abdull4h commited on
Commit
ae5e187
·
verified ·
1 Parent(s): cf43777

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +175 -655
app.py CHANGED
@@ -1,4 +1,3 @@
1
- # Minimal working Vision 2030 Virtual Assistant
2
  import gradio as gr
3
  import time
4
  import logging
@@ -8,23 +7,21 @@ from datetime import datetime
8
  import numpy as np
9
  import pandas as pd
10
  import matplotlib.pyplot as plt
11
- from sklearn.metrics import precision_recall_fscore_support, accuracy_score
12
- import PyPDF2
13
- import io
14
- import json
15
- from langdetect import detect
16
- from sentence_transformers import SentenceTransformer
17
  import faiss
18
  import torch
19
  import spaces
 
 
 
20
 
21
- # Configure logging
22
  logging.basicConfig(
23
  level=logging.INFO,
24
- format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
25
  handlers=[logging.StreamHandler()]
26
  )
27
- logger = logging.getLogger('vision2030_assistant')
28
 
29
  # Check for GPU availability
30
  has_gpu = torch.cuda.is_available()
@@ -32,726 +29,249 @@ logger.info(f"GPU available: {has_gpu}")
32
 
33
  class Vision2030Assistant:
34
  def __init__(self):
35
- """Initialize the Vision 2030 Assistant with basic knowledge"""
36
  logger.info("Initializing Vision 2030 Assistant...")
37
 
38
- # Initialize embedding models
39
  self.load_embedding_models()
 
40
 
41
- # Create data
42
  self._create_knowledge_base()
43
  self._create_indices()
44
 
45
- # Create sample evaluation data
46
  self._create_sample_eval_data()
47
 
48
- # Initialize metrics
49
- self.metrics = {
50
- "response_times": [],
51
- "user_ratings": [],
52
- "factual_accuracy": []
53
- }
54
- self.response_history = []
55
 
56
- # Flag for PDF content
 
 
 
57
  self.has_pdf_content = False
58
 
59
- logger.info("Vision 2030 Assistant initialized successfully")
60
-
61
  @spaces.GPU
62
  def load_embedding_models(self):
63
- """Load embedding models for retrieval"""
64
- logger.info("Loading embedding models...")
65
-
66
  try:
67
- # Load embedding models
68
  self.arabic_embedder = SentenceTransformer('CAMeL-Lab/bert-base-arabic-camelbert-ca')
69
  self.english_embedder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
70
-
71
- # Move to GPU if available
72
  if has_gpu:
73
  self.arabic_embedder = self.arabic_embedder.to('cuda')
74
  self.english_embedder = self.english_embedder.to('cuda')
75
- logger.info("Models moved to GPU")
76
-
77
  logger.info("Embedding models loaded successfully")
78
  except Exception as e:
79
- logger.error(f"Error loading embedding models: {str(e)}")
80
- self._create_fallback_embedders()
81
 
82
- def _create_fallback_embedders(self):
83
- """Create fallback embedding methods if model loading fails"""
84
- logger.warning("Using fallback embedding methods")
85
-
86
- # Simple fallback using character-level encoding
87
- def simple_encode(text, dim=384):
88
  import hashlib
89
- # Create a hash of the text
90
- hash_object = hashlib.md5(text.encode())
91
- # Use the hash to seed a random number generator
92
- np.random.seed(int(hash_object.hexdigest(), 16) % 2**32)
93
- # Generate a random vector
94
- return np.random.randn(dim).astype(np.float32)
95
 
96
- # Create embedding function objects
97
  class SimpleEmbedder:
98
- def __init__(self, dim=384):
99
- self.dim = dim
100
-
101
  def encode(self, text):
102
- return simple_encode(text, self.dim)
103
 
