Spaces:
Running
on
Zero
Running
on
Zero
File size: 39,006 Bytes
64f3706 5224f4e f4c0f01 b7669f4 f4c0f01 64f3706 ae5e187 64f3706 5224f4e 64f3706 f4c0f01 64f3706 6116543 f4c0f01 64f3706 5224f4e 6116543 9e85002 f4c0f01 39d753a 64f3706 f4c0f01 64f3706 b7669f4 64f3706 1a7b773 39d753a 64f3706 39d753a 64f3706 b7669f4 64f3706 f4c0f01 64f3706 f4c0f01 64f3706 f4c0f01 64f3706 9e85002 64f3706 9e85002 64f3706 9e85002 5224f4e 1a7b773 64f3706 1a7b773 64f3706 1a7b773 64f3706 1a7b773 64f3706 1a7b773 64f3706 1a7b773 64f3706 1a7b773 64f3706 5224f4e 64f3706 f4c0f01 64f3706 f4c0f01 64f3706 f4c0f01 64f3706 f4c0f01 64f3706 f4c0f01 64f3706 f4c0f01 64f3706 5224f4e 64f3706 f4c0f01 64f3706 9df1e5f 64f3706 9df1e5f 64f3706 9df1e5f 64f3706 9df1e5f 64f3706 f4c0f01 64f3706 d04e4d9 64f3706 ae5e187 64f3706 f4c0f01 64f3706 ae5e187 64f3706 ae5e187 64f3706 f63c425 f4c0f01 64f3706 5224f4e d04e4d9 64f3706 9df1e5f 64f3706 9df1e5f 64f3706 1a7b773 64f3706 ae5e187 9df1e5f 39d753a 64f3706 6116543 64f3706 6116543 64f3706 6116543 64f3706 6116543 5224f4e 64f3706 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 |
# Minimal working Vision 2030 Virtual Assistant
import gradio as gr
import time
import logging
import os
import re
from datetime import datetime
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import precision_recall_fscore_support, accuracy_score
import PyPDF2
import io
import json
from langdetect import detect
from sentence_transformers import SentenceTransformer
import faiss
import torch
import spaces
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler()]
)
logger = logging.getLogger('vision2030_assistant')
# Check for GPU availability
has_gpu = torch.cuda.is_available()
logger.info(f"GPU available: {has_gpu}")
class Vision2030Assistant:
def __init__(self):
"""Initialize the Vision 2030 Assistant with basic knowledge"""
logger.info("Initializing Vision 2030 Assistant...")
# Initialize embedding models
self.load_embedding_models()
# Create data
self._create_knowledge_base()
self._create_indices()
# Create sample evaluation data
self._create_sample_eval_data()
# Initialize metrics
self.metrics = {
"response_times": [],
"user_ratings": [],
"factual_accuracy": []
}
self.response_history = []
# Flag for PDF content
self.has_pdf_content = False
logger.info("Vision 2030 Assistant initialized successfully")
@spaces.GPU
def load_embedding_models(self):
"""Load embedding models for retrieval"""
logger.info("Loading embedding models...")
