |
{
|
364 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
365 |
+
"bleu": 0.29874140544434125
|
366 |
}
|
367 |
],
|
368 |
+
"bleu": 0.29874140544434125
|
369 |
},
|
370 |
{
|
371 |
+
"language_name": "Telugu",
|
372 |
+
"language_code": "tel",
|
373 |
+
"speakers": 82000000.0,
|
374 |
+
"scores": [
|
375 |
+
{
|
376 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
377 |
+
"bleu": 0.28869836899054496
|
378 |
+
}
|
379 |
+
],
|
380 |
+
"bleu": 0.28869836899054496
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"language_name": "Wu Chinese",
|
384 |
+
"language_code": "wuu",
|
385 |
+
"speakers": 81400000.0,
|
386 |
+
"scores": [],
|
387 |
+
"bleu": null
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"language_name": "Korean",
|
391 |
+
"language_code": "kor",
|
392 |
+
"speakers": 77300000.0,
|
393 |
+
"scores": [
|
394 |
+
{
|
395 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
396 |
+
"bleu": 0.2566453806044083
|
397 |
+
}
|
398 |
+
],
|
399 |
+
"bleu": 0.2566453806044083
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"language_name": "Vietnamese",
|
403 |
+
"language_code": "vie",
|
404 |
+
"speakers": 76000000.0,
|
405 |
"scores": [
|
406 |
{
|
407 |
"model": "openai/gpt-4o-mini",
|
408 |
+
"bleu": 0.3104431723374164
|
409 |
},
|
410 |
{
|
411 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
412 |
+
"bleu": 0.3098478561790782
|
413 |
},
|
414 |
{
|
415 |
"model": "mistralai/mistral-small-24b-instruct-2501",
|
416 |
+
"bleu": 0.28074941515909896
|
417 |
},
|
418 |
{
|
419 |
"model": "google/gemini-2.0-flash-001",
|
420 |
+
"bleu": 0.37327273228460267
|
421 |
},
|
422 |
{
|
423 |
"model": "deepseek/deepseek-chat",
|
424 |
+
"bleu": 0.3487726531917602
|
425 |
},
|
426 |
{
|
427 |
"model": "microsoft/phi-4",
|
428 |
+
"bleu": 0.18355331419148843
|
429 |
}
|
430 |
],
|
431 |
+
"bleu": 0.3011065238905742
|
432 |
},
|
433 |
{
|
434 |
+
"language_name": "Tamil",
|
435 |
+
"language_code": "tam",
|
436 |
+
"speakers": 75000000.0,
|
437 |
"scores": [
|
438 |
+
{
|
439 |
+
"model": "openai/gpt-4o-mini",
|
440 |
+
"bleu": 0.24593649157372188
|
441 |
+
},
|
442 |
{
|
443 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
444 |
+
"bleu": 0.24009996232522382
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"model": "mistralai/mistral-small-24b-instruct-2501",
|
448 |
+
"bleu": 0.16785828803139252
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"model": "google/gemini-2.0-flash-001",
|
452 |
+
"bleu": 0.3411457686951495
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"model": "deepseek/deepseek-chat",
|
456 |
+
"bleu": 0.2875340171253509
|
457 |
+
},
|
458 |
+
{
|
459 |
+
"model": "microsoft/phi-4",
|
460 |
+
"bleu": 0.12646276530642359
|
461 |
}
|
462 |
],
|
463 |
+
"bleu": 0.23483954884287706
|
464 |
},
|
465 |
{
|
466 |
+
"language_name": "Yue Chinese",
|
467 |
+
"language_code": "yue",
|
468 |
+
"speakers": 73100000.0,
|
469 |
+
"scores": [
|
470 |
+
{
|
471 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
472 |
+
"bleu": 0.2663995648378034
|
473 |
+
}
|
474 |
+
],
|
475 |
+
"bleu": 0.2663995648378034
|
476 |
+
},
|
477 |
+
{
|
478 |
+
"language_name": "Italian",
|
479 |
+
"language_code": "ita",
|
480 |
+
"speakers": 64819790.0,
|
481 |
"scores": [
|
482 |
{
|
483 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
484 |
+
"bleu": 0.3190660116366235
|
485 |
}
|
486 |
],
|
487 |
+
"bleu": 0.3190660116366235
|
488 |
+
},
|
489 |
+
{
|
490 |
+
"language_name": "Gujarati",
|
491 |
+
"language_code": "guj",
|
492 |
+
"speakers": 56400000.0,
|
493 |
+
"scores": [
|
494 |
+
{
|
495 |
+
"model": "openai/gpt-4o-mini",
|
496 |
+
"bleu": 0.25754571533357745
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
500 |
+
"bleu": 0.24145756515188838
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"model": "mistralai/mistral-small-24b-instruct-2501",
|
504 |
+
"bleu": 0.20092063514315023
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"model": "google/gemini-2.0-flash-001",
|
508 |
+
"bleu": 0.3664134239402827
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"model": "deepseek/deepseek-chat",
|
512 |
+
"bleu": 0.2908883229704476
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"model": "microsoft/phi-4",
|
516 |
+
"bleu": 0.19669824113063106
|
517 |
+
}
|
518 |
+
],
|
519 |
+
"bleu": 0.2589873172783296
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"language_name": "Iranian Persian",
|
523 |
+
"language_code": "pes",
|
524 |
+
"speakers": 52800000.0,
|
525 |
+
"scores": [
|
526 |
+
{
|
527 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
528 |
+
"bleu": 0.28359916806993934
|
529 |
+
}
|
530 |
+
],
|
531 |
+
"bleu": 0.28359916806993934
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"language_name": "Bhojpuri",
|
535 |
+
"language_code": "bho",
|
536 |
+
"speakers": 52200000.0,
|
537 |
+
"scores": [
|
538 |
+
{
|
539 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
540 |
+
"bleu": 0.24311504988281543
|
541 |
+
}
|
542 |
+
],
|
543 |
+
"bleu": 0.24311504988281543
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"language_name": "Hakka Chinese",
|
547 |
+
"language_code": "hak",
|
548 |
+
"speakers": 48200000.0,
|
549 |
+
"scores": [],
|
550 |
+
"bleu": null
|
551 |
}
|
552 |
]
|