104
  self.arabic_embedder = SimpleEmbedder()
105
  self.english_embedder = SimpleEmbedder()
106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107
  def _create_knowledge_base(self):
108
- """Create knowledge base with Vision 2030 information"""
109
- logger.info("Creating Vision 2030 knowledge base")
110
-
111
- # English texts
112
  self.english_texts = [
113
  "Vision 2030 is Saudi Arabia's strategic framework to reduce dependence on oil, diversify the economy, and develop public sectors.",
114
  "The key pillars of Vision 2030 are a vibrant society, a thriving economy, and an ambitious nation.",
115
- "Vision 2030 targets increasing the private sector's contribution to GDP from 40% to 65%.",
116
- "NEOM is a planned cross-border smart city in the Tabuk Province of northwestern Saudi Arabia, a key project of Vision 2030.",
117
- "Vision 2030 aims to increase women's participation in the workforce from 22% to 30%.",
118
- "The Red Sea Project is a Vision 2030 initiative to develop luxury tourism destinations across 50 islands off Saudi Arabia's Red Sea coast.",
119
- "Qiddiya is an entertainment mega-project being built in Riyadh as part of Vision 2030.",
120
- "The real wealth of Saudi Arabia, as emphasized in Vision 2030, is its people, particularly the youth.",
121
- "Saudi Arabia aims to strengthen its position as a global gateway by leveraging its strategic location between Asia, Europe, and Africa.",
122
- "Vision 2030 aims to have at least five Saudi universities among the top 200 universities in international rankings.",
123
- "Vision 2030 sets a target of having at least 10 Saudi sites registered on the UNESCO World Heritage List.",
124
- "Vision 2030 aims to increase the capacity to welcome Umrah visitors from 8 million to 30 million annually.",
125
- "Vision 2030 includes multiple initiatives to strengthen Saudi national identity including cultural programs and heritage preservation.",
126
- "Vision 2030 aims to increase non-oil government revenue from SAR 163 billion to SAR 1 trillion."
127
  ]
128
-
129
- # Arabic texts
130
  self.arabic_texts = [
131
- "رؤية 2030 هي الإطار الاستراتيجي للمملكة العربية السعودية للحد من الاعتماد على النفط وتنويع الاقتصاد وتطوير القطاعات العامة.",
132
  "الركائز الرئيسية لرؤية 2030 هي مجتمع حيوي، واقتصاد مزدهر، ووطن طموح.",
133
- "تستهدف رؤية 2030 زيادة مساهمة القطاع الخاص في الناتج المحلي الإجمالي من 40٪ إلى 65٪.",
134
- "نيوم هي مدينة ذكية مخططة عبر الحدود في مقاطعة تبوك شمال غرب المملكة العربية السعودية، وهي مشروع رئيسي من رؤية 2030.",
135
- "تهدف رؤية 2030 إلى زيادة مشاركة المرأة في القوى العاملة من 22٪ إلى 30٪.",
136
- "مشروع البحر الأحمر هو مبادرة رؤية 2030 لتطوير وجهات سياحية فاخرة عبر 50 جزيرة قبالة ساحل البحر الأحمر السعودي.",
137
- "القدية هي مشروع ترفيهي ضخم يتم بناؤه في الرياض كجزء من رؤية 2030.",
138
- "الثروة الحقيقية للمملكة العربية السعودية، كما أكدت رؤية 2030، هي شعبها، وخاصة الشباب.",
139
- "تهدف المملكة العربية السعودية إلى تعزيز مكانتها كبوابة عالمية من خلال الاستفادة من موقعها الاستراتيجي بين آسيا وأوروبا وأفريقيا.",
140
- "تهدف رؤية 2030 إلى أن تكون خمس جامعات سعودية على الأقل ضمن أفضل 200 جامعة في التصنيفات الدولية.",
141
- "تضع رؤية 2030 هدفًا بتسجيل ما لا يقل عن 10 مواقع سعودية في قائمة التراث العالمي لليونسكو.",
142
- "تهدف رؤية 2030 إلى زيادة القدرة على استقبال المعتمرين من 8 ملايين إلى 30 مليون معتمر سنويًا.",
143
- "تتضمن رؤية 2030 مبادرات متعددة لتعزيز الهوية الوطنية السعودية بما في ذلك البرامج الثقافية والحفاظ على التراث.",
144
- "تهدف رؤية 2030 إلى زيادة الإيرادات الحكومية غير النفطية من 163 مليار ريال سعودي إلى 1 تريليون ريال سعودي."
145
  ]
146
-
147
- # Initialize PDF content containers
148
  self.pdf_english_texts = []
149
  self.pdf_arabic_texts = []
150
-
151
- logger.info(f"Created knowledge base: {len(self.english_texts)} English, {len(self.arabic_texts)} Arabic texts")
152
 