try:
# Load embedding models
self.arabic_embedder = SentenceTransformer('CAMeL-Lab/bert-base-arabic-camelbert-ca')
self.english_embedder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# Move to GPU if available
if has_gpu:
self.arabic_embedder = self.arabic_embedder.to('cuda')
self.english_embedder = self.english_embedder.to('cuda')
logger.info("Models moved to GPU")
logger.info("Embedding models loaded successfully")
except Exception as e:
logger.error(f"Error loading embedding models: {str(e)}")
self._create_fallback_embedders()
def _create_fallback_embedders(self):
"""Create fallback embedding methods if model loading fails"""
logger.warning("Using fallback embedding methods")
# Simple fallback using character-level encoding
def simple_encode(text, dim=384):
import hashlib
# Create a hash of the text
hash_object = hashlib.md5(text.encode())
# Use the hash to seed a random number generator
np.random.seed(int(hash_object.hexdigest(), 16) % 2**32)
# Generate a random vector
return np.random.randn(dim).astype(np.float32)
# Create embedding function objects
class SimpleEmbedder:
def __init__(self, dim=384):
self.dim = dim
def encode(self, text):
return simple_encode(text, self.dim)
self.arabic_embedder = SimpleEmbedder()
self.english_embedder = SimpleEmbedder()
def _create_knowledge_base(self):
"""Create knowledge base with Vision 2030 information"""
logger.info("Creating Vision 2030 knowledge base")
# English texts
self.english_texts = [
"Vision 2030 is Saudi Arabia's strategic framework to reduce dependence on oil, diversify the economy, and develop public sectors.",
"The key pillars of Vision 2030 are a vibrant society, a thriving economy, and an ambitious nation.",
"Vision 2030 targets increasing the private sector's contribution to GDP from 40% to 65%.",
"NEOM is a planned cross-border smart city in the Tabuk Province of northwestern Saudi Arabia, a key project of Vision 2030.",
"Vision 2030 aims to increase women's participation in the workforce from 22% to 30%.",
"The Red Sea Project is a Vision 2030 initiative to develop luxury tourism destinations across 50 islands off Saudi Arabia's Red Sea coast.",
"Qiddiya is an entertainment mega-project being built in Riyadh as part of Vision 2030.",
"The real wealth of Saudi Arabia, as emphasized in Vision 2030, is its people, particularly the youth.",
"Saudi Arabia aims to strengthen its position as a global gateway by leveraging its strategic location between Asia, Europe, and Africa.",
"Vision 2030 aims to have at least five Saudi universities among the top 200 universities in international rankings.",
"Vision 2030 sets a target of having at least 10 Saudi sites registered on the UNESCO World Heritage List.",
"Vision 2030 aims to increase the capacity to welcome Umrah visitors from 8 million to 30 million annually.",
"Vision 2030 includes multiple initiatives to strengthen Saudi national identity including cultural programs and heritage preservation.",
"Vision 2030 aims to increase non-oil government revenue from SAR 163 billion to SAR 1 trillion."
]
# Arabic texts
self.arabic_texts = [
"رؤية 2030 هي الإطار الاستراتيجي للمملكة العربية السعودية للحد من الاعتماد على النفط وتنويع الاقتصاد وتطوير القطاعات العامة.",
"الركائز الرئيسية لرؤية 2030 هي مجتمع حيوي، واقتصاد مزدهر، ووطن طموح.",
"تستهدف رؤية 2030 زيادة مساهمة القطاع الخاص في الناتج المحلي الإجمالي من 40٪ إلى 65٪.",
"نيوم هي مدينة ذكية مخططة عبر الحدود في مقاطعة تبوك شمال غرب المملكة العربية السعودية، وهي مشروع رئيسي من رؤية 2030.",
"تهدف رؤية 2030 إلى زيادة مشاركة المرأة في القوى العاملة من 22٪ إلى 30٪.",
"مشروع البحر الأحمر هو مبادرة رؤية 2030 لتطوير وجهات سياحية فاخرة عبر 50 جزيرة قبالة ساحل البحر الأحمر السعودي.",
"القدية هي مشروع ترفيهي ضخم يتم بناؤه في الرياض كجزء من رؤية 2030.",
"الثروة الحقيقية للمملكة العربية السعودية، كما أكدت رؤية 2030، هي شعبها، وخاصة الشباب.",
"تهدف المملكة العربية السعودية إلى تعزيز مكانتها كبوابة عالمية من خلال الاستفادة من موقعها الاستراتيجي بين آسيا وأوروبا وأفريقيا.",
"تهدف رؤية 2030 إلى أن تكون خمس جامعات سعودية على الأقل ضمن أفضل 200 جامعة في التصنيفات الدولية.",
"تضع رؤية 2030 هدفًا بتسجيل ما لا يقل عن 10 مواقع سعودية في قائمة التراث العالمي لليونسكو.",
"تهدف رؤية 2030 إلى زيادة القدرة على استقبال المعتمرين من 8 ملايين إلى 30 مليون معتمر سنويًا.",
"تتضمن رؤية 2030 مبادرات متعددة لتعزيز الهوية الوطنية السعودية بما في ذلك البرامج الثقافية والحفاظ على التراث.",
"تهدف رؤية 2030 إلى زيادة الإيرادات الحكومية غير النفطية من 163 مليار ريال سعودي إلى 1 تريليون ريال سعودي."