153
  @spaces.GPU
154
  def _create_indices(self):
155
- """Create FAISS indices for text retrieval"""
156
- logger.info("Creating FAISS indices for text retrieval")
157
-
158
  try:
159
- # Process and embed English texts
160
- self.english_vectors = []
161
- for text in self.english_texts:
162
- try:
163
- if has_gpu and hasattr(self.english_embedder, 'to'):
164
- with torch.no_grad():
165
- vec = self.english_embedder.encode(text)
166
- else:
167
- vec = self.english_embedder.encode(text)
168
- self.english_vectors.append(vec)
169
- except Exception as e:
170
- logger.error(f"Error encoding English text: {str(e)}")
171
- # Use a random vector as fallback
172
- self.english_vectors.append(np.random.randn(384).astype(np.float32))
173
-
174
- # Create English index
175
- if self.english_vectors:
176
- self.english_index = faiss.IndexFlatL2(len(self.english_vectors[0]))
177
- self.english_index.add(np.array(self.english_vectors))
178
- logger.info(f"Created English index with {len(self.english_vectors)} vectors")
179
- else:
180
- logger.warning("No English texts to index")
181
-
182
- # Process and embed Arabic texts
183
- self.arabic_vectors = []
184
- for text in self.arabic_texts:
185
- try:
186
- if has_gpu and hasattr(self.arabic_embedder, 'to'):
187
- with torch.no_grad():
188
- vec = self.arabic_embedder.encode(text)
189
- else:
190
- vec = self.arabic_embedder.encode(text)
191
- self.arabic_vectors.append(vec)
192
- except Exception as e:
193
- logger.error(f"Error encoding Arabic text: {str(e)}")
194
- # Use a random vector as fallback
195
- self.arabic_vectors.append(np.random.randn(384).astype(np.float32))
196
-
197
- # Create Arabic index
198
- if self.arabic_vectors:
199
- self.arabic_index = faiss.IndexFlatL2(len(self.arabic_vectors[0]))
200
- self.arabic_index.add(np.array(self.arabic_vectors))
201
- logger.info(f"Created Arabic index with {len(self.arabic_vectors)} vectors")
202
- else:
203
- logger.warning("No Arabic texts to index")
204
-
205
- # Create PDF indices if PDF content exists
206
- if hasattr(self, 'pdf_english_texts') and self.pdf_english_texts:
207
- self._create_pdf_indices()
208
-
209
  except Exception as e:
210
- logger.error(f"Error creating FAISS indices: {str(e)}")
211
-
212
- def _create_pdf_indices(self):
213
- """Create indices for PDF content"""
214
- if not self.pdf_english_texts and not self.pdf_arabic_texts:
215
- return
216
-
217
- logger.info("Creating indices for PDF content")
218
-
219
- try:
220
- # Process and embed English PDF texts
221
- if self.pdf_english_texts:
222
- self.pdf_english_vectors = []
223
- for text in self.pdf_english_texts:
224
- try:
225
- if has_gpu and hasattr(self.english_embedder, 'to'):
226
- with torch.no_grad():
227
- vec = self.english_embedder.encode(text)
228
- else:
229
- vec = self.english_embedder.encode(text)
230
- self.pdf_english_vectors.append(vec)
231
- except Exception as e:
232
- logger.error(f"Error encoding English PDF text: {str(e)}")
233
- continue
234
-
235
- if self.pdf_english_vectors:
236
- self.pdf_english_index = faiss.IndexFlatL2(len(self.pdf_english_vectors[0]))
237
- self.pdf_english_index.add(np.array(self.pdf_english_vectors))
238
- logger.info(f"Created English PDF index with {len(self.pdf_english_vectors)} vectors")
239
-
240
- # Process and embed Arabic PDF texts
241
- if self.pdf_arabic_texts:
242
- self.pdf_arabic_vectors = []
243
- for text in self.pdf_arabic_texts:
244
- try:
245
- if has_gpu and hasattr(self.arabic_embedder, 'to'):
246
- with torch.no_grad():
247
- vec = self.arabic_embedder.encode(text)
248
- else:
249
- vec = self.arabic_embedder.encode(text)
250
- self.pdf_arabic_vectors.append(vec)
251
- except Exception as e:
252
- logger.error(f"Error encoding Arabic PDF text: {str(e)}")
253
- continue
254
-
255
- if self.pdf_arabic_vectors:
256
- self.pdf_arabic_index = faiss.IndexFlatL2(len(self.pdf_arabic_vectors[0]))
257
- self.pdf_arabic_index.add(np.array(self.pdf_arabic_vectors))
258
- logger.info(f"Created Arabic PDF index with {len(self.pdf_arabic_vectors)} vectors")
259
-
260
- # Set flag to indicate PDF content is available
261
- self.has_pdf_content = True
262
-
263
- except Exception as e:
264
- logger.error(f"Error creating PDF indices: {str(e)}")
265
-
266
  def _create_sample_eval_data(self):
267
- """Create sample evaluation data with ground truth"""
268
  self.eval_data = [
269
- {
270
- "question": "What are the key pillars of Vision 2030?",
271
- "lang": "en",
272
- "reference_answer": "The key pillars of Vision 2030 are a vibrant society, a thriving economy, and an ambitious nation."
273
- },
274
- {
275
- "question": "ما هي الركائز الرئيسية لرؤية 2030؟",
276
- "lang": "ar",
277
- "reference_answer": "الركائز الرئيسية لرؤية 2030 هي مجتمع حيوي، واقتصاد مزدهر، ووطن طموح."
278
- },
279
- {
280
- "question": "What is NEOM?",
281
- "lang": "en",
282
- "reference_answer": "NEOM is a planned cross-border smart city in the Tabuk Province of northwestern Saudi Arabia, a key project of Vision 2030."
283
- },
284
- {
285
- "question": "ما هو مشروع البحر الأحمر؟",
286
- "lang": "ar",
287
- "reference_answer": "مشروع البحر الأحمر هو مبادرة رؤية 2030 لتطوير وجهات سياحية فاخرة عبر 50 جزيرة قبالة ساحل البحر الأحمر السعودي."
288
- },
289
- {
290
- "question": "ما هي الثروة الحقيقية التي تعتز بها المملكة كما وردت في الرؤية؟",
291
- "lang": "ar",
292
- "reference_answer": "الثروة الحقيقية للمملكة العربية السعودية، كما أكدت رؤية 2030، هي شعبها، وخاصة الشباب."
293
- },
294
- {
295
- "question": "كيف تسعى المملكة إلى تعزيز مكانتها كبوابة للعالم؟",
296
- "lang": "ar",
297
- "reference_answer": "تهدف المملكة العربية السعودية إلى تعزيز مكانتها كبوابة عالمية من خلال الاستفادة من موقعها الاستراتيجي بين آسيا وأوروبا وأفريقيا."
298
- }
299
  ]
300
- logger.info(f"Created {len(self.eval_data)} sample evaluation examples")
301
 
302
  @spaces.GPU
303
- def retrieve_context(self, query, lang):
304
- """Retrieve relevant context with priority to PDF content"""
305
- start_time = time.time()
306
-
307
  try:
308
- # First check if we have PDF content
309
- if self.has_pdf_content:
310
- # Try to retrieve from PDF content first
311
- if lang == "ar" and hasattr(self, 'pdf_arabic_index') and hasattr(self, 'pdf_arabic_vectors') and len(self.pdf_arabic_vectors) > 0:
312
- if has_gpu and hasattr(self.arabic_embedder, 'to'):
313
- with torch.no_grad():
314
- query_vec = self.arabic_embedder.encode(query)
315
- else:
316
- query_vec = self.arabic_embedder.encode(query)
317
-
318
- D, I = self.pdf_arabic_index.search(np.array([query_vec]), k=2)
319
-
320
- # If we found good matches in the PDF
321
- if D[0][0] < 1.5: # Threshold for relevance
322
- context = "\n".join([self.pdf_arabic_texts[i] for i in I[0] if i < len(self.pdf_arabic_texts) and i >= 0])
323
- if context.strip():
324
- logger.info("Retrieved context from PDF (Arabic)")
325
- return context
326
-
327
- elif lang == "en" and hasattr(self, 'pdf_english_index') and hasattr(self, 'pdf_english_vectors') and len(self.pdf_english_vectors) > 0:
328
- if has_gpu and hasattr(self.english_embedder, 'to'):
329
- with torch.no_grad():
330
- query_vec = self.english_embedder.encode(query)
331
- else:
332
- query_vec = self.english_embedder.encode(query)
333
-
334
- D, I = self.pdf_english_index.search(np.array([query_vec]), k=2)
335
-
336
- # If we found good matches in the PDF
337
- if D[0][0] < 1.5: # Threshold for relevance
338
- context = "\n".join([self.pdf_english_texts[i] for i in I[0] if i < len(self.pdf_english_texts) and i >= 0])
339
- if context.strip():
340
- logger.info("Retrieved context from PDF (English)")
341
- return context
342
-
343
- # Fall back to the pre-built knowledge base
344
- if lang == "ar":
345
- if has_gpu and hasattr(self.arabic_embedder, 'to'):
346
- with torch.no_grad():
347
- query_vec = self.arabic_embedder.encode(query)
348
- else:
349
- query_vec = self.arabic_embedder.encode(query)
350
-
351
- D, I = self.arabic_index.search(np.array([query_vec]), k=2)
352
- context = "\n".join([self.arabic_texts[i] for i in I[0] if i < len(self.arabic_texts) and i >= 0])
353
- else:
354
- if has_gpu and hasattr(self.english_embedder, 'to'):
355
- with torch.no_grad():
356
- query_vec = self.english_embedder.encode(query)
357
- else:
358
- query_vec = self.english_embedder.encode(query)
359
-
360
- D, I = self.english_index.search(np.array([query_vec]), k=2)
361
- context = "\n".join([self.english_texts[i] for i in I[0] if i < len(self.english_texts) and i >= 0])
362
-
363
- retrieval_time = time.time() - start_time
364
- logger.info(f"Retrieved context in {retrieval_time:.2f}s")
365
-
366
- return context
367
  except Exception as e:
368
- logger.error(f"Error retrieving context: {str(e)}")
369
- return ""
370
 
371
- def generate_response(self, user_input):
372
- """Generate responses by prioritizing PDF content over pre-defined answers"""
373
- if not user_input or user_input.strip() == "":
374
- return ""
375
-
376
- start_time = time.time()
377
 
 
378
  try:
379
- # Detect language
380
- try:
381
- lang = detect(user_input)
382
- if lang != "ar":
383
- lang = "en"
384
- except:
385
- lang = "en"
 
 
 
 
386
 
387
- # Always try to retrieve from PDF first if available
388
- if hasattr(self, 'has_pdf_content') and self.has_pdf_content:
389
- context = self.retrieve_context(user_input, lang)
390
-
391
- # If we found content in the PDF, use it directly
392
- if context and context.strip():
393
- logger.info("Answering from PDF content")
394
- reply = context
395
-
396
- # Record metrics
397
- response_time = time.time() - start_time
398
- self.metrics["response_times"].append(response_time)
399
-
400
- # Store the interaction
401
- self.response_history.append({
402
- "timestamp": datetime.now().isoformat(),
403
- "user_input": user_input,
404
- "response": reply,
405
- "language": lang,
406
- "response_time": response_time,
407
- "source": "PDF document"
408
- })
409
-
410
- return reply
411
 