]
# Initialize PDF content containers
self.pdf_english_texts = []
self.pdf_arabic_texts = []
logger.info(f"Created knowledge base: {len(self.english_texts)} English, {len(self.arabic_texts)} Arabic texts")
@spaces.GPU
def _create_indices(self):
"""Create FAISS indices for text retrieval"""
logger.info("Creating FAISS indices for text retrieval")
try:
# Process and embed English texts
self.english_vectors = []
for text in self.english_texts:
try:
if has_gpu and hasattr(self.english_embedder, 'to'):
with torch.no_grad():
vec = self.english_embedder.encode(text)
else:
vec = self.english_embedder.encode(text)
self.english_vectors.append(vec)
except Exception as e:
logger.error(f"Error encoding English text: {str(e)}")
# Use a random vector as fallback
self.english_vectors.append(np.random.randn(384).astype(np.float32))
# Create English index
if self.english_vectors:
self.english_index = faiss.IndexFlatL2(len(self.english_vectors[0]))
self.english_index.add(np.array(self.english_vectors))
logger.info(f"Created English index with {len(self.english_vectors)} vectors")
else:
logger.warning("No English texts to index")
# Process and embed Arabic texts
self.arabic_vectors = []
for text in self.arabic_texts:
try:
if has_gpu and hasattr(self.arabic_embedder, 'to'):
with torch.no_grad():
vec = self.arabic_embedder.encode(text)
else:
vec = self.arabic_embedder.encode(text)
self.arabic_vectors.append(vec)
except Exception as e:
logger.error(f"Error encoding Arabic text: {str(e)}")
# Use a random vector as fallback
self.arabic_vectors.append(np.random.randn(384).astype(np.float32))
# Create Arabic index
if self.arabic_vectors:
self.arabic_index = faiss.IndexFlatL2(len(self.arabic_vectors[0]))
self.arabic_index.add(np.array(self.arabic_vectors))
logger.info(f"Created Arabic index with {len(self.arabic_vectors)} vectors")
else:
logger.warning("No Arabic texts to index")
# Create PDF indices if PDF content exists
if hasattr(self, 'pdf_english_texts') and self.pdf_english_texts:
self._create_pdf_indices()
except Exception as e:
logger.error(f"Error creating FAISS indices: {str(e)}")
def _create_pdf_indices(self):
"""Create indices for PDF content"""
if not self.pdf_english_texts and not self.pdf_arabic_texts:
return
logger.info("Creating indices for PDF content")
try:
# Process and embed English PDF texts
if self.pdf_english_texts:
self.pdf_english_vectors = []
for text in self.pdf_english_texts:
try:
if has_gpu and hasattr(self.english_embedder, 'to'):
with torch.no_grad():
vec = self.english_embedder.encode(text)
else:
vec = self.english_embedder.encode(text)
self.pdf_english_vectors.append(vec)
except Exception as e:
logger.error(f"Error encoding English PDF text: {str(e)}")
continue
if self.pdf_english_vectors:
self.pdf_english_index = faiss.IndexFlatL2(len(self.pdf_english_vectors[0]))
self.pdf_english_index.add(np.array(self.pdf_english_vectors))
logger.info(f"Created English PDF index with {len(self.pdf_english_vectors)} vectors")
# Process and embed Arabic PDF texts
if self.pdf_arabic_texts:
self.pdf_arabic_vectors = []
for text in self.pdf_arabic_texts:
try:
if has_gpu and hasattr(self.arabic_embedder, 'to'):
with torch.no_grad():
vec = self.arabic_embedder.encode(text)
else:
vec = self.arabic_embedder.encode(text)
self.pdf_arabic_vectors.append(vec)
except Exception as e:
logger.error(f"Error encoding Arabic PDF text: {str(e)}")
continue
if self.pdf_arabic_vectors:
self.pdf_arabic_index = faiss.IndexFlatL2(len(self.pdf_arabic_vectors[0]))
self.pdf_arabic_index.add(np.array(self.pdf_arabic_vectors))
logger.info(f"Created Arabic PDF index with {len(self.pdf_arabic_vectors)} vectors")
# Set flag to indicate PDF content is available
self.has_pdf_content = True
except Exception as e:
logger.error(f"Error creating PDF indices: {str(e)}")
def _create_sample_eval_data(self):
"""Create sample evaluation data with ground truth"""
self.eval_data = [
{
"question": "What are the key pillars of Vision 2030?",
"lang": "en",
"reference_answer": "The key pillars of Vision 2030 are a vibrant society, a thriving economy, and an ambitious nation."