412
  def evaluate_factual_accuracy(self, response, reference):
413
- """Simple evaluation of factual accuracy by keyword matching"""
414
- # This is a simplified approach - in production, use more sophisticated methods
415
- keywords_reference = set(re.findall(r'\b\w+\b', reference.lower()))
416
- keywords_response = set(re.findall(r'\b\w+\b', response.lower()))
417
-
418
- # Remove common stopwords (simplified approach)
419
- english_stopwords = {"the", "is", "a", "an", "and", "or", "of", "to", "in", "for", "with", "by", "on", "at"}
420
- arabic_stopwords = {"في", "من", "إلى", "على", "و", "هي", "هو", "عن", "مع"}
421
-
422
- keywords_reference = {w for w in keywords_reference if w not in english_stopwords and w not in arabic_stopwords}
423
- keywords_response = {w for w in keywords_response if w not in english_stopwords and w not in arabic_stopwords}
424
-
425
- common_keywords = keywords_reference.intersection(keywords_response)
426
-
427
- if len(keywords_reference) > 0:
428
- accuracy = len(common_keywords) / len(keywords_reference)
429
- else:
430
- accuracy = 0
431
-
432
- return accuracy
433
-
434
- @spaces.GPU
435
- def evaluate_on_test_set(self):
436
- """Evaluate the assistant on the test set"""
437
- logger.info("Running evaluation on test set")
438
-
439
- eval_results = []
440
-
441
- for example in self.eval_data:
442
- # Generate response
443
- response = self.generate_response(example["question"])
444
-
445
- # Calculate factual accuracy
446
- accuracy = self.evaluate_factual_accuracy(response, example["reference_answer"])
447
-
448
- eval_results.append({
449
- "question": example["question"],
450
- "reference": example["reference_answer"],
451
- "response": response,
452
- "factual_accuracy": accuracy
453
- })
454
-
455
- self.metrics["factual_accuracy"].append(accuracy)
456
-
457
- # Calculate average factual accuracy
458
- avg_accuracy = sum(self.metrics["factual_accuracy"]) / len(self.metrics["factual_accuracy"]) if self.metrics["factual_accuracy"] else 0
459
- avg_response_time = sum(self.metrics["response_times"]) / len(self.metrics["response_times"]) if self.metrics["response_times"] else 0
460
-
461
- results = {
462
- "average_factual_accuracy": avg_accuracy,
463
- "average_response_time": avg_response_time,
464
- "detailed_results": eval_results
465
- }
466
-
467
- logger.info(f"Evaluation results: Factual accuracy = {avg_accuracy:.2f}, Avg response time = {avg_response_time:.2f}s")
468
-
469
- return results
470
-
471
- def visualize_evaluation_results(self, results):
472
- """Generate visualization of evaluation results"""
473
- # Create a DataFrame from the detailed results
474
- df = pd.DataFrame(results["detailed_results"])
475
-
476
- # Create the figure for visualizations
477
- fig = plt.figure(figsize=(12, 8))
478
-
479
- # Bar chart of factual accuracy by question
480
- plt.subplot(2, 1, 1)
481
- bars = plt.bar(range(len(df)), df["factual_accuracy"], color="skyblue")
482
- plt.axhline(y=results["average_factual_accuracy"], color='r', linestyle='-',
483
- label=f"Avg: {results['average_factual_accuracy']:.2f}")
484
- plt.xlabel("Question Index")
485
- plt.ylabel("Factual Accuracy")
486
- plt.title("Factual Accuracy by Question")
487
- plt.ylim(0, 1.1)
488
- plt.legend()
489
-
490
- # Add language information
491
- df["language"] = df["question"].apply(lambda x: "Arabic" if detect(x) == "ar" else "English")
492
-
493
- # Group by language
494
- lang_accuracy = df.groupby("language")["factual_accuracy"].mean()
495
-
496
- # Bar chart of accuracy by language
497
- plt.subplot(2, 1, 2)
498
- lang_bars = plt.bar(lang_accuracy.index, lang_accuracy.values, color=["lightblue", "lightgreen"])
499
- plt.axhline(y=results["average_factual_accuracy"], color='r', linestyle='-',
500
- label=f"Overall: {results['average_factual_accuracy']:.2f}")
501
- plt.xlabel("Language")
502
- plt.ylabel("Average Factual Accuracy")
503
- plt.title("Factual Accuracy by Language")
504
- plt.ylim(0, 1.1)
505
-
506
- # Add value labels
507
- for i, v in enumerate(lang_accuracy):
508
- plt.text(i, v + 0.05, f"{v:.2f}", ha='center')
509
-
510
- plt.tight_layout()
511
- return fig
512
-
513
- def record_user_feedback(self, user_input, response, rating, feedback_text=""):
514
- """Record user feedback for a response"""
515
- feedback = {
516
- "timestamp": datetime.now().isoformat(),
517
- "user_input": user_input,
518
- "response": response,
519
- "rating": rating,
520
- "feedback_text": feedback_text
521
- }
522
-
523
- self.metrics["user_ratings"].append(rating)
524
-
525
- # In a production system, store this in a database
526
- logger.info(f"Recorded user feedback: rating={rating}")
527
-
528
- return True
529
 
530
  @spaces.GPU
531
  def process_pdf(self, file):
532
- """Process uploaded PDF with focus on extracting all content for answering questions"""
533
- if file is None:
534
- return "No file uploaded. Please select a PDF file."
535
 
536
  try:
537
- logger.info("Processing uploaded PDF document")
538
-
539
- # Convert bytes to file-like object
540
- file_stream = io.BytesIO(file)
541
-
542
- # Use PyPDF2 to read the file content
543
- reader = PyPDF2.PdfReader(file_stream)
544
-
545
- # Extract text from the PDF
546
- full_text = ""
547
- for page_num in range(len(reader.pages)):
548
- try:
549
- page = reader.pages[page_num]
550
- extracted_text = page.extract_text()
551
- if extracted_text:
552
- full_text += extracted_text + "\n"
553
- except Exception as e:
554
- logger.error(f"Error extracting text from page {page_num}: {str(e)}")
555
-
556
- if not full_text.strip():
557
- return "The uploaded PDF doesn't contain extractable text. Please try another file."
558
-
559
- # First remove existing PDF content
560
- self.pdf_english_texts = []
561
- self.pdf_arabic_texts = []
562
- self.has_pdf_content = False
563
-
564
- # Process the extracted text into meaningful chunks
565
- # Default chunk size of ~200-300 characters for better semantic indexing
566
- chunks = []
567
-
568
- # Using sentences as more meaningful units than arbitrary chunks
569
- sentences = re.split(r'(?<=[.!?])\s+', full_text)
570
- current_chunk = ""
571
-
572
- for sentence in sentences:
573
- if not sentence.strip():
574
- continue
575
-
576
- # If adding this sentence would make chunk too big, save current and start new
577
- if len(current_chunk) + len(sentence) > 300:
578
- if current_chunk:
579
- chunks.append(current_chunk.strip())
580
- current_chunk = sentence
581
- else:
582
- current_chunk += " " + sentence if current_chunk else sentence
583
-
584
- # Add the last chunk if any
585
- if current_chunk:
586
- chunks.append(current_chunk.strip())
587
-
588
- # Filter out very short chunks (likely noise)
589
- chunks = [chunk for chunk in chunks if len(chunk.strip()) > 30]
590
-
591
- # Categorize by language with focus on accurate detection
592
- english_chunks = []
593
- arabic_chunks = []
594
 
595
- for chunk in chunks:
596
- try:
597
- # Check for Arabic characters first (more reliable)
598
- if any('\u0600' <= c <= '\u06FF' for c in chunk):
599
- arabic_chunks.append(chunk)
600
- else:
601
- # Use language detection as backup
602
- lang = detect(chunk)
603
- if lang == "ar":
604
- arabic_chunks.append(chunk)
605
- else:
606
- english_chunks.append(chunk)
607
- except:
608
- # If detection fails, check for Arabic characters
609
- if any('\u0600' <= c <= '\u06FF' for c in chunk):
610
- arabic_chunks.append(chunk)
611
- else:
612
- english_chunks.append(chunk)
613
-
614
- # Replace PDF content with new content
615
- self.pdf_english_texts = english_chunks
616
- self.pdf_arabic_texts = arabic_chunks
617
-
618
- # Create high-quality embeddings - this is critical for accurate retrieval
619
- self._create_pdf_indices()
620
-
621
- # Mark system to prioritize document content over pre-defined answers
622
  self.has_pdf_content = True
623
- self.prioritize_pdf_content = True
624
-
625
- logger.info(f"Successfully processed PDF: {len(arabic_chunks)} Arabic and {len(english_chunks)} English segments")
626
-
627
- # Also modify the retrieval threshold to ensure better matches
628
- self.pdf_relevance_threshold = 1.2 # Lower threshold = stricter matching
629
-
630
- return f"✅ Successfully processed your PDF! Found {len(arabic_chunks)} Arabic and {len(english_chunks)} English text segments. The system will now answer questions directly from your document content."
631
-
632
  except Exception as e:
633
- logger.error(f"Error processing PDF: {str(e)}")
634
- return f"Error processing the PDF: {str(e)}. Please try another file."
635
-
636
- # Create the Gradio interface
637
  def create_interface():
638
- # Initialize the assistant
639
  assistant = Vision2030Assistant()
640
 
641
- def chat(message, history):
642
- if not message or message.strip() == "":
643
- return history, ""
644
-
645
- # Generate response
646
- reply = assistant.generate_response(message)
647
-
648
- # Update history
649
- history.append((message, reply))
650
-
651
  return history, ""
652
 
653
- def provide_feedback(history, rating, feedback_text):
654
- # Record feedback for the last conversation
655
- if history and len(history) > 0:
656
- last_interaction = history[-1]
657
- assistant.record_user_feedback(last_interaction[0], last_interaction[1], rating, feedback_text)
658
- return f"Thank you for your feedback! (Rating: {rating}/5)"
659
- return "No conversation found to rate."
660
-
661
- @spaces.GPU
662
- def run_evaluation():
663
- results = assistant.evaluate_on_test_set()
664
-
665
- # Create summary text
666
- summary = f"""
667
- Evaluation Results:
668
- ------------------
669
- Total questions evaluated: {len(results['detailed_results'])}
670
- Overall factual accuracy: {results['average_factual_accuracy']:.2f}
671
- Average response time: {results['average_response_time']:.4f} seconds
672
-
673
- Detailed Results:
674
- """
675
-
676
- for i, result in enumerate(results['detailed_results']):
677
- summary += f"\nQ{i+1}: {result['question']}\n"
678
- summary += f"Reference: {result['reference']}\n"
679
- summary += f"Response: {result['response']}\n"
680
- summary += f"Accuracy: {result['factual_accuracy']:.2f}\n"
681
- summary += "-" * 40 + "\n"
682
-
683
- # Return both the results summary and visualization
684
- fig = assistant.visualize_evaluation_results(results)
685
-
686
- return summary, fig
687
-
688
- def process_uploaded_file(file):
689
- """Process the uploaded PDF file"""
690
- return assistant.process_pdf(file)
691
-
692
- # Create the Gradio interface
693
  with gr.Blocks() as demo:
694
- gr.Markdown("# Vision 2030 Virtual Assistant 🌟")
695
- gr.Markdown("Ask questions about Saudi Arabia's Vision 2030 in both Arabic and English")
696
-
697
- with gr.Tab("Chat"):
698
- chatbot = gr.Chatbot(height=400)
699
- msg = gr.Textbox(label="Your Question", placeholder="Ask about Vision 2030...")
700
- with gr.Row():
701
- submit_btn = gr.Button("Submit")
702
- clear_btn = gr.Button("Clear Chat")
703
-
704
- gr.Markdown("### Provide Feedback")
705
- with gr.Row():
706
- rating = gr.Slider(minimum=1, maximum=5, step=1, value=3, label="Rate the Response (1-5)")
707
- feedback_text = gr.Textbox(label="Additional Comments (Optional)")
708
- feedback_btn = gr.Button("Submit Feedback")
709
- feedback_result = gr.Textbox(label="Feedback Status")
710
-
711
- with gr.Tab("Evaluation"):
712
- evaluate_btn = gr.Button("Run Evaluation on Test Set")
713
- eval_output = gr.Textbox(label="Evaluation Results", lines=20)
714
- eval_chart = gr.Plot(label="Evaluation Metrics")
715
-
716
- with gr.Tab("Upload PDF"):
717
- gr.Markdown("""
718
- ### Upload a Vision 2030 PDF Document
719
- Upload a PDF document to enhance the assistant's knowledge base.
720
- """)
721
-
722
- with gr.Row():
723
- file_input = gr.File(
724
- label="Select PDF File",
725
- file_types=[".pdf"],
726
- type="binary" # This is critical - use binary mode
727
- )
728
-
729
- with gr.Row():
730
- upload_btn = gr.Button("Process PDF", variant="primary")
731
-
732
- with gr.Row():
733
- upload_status = gr.Textbox(
734
- label="Upload Status",
735
- placeholder="Upload status will appear here...",
736
- interactive=False
737
- )
738
-
739
- gr.Markdown("""
740
- ### Notes:
741
- - The PDF should contain text that can be extracted (not scanned images)
742
- - After uploading, return to the Chat tab to ask questions about the uploaded content
743
- """)
744
-
745
- # Set up event handlers
746
- msg.submit(chat, [msg, chatbot], [chatbot, msg])
747
- submit_btn.click(chat, [msg, chatbot], [chatbot, msg])
748
- clear_btn.click(lambda: [], None, chatbot)
749
- feedback_btn.click(provide_feedback, [chatbot, rating, feedback_text], feedback_result)
750
- evaluate_btn.click(run_evaluation, None, [eval_output, eval_chart])
751
- upload_btn.click(process_uploaded_file, [file_input], [upload_status])
752
 