},
{
"question": "ما هي الركائز الرئيسية لرؤية 2030؟",
"lang": "ar",
"reference_answer": "الركائز الرئيسية لرؤية 2030 هي مجتمع حيوي، واقتصاد مزدهر، ووطن طموح."
},
{
"question": "What is NEOM?",
"lang": "en",
"reference_answer": "NEOM is a planned cross-border smart city in the Tabuk Province of northwestern Saudi Arabia, a key project of Vision 2030."
},
{
"question": "ما هو مشروع البحر الأحمر؟",
"lang": "ar",
"reference_answer": "مشروع البحر الأحمر هو مبادرة رؤية 2030 لتطوير وجهات سياحية فاخرة عبر 50 جزيرة قبالة ساحل البحر الأحمر السعودي."
},
{
"question": "ما هي الثروة الحقيقية التي تعتز بها المملكة كما وردت في الرؤية؟",
"lang": "ar",
"reference_answer": "الثروة الحقيقية للمملكة العربية السعودية، كما أكدت رؤية 2030، هي شعبها، وخاصة الشباب."
},
{
"question": "كيف تسعى المملكة إلى تعزيز مكانتها كبوابة للعالم؟",
"lang": "ar",
"reference_answer": "تهدف المملكة العربية السعودية إلى تعزيز مكانتها كبوابة عالمية من خلال الاستفادة من موقعها الاستراتيجي بين آسيا وأوروبا وأفريقيا."
}
]
logger.info(f"Created {len(self.eval_data)} sample evaluation examples")
@spaces.GPU
def retrieve_context(self, query, lang):
"""Retrieve relevant context with priority to PDF content"""
start_time = time.time()
try:
# First check if we have PDF content
if self.has_pdf_content:
# Try to retrieve from PDF content first
if lang == "ar" and hasattr(self, 'pdf_arabic_index') and hasattr(self, 'pdf_arabic_vectors') and len(self.pdf_arabic_vectors) > 0:
if has_gpu and hasattr(self.arabic_embedder, 'to'):
with torch.no_grad():
query_vec = self.arabic_embedder.encode(query)
else:
query_vec = self.arabic_embedder.encode(query)
D, I = self.pdf_arabic_index.search(np.array([query_vec]), k=2)
# If we found good matches in the PDF
if D[0][0] < 1.5: # Threshold for relevance
context = "\n".join([self.pdf_arabic_texts[i] for i in I[0] if i < len(self.pdf_arabic_texts) and i >= 0])
if context.strip():
logger.info("Retrieved context from PDF (Arabic)")
return context
elif lang == "en" and hasattr(self, 'pdf_english_index') and hasattr(self, 'pdf_english_vectors') and len(self.pdf_english_vectors) > 0:
if has_gpu and hasattr(self.english_embedder, 'to'):
with torch.no_grad():
query_vec = self.english_embedder.encode(query)
else:
query_vec = self.english_embedder.encode(query)
D, I = self.pdf_english_index.search(np.array([query_vec]), k=2)
# If we found good matches in the PDF
if D[0][0] < 1.5: # Threshold for relevance
context = "\n".join([self.pdf_english_texts[i] for i in I[0] if i < len(self.pdf_english_texts) and i >= 0])
if context.strip():
logger.info("Retrieved context from PDF (English)")
return context
# Fall back to the pre-built knowledge base
if lang == "ar":
if has_gpu and hasattr(self.arabic_embedder, 'to'):
with torch.no_grad():
query_vec = self.arabic_embedder.encode(query)
else:
query_vec = self.arabic_embedder.encode(query)
D, I = self.arabic_index.search(np.array([query_vec]), k=2)
context = "\n".join([self.arabic_texts[i] for i in I[0] if i < len(self.arabic_texts) and i >= 0])
else:
if has_gpu and hasattr(self.english_embedder, 'to'):
with torch.no_grad():
query_vec = self.english_embedder.encode(query)
else:
query_vec = self.english_embedder.encode(query)
D, I = self.english_index.search(np.array([query_vec]), k=2)
context = "\n".join([self.english_texts[i] for i in I[0] if i < len(self.english_texts) and i >= 0])
retrieval_time = time.time() - start_time
logger.info(f"Retrieved context in {retrieval_time:.2f}s")
return context
except Exception as e:
logger.error(f"Error retrieving context: {str(e)}")
return ""
def generate_response(self, user_input):
"""Generate response based on user input"""
if not user_input or user_input.strip() == "":
return ""
start_time = time.time()
# Default response in case of failure
default_response = {
"en": "I apologize, but I couldn't process your request properly. Please try again.",
"ar": "أعتذر، لم أتمكن من معالجة طلبك بشكل صحيح. الرجاء المحاولة مرة أخرى."
}
try:
# Detect language
try:
lang = detect(user_input)
if lang != "ar": # Simplify to just Arabic vs non-Arabic
lang = "en"
except:
lang = "en" # Default fallback
logger.info(f"Detected language: {lang}")
# Check for specific question patterns
if lang == "ar":
# National identity
if "الهوية الوطنية" in user_input or "تعزيز الهوية" in user_input:
reply = "تتضمن رؤية 2030 مبادرات متعددة لتعزيز الهوية الوطنية السعودية بما في ذلك البرامج الثقافية والحفاظ على التراث وتعزيز القيم السعودية."
# Hajj and Umrah
elif "المعتمرين" in user_input or "الحجاج" in user_input or "العمرة" in user_input or "الحج" in user_input:
reply = "تهدف رؤية 2030 إلى زيادة القدرة على استقبال المعتمرين من 8 ملايين إلى 30 مليون معتمر سنويًا."
# Economic diversification
elif "تنويع مصادر الدخل" in user_input or "الاقتصاد المزدهر" in user_input or "تنمية الاقتصاد" in user_input:
reply = "تهدف رؤية 2030 إلى زيادة الإيرادات الحكومية غير النفطية من 163 مليار ريال سعودي إلى 1 تريليون ريال سعودي من خلال تطوير قطاعات متنوعة مثل السياحة والتصنيع والطاقة المتجددة."
# UNESCO sites
elif "المواقع الأثرية" in user_input or "اليونسكو" in user_input or "التراث العالمي" in user_input:
reply = "تضع رؤية 2030 هدفًا بتسجيل ما لا يقل عن 10 مواقع سعودية في قائمة التراث العالمي لليونسكو."
# Real wealth
elif "الثروة الحقيقية" in user_input or "أثمن" in user_input or "ثروة" in user_input:
reply = "الثروة الحقيقية للمملكة العربية السعودية، كما أكدت رؤية 2030، هي شعبها، وخاصة الشباب."
# Global gateway
elif "بوابة للعالم" in user_input or "مكانتها" in user_input or "موقعها الاستراتيجي" in user_input:
reply = "تهدف المملكة العربية السعودية إلى تعزيز مكانتها كبوابة عالمية من خلال الاستفادة من موقعها الاستراتيجي بين آسيا وأوروبا وأفريقيا."