753
  return demo
754
 
755
- # Launch the app
756
  demo = create_interface()
757
  demo.launch()
 
 
1
  import gradio as gr
2
  import time
3
  import logging
 
7
  import numpy as np
8
  import pandas as pd
9
  import matplotlib.pyplot as plt
10
+ from sentence_transformers import SentenceTransformer, util
 
 
 
 
 
11
  import faiss
12
  import torch
13
  import spaces
14
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
15
+ import PyPDF2
16
+ import io
17
 
18
+ # Configure logging for debugging and monitoring
19
  logging.basicConfig(
20
  level=logging.INFO,
21
+ format='%(asctime)s - %(levelname)s - %(message)s',
22
  handlers=[logging.StreamHandler()]
23
  )
24
+ logger = logging.getLogger('Vision2030Assistant')
25
 
26
  # Check for GPU availability
27
  has_gpu = torch.cuda.is_available()
 
29
 
30
  class Vision2030Assistant:
31
  def __init__(self):
32
+ """Initialize the assistant with enhanced features"""
33
  logger.info("Initializing Vision 2030 Assistant...")
34
 
35
+ # Load models with error handling
36
  self.load_embedding_models()
37
+ self.load_language_model()
38
 
39
+ # Initialize knowledge base and indices
40
  self._create_knowledge_base()
41
  self._create_indices()
42
 
43
+ # Sample evaluation data
44
  self._create_sample_eval_data()
45
 
46
+ # Metrics storage
47
+ self.metrics = {"response_times": [], "user_ratings": [], "factual_accuracy": []}
 
 
 
 
 
48
 
49
+ # Session management
50
+ self.session_history = {}
51
+
52
+ # PDF content flag
53
  self.has_pdf_content = False
54
 
55
+ logger.info("Assistant initialized successfully")
56
+
57
  @spaces.GPU
58
  def load_embedding_models(self):
59
+ """Load embedding models with fallback"""
 
 
60
  try:
 
61
  self.arabic_embedder = SentenceTransformer('CAMeL-Lab/bert-base-arabic-camelbert-ca')
62
  self.english_embedder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
 
 
63
  if has_gpu:
64
  self.arabic_embedder = self.arabic_embedder.to('cuda')
65
  self.english_embedder = self.english_embedder.to('cuda')
 
 
66
  logger.info("Embedding models loaded successfully")
67
  except Exception as e:
68
+ logger.error(f"Failed to load embedding models: {e}")
69
+ self._fallback_embedding()
70
 
71
+ def _fallback_embedding(self):
72
+ """Fallback to simple embedding if model loading fails"""
73
+ logger.warning("Using fallback embedding method")
74
+ def simple_embed(text):
 
 
75
  import hashlib
76
+ hash_obj = hashlib.md5(text.encode())
77
+ np.random.seed(int(hash_obj.hexdigest(), 16) % 2**32)
78
+ return np.random.randn(384).astype(np.float32)
 
 
 
79
 
 
80
  class SimpleEmbedder:
 
 
 
81
  def encode(self, text):
82
+ return simple_embed(text)
83
 
84
  self.arabic_embedder = SimpleEmbedder()
85
  self.english_embedder = SimpleEmbedder()
86
 
87
+ @spaces.GPU
88
+ def load_language_model(self):
89
+ """Load language model for advanced response generation"""
90
+ try:
91
+ self.tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
92
+ self.model = AutoModelForCausalLM.from_pretrained("distilgpt2")
93
+ if has_gpu:
94
+ self.model = self.model.to('cuda')
95
+ self.generator = pipeline('text-generation', model=self.model, tokenizer=self.tokenizer, device=0 if has_gpu else -1)
96
+ logger.info("Language model loaded successfully")
97
+ except Exception as e:
98
+ logger.error(f"Failed to load language model: {e}")
99
+ self.generator = None
100
+
101
  def _create_knowledge_base(self):
102
+ """Create initial knowledge base"""
 
 
 
103
  self.english_texts = [
104
  "Vision 2030 is Saudi Arabia's strategic framework to reduce dependence on oil, diversify the economy, and develop public sectors.",
105
  "The key pillars of Vision 2030 are a vibrant society, a thriving economy, and an ambitious nation.",
106
+ "NEOM is a planned smart city in Tabuk Province, a key Vision 2030 project."
 
 
 
 
 
 
 
 
 
 
 
107
  ]
 
 
108
  self.arabic_texts = [
109
+ "رؤية 2030 هي إطار استراتيجي لتقليل الاعتماد على النفط وتنويع الاقتصاد.",
110
  "الركائز الرئيسية لرؤية 2030 هي مجتمع حيوي، واقتصاد مزدهر، ووطن طموح.",
111
+ "نيوم مدينة ذكية مخططة في تبوك، مشروع رئيسي لرؤية 2030."
 
 
 
 
 
 
 
 
 
 
 
112
  ]
 
 
113
  self.pdf_english_texts = []
114
  self.pdf_arabic_texts = []
 
 
115
 
116
  @spaces.GPU
117
  def _create_indices(self):
118
+ """Create scalable FAISS indices"""
 
 
119
  try:
120
+ # English index with IVF for scalability
121
+ english_vectors = [self.english_embedder.encode(text) for text in self.english_texts]
122
+ dim = len(english_vectors[0])
123
+ nlist = max(1, len(english_vectors) // 10)
124
+ quantizer = faiss.IndexFlatL2(dim)
125
+ self.english_index = faiss.IndexIVFFlat(quantizer, dim, nlist)
126
+ self.english_index.train(np.array(english_vectors))
127
+ self.english_index.add(np.array(english_vectors))
128
+
129
+ # Arabic index
130
+ arabic_vectors = [self.arabic_embedder.encode(text) for text in self.arabic_texts]
131
+ self.arabic_index = faiss.IndexIVFFlat(quantizer, dim, nlist)
132
+ self.arabic_index.train(np.array(arabic_vectors))
133
+ self.arabic_index.add(np.array(arabic_vectors))
134
+
135
+ logger.info("FAISS indices created successfully")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136
  except Exception as e:
137
+ logger.error(f"Error creating indices: {e}")
138
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139
  def _create_sample_eval_data(self):
140
+ """Sample evaluation data"""
141
  self.eval_data = [
142
+ {"question": "What are the key pillars of Vision 2030?", "lang": "en", "reference": "The key pillars of Vision 2030 are a vibrant society, a thriving economy, and an ambitious nation."},
143
+ {"question": "ما هي الركائز الرئيسية لرؤية 2030؟", "lang": "ar", "reference": "الركائز الرئيسية لرؤية 2030 هي مجتمع حيوي، واقتصاد مزدهر، ووطن طموح."}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144
  ]
 
145
 
146
  @spaces.GPU
147
+ def retrieve_context(self, query, lang, session_id):
148
+ """Retrieve context with session history integration"""
 
 
149
  try:
150
+ # Incorporate session history
151
+ history = self.session_history.get(session_id, [])
152
+ history_context = " ".join([f"Q: {q} A: {a}" for q, a in history[-2:]]) # Last 2 interactions
153
+
154
+ # Embed query
155
+ embedder = self.arabic_embedder if lang == "ar" else self.english_embedder
156
+ query_vec = embedder.encode(query)
157
+
158
+ # Search appropriate index
159
+ index = self.pdf_arabic_index if (lang == "ar" and self.has_pdf_content) else \
160
+ self.pdf_english_index if (lang == "en" and self.has_pdf_content) else \
161
+ self.arabic_index if lang == "ar" else self.english_index
162
+ texts = self.pdf_arabic_texts if (lang == "ar" and self.has_pdf_content) else \
163
+ self.pdf_english_texts if (lang == "en" and self.has_pdf_content) else \
164
+ self.arabic_texts if lang == "ar" else self.english_texts
165
+
166
+ D, I = index.search(np.array([query_vec]), k=2)
167
+ context = "\n".join([texts[i] for i in I[0] if i >= 0]) + f"\nHistory: {history_context}"
168
+ return context if context.strip() else "No relevant information found."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169
  except Exception as e:
170
+ logger.error(f"Retrieval error: {e}")
171
+ return "Error retrieving context."
172
 
173
+ @spaces.GPU
174
+ def generate_response(self, query, session_id):
175
+ """Generate advanced responses with error handling"""
176
+ if not query.strip():
177
+ return "Please enter a valid question."
 
178
 
179
+ start_time = time.time()
180
  try:
181
+ lang = "ar" if any('\u0600' <= c <= '\u06FF' for c in query) else "en"
182
+ context = self.retrieve_context(query, lang, session_id)
183
+
184
+ if "Error" in context or "No relevant" in context:
185
+ reply = context
186
+ elif self.generator:
187
+ prompt = f"Context: {context}\nQuestion: {query}\nAnswer:"
188
+ response = self.generator(prompt, max_length=150, num_return_sequences=1, do_sample=True, temperature=0.7)
189
+ reply = response[0]['generated_text'].split("Answer:")[-1].strip()
190
+ else:
191
+ reply = context # Fallback
192
 
193
+ # Update session history
194
+ self.session_history.setdefault(session_id, []).append((query, reply))
195
+ self.metrics["response_times"].append(time.time() - start_time)
196
+ return reply
197
+ except Exception as e:
198
+ logger.error(f"Response generation error: {e}")
199
+ return "Sorry, an error occurred. Please try again."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200
 
201
  def evaluate_factual_accuracy(self, response, reference):
202
+ """Evaluate using semantic similarity"""
203
+ try:
204
+ embedder = self.english_embedder # Assuming reference is in English; extend for Arabic if needed
205
+ response_vec = embedder.encode(response)
206
+ reference_vec = embedder.encode(reference)