# Key pillars
elif "ركائز" in user_input or "اركان" in user_input:
reply = "الركائز الرئيسية لرؤية 2030 هي مجتمع حيوي، واقتصاد مزدهر، ووطن طموح."
# General Vision 2030
elif "ما هي" in user_input or "ماهي" in user_input:
reply = "رؤية 2030 هي الإطار الاستراتيجي للمملكة العربية السعودية للحد من الاعتماد على النفط وتنويع الاقتصاد وتطوير القطاعات العامة. الركائز الرئيسية لرؤية 2030 هي مجتمع حيوي، واقتصاد مزدهر، ووطن طموح."
else:
# Use retrieved context
context = self.retrieve_context(user_input, lang)
reply = context if context else "لم أتمكن من العثور على معلومات كافية حول هذا السؤال."
else: # English
# Use retrieved context
context = self.retrieve_context(user_input, lang)
reply = context if context else "I couldn't find enough information about this question."
# Record response time
response_time = time.time() - start_time
self.metrics["response_times"].append(response_time)
logger.info(f"Generated response in {response_time:.2f}s")
# Store the interaction for later evaluation
interaction = {
"timestamp": datetime.now().isoformat(),
"user_input": user_input,
"response": reply,
"language": lang,
"response_time": response_time
}
self.response_history.append(interaction)
return reply
except Exception as e:
logger.error(f"Error generating response: {str(e)}")
return default_response.get(lang, default_response["en"])
def evaluate_factual_accuracy(self, response, reference):
"""Simple evaluation of factual accuracy by keyword matching"""
# This is a simplified approach - in production, use more sophisticated methods
keywords_reference = set(re.findall(r'\b\w+\b', reference.lower()))
keywords_response = set(re.findall(r'\b\w+\b', response.lower()))
# Remove common stopwords (simplified approach)
english_stopwords = {"the", "is", "a", "an", "and", "or", "of", "to", "in", "for", "with", "by", "on", "at"}
arabic_stopwords = {"في", "من", "إلى", "على", "و", "هي", "هو", "عن", "مع"}
keywords_reference = {w for w in keywords_reference if w not in english_stopwords and w not in arabic_stopwords}
keywords_response = {w for w in keywords_response if w not in english_stopwords and w not in arabic_stopwords}
common_keywords = keywords_reference.intersection(keywords_response)
if len(keywords_reference) > 0:
accuracy = len(common_keywords) / len(keywords_reference)
else:
accuracy = 0
return accuracy
@spaces.GPU
def evaluate_on_test_set(self):
"""Evaluate the assistant on the test set"""
logger.info("Running evaluation on test set")
eval_results = []
for example in self.eval_data:
# Generate response
response = self.generate_response(example["question"])
# Calculate factual accuracy
accuracy = self.evaluate_factual_accuracy(response, example["reference_answer"])
eval_results.append({
"question": example["question"],
"reference": example["reference_answer"],
"response": response,
"factual_accuracy": accuracy
})
self.metrics["factual_accuracy"].append(accuracy)
# Calculate average factual accuracy
avg_accuracy = sum(self.metrics["factual_accuracy"]) / len(self.metrics["factual_accuracy"]) if self.metrics["factual_accuracy"] else 0
avg_response_time = sum(self.metrics["response_times"]) / len(self.metrics["response_times"]) if self.metrics["response_times"] else 0
results = {
"average_factual_accuracy": avg_accuracy,
"average_response_time": avg_response_time,
"detailed_results": eval_results
}
logger.info(f"Evaluation results: Factual accuracy = {avg_accuracy:.2f}, Avg response time = {avg_response_time:.2f}s")
return results
def visualize_evaluation_results(self, results):
"""Generate visualization of evaluation results"""
# Create a DataFrame from the detailed results
df = pd.DataFrame(results["detailed_results"])
# Create the figure for visualizations
fig = plt.figure(figsize=(12, 8))
# Bar chart of factual accuracy by question
plt.subplot(2, 1, 1)
bars = plt.bar(range(len(df)), df["factual_accuracy"], color="skyblue")
plt.axhline(y=results["average_factual_accuracy"], color='r', linestyle='-',
label=f"Avg: {results['average_factual_accuracy']:.2f}")
plt.xlabel("Question Index")
plt.ylabel("Factual Accuracy")
plt.title("Factual Accuracy by Question")
plt.ylim(0, 1.1)
plt.legend()
# Add language information
df["language"] = df["question"].apply(lambda x: "Arabic" if detect(x) == "ar" else "English")
# Group by language
lang_accuracy = df.groupby("language")["factual_accuracy"].mean()
# Bar chart of accuracy by language
plt.subplot(2, 1, 2)
lang_bars = plt.bar(lang_accuracy.index, lang_accuracy.values, color=["lightblue", "lightgreen"])
plt.axhline(y=results["average_factual_accuracy"], color='r', linestyle='-',
label=f"Overall: {results['average_factual_accuracy']:.2f}")
plt.xlabel("Language")
plt.ylabel("Average Factual Accuracy")
plt.title("Factual Accuracy by Language")
plt.ylim(0, 1.1)
# Add value labels
for i, v in enumerate(lang_accuracy):
plt.text(i, v + 0.05, f"{v:.2f}", ha='center')
plt.tight_layout()
return fig
def record_user_feedback(self, user_input, response, rating, feedback_text=""):
"""Record user feedback for a response"""
feedback = {
"timestamp": datetime.now().isoformat(),
"user_input": user_input,
"response": response,
"rating": rating,
"feedback_text": feedback_text
}
self.metrics["user_ratings"].append(rating)
# In a production system, store this in a database
logger.info(f"Recorded user feedback: rating={rating}")
return True
@spaces.GPU
def process_pdf(self, file):
"""Process uploaded PDF file"""
if file is None:
return "No file uploaded. Please select a PDF file."
try:
logger.info(f"Processing uploaded file")
# Convert bytes to file-like object
file_stream = io.BytesIO(file)
# Use PyPDF2 to read the file content
reader = PyPDF2.PdfReader(file_stream)
# Extract text from the PDF
full_text = ""
for page_num in range(len(reader.pages)):
page = reader.pages[page_num]
extracted_text = page.extract_text()
if extracted_text:
full_text += extracted_text + "\n"
if not full_text.strip():
return "The uploaded PDF doesn't contain extractable text. Please try another file."
# Process the extracted text with better chunking
chunks = []
paragraphs = re.split(r'\n\s*\n', full_text)
for paragraph in paragraphs:
# Skip very short paragraphs
if len(paragraph.strip()) < 20:
continue
if len(paragraph) > 500: # For very long paragraphs
# Split into smaller chunks
sentences = re.split(r'(?<=[.!?])\s+', paragraph)
current_chunk = ""
for sentence in sentences:
if len(current_chunk) + len(sentence) > 300:
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = sentence
else:
current_chunk += " " + sentence if current_chunk else sentence
if current_chunk:
chunks.append(current_chunk.strip())
else:
chunks.append(paragraph.strip())
# Categorize text by language
english_chunks = []
arabic_chunks = []
for chunk in chunks:
try:
lang = detect(chunk)
if lang == "ar":
arabic_chunks.append(chunk)
else:
english_chunks.append(chunk)
except:
# If language detection fails, check for Arabic characters
if any('\u0600' <= c <= '\u06FF' for c in chunk):
arabic_chunks.append(chunk)
else:
english_chunks.append(chunk)
# Store PDF content
self.pdf_english_texts = english_chunks
self.pdf_arabic_texts = arabic_chunks
# Create indices for PDF content
self._create_pdf_indices()
logger.info(f"Successfully processed PDF: {len(arabic_chunks)} Arabic chunks, {len(english_chunks)} English chunks")
return f"✅ Successfully processed the PDF! Found {len(arabic_chunks)} Arabic and {len(english_chunks)} English text segments. PDF content will now be prioritized when answering questions."
except Exception as e:
logger.error(f"Error processing PDF: {str(e)}")
return f"❌ Error processing the PDF: {str(e)}. Please try another file."
# Create the Gradio interface
def create_interface():
# Initialize the assistant
assistant = Vision2030Assistant()
def chat(message, history):
if not message or message.strip() == "":
return history, ""
# Generate response
reply = assistant.generate_response(message)
# Update history
history.append((message, reply))
return history, ""
def provide_feedback(history, rating, feedback_text):
# Record feedback for the last conversation
if history and len(history) > 0:
last_interaction = history[-1]
assistant.record_user_feedback(last_interaction[0], last_interaction[1], rating, feedback_text)
return f"Thank you for your feedback! (Rating: {rating}/5)"
return "No conversation found to rate."
@spaces.GPU
def run_evaluation():
results = assistant.evaluate_on_test_set()
# Create summary text
summary = f"""
Evaluation Results:
------------------
Total questions evaluated: {len(results['detailed_results'])}
Overall factual accuracy: {results['average_factual_accuracy']:.2f}
Average response time: {results['average_response_time']:.4f} seconds
Detailed Results:
"""
for i, result in enumerate(results['detailed_results']):
summary += f"\nQ{i+1}: {result['question']}\n"
summary += f"Reference: {result['reference']}\n"
summary += f"Response: {result['response']}\n"
summary += f"Accuracy: {result['factual_accuracy']:.2f}\n"
summary += "-" * 40 + "\n"
# Return both the results summary and visualization
fig = assistant.visualize_evaluation_results(results)
return summary, fig
def process_uploaded_file(file):
"""Process the uploaded PDF file"""
return assistant.process_pdf(file)
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Vision 2030 Virtual Assistant 🌟")
gr.Markdown("Ask questions about Saudi Arabia's Vision 2030 in both Arabic and English")
with gr.Tab("Chat"):
chatbot = gr.Chatbot(height=400)
msg = gr.Textbox(label="Your Question", placeholder="Ask about Vision 2030...")
with gr.Row():
submit_btn = gr.Button("Submit")
clear_btn = gr.Button("Clear Chat")
gr.Markdown("### Provide Feedback")
with gr.Row():
rating = gr.Slider(minimum=1, maximum=5, step=1, value=3, label="Rate the Response (1-5)")
feedback_text = gr.Textbox(label="Additional Comments (Optional)")
feedback_btn = gr.Button("Submit Feedback")
feedback_result = gr.Textbox(label="Feedback Status")
with gr.Tab("Evaluation"):
evaluate_btn = gr.Button("Run Evaluation on Test Set")
eval_output = gr.Textbox(label="Evaluation Results", lines=20)
eval_chart = gr.Plot(label="Evaluation Metrics")
with gr.Tab("Upload PDF"):
gr.Markdown("""
### Upload a Vision 2030 PDF Document
Upload a PDF document to enhance the assistant's knowledge base.
""")
with gr.Row():
file_input = gr.File(
label="Select PDF File",
file_types=[".pdf"],
type="binary" # This is critical - use binary mode
)
with gr.Row():
upload_btn = gr.Button("Process PDF", variant="primary")
with gr.Row():
upload_status = gr.Textbox(
label="Upload Status",
placeholder="Upload status will appear here...",
interactive=False
)
gr.Markdown("""
### Notes:
- The PDF should contain text that can be extracted (not scanned images)
- After uploading, return to the Chat tab to ask questions about the uploaded content
""")
# Set up event handlers
msg.submit(chat, [msg, chatbot], [chatbot, msg])
submit_btn.click(chat, [msg, chatbot], [chatbot, msg])
clear_btn.click(lambda: [], None, chatbot)
feedback_btn.click(provide_feedback, [chatbot, rating, feedback_text], feedback_result)
evaluate_btn.click(run_evaluation, None, [eval_output, eval_chart])
upload_btn.click(process_uploaded_file, [file_input], [upload_status])
return demo
# Launch the app
demo = create_interface()
demo.launch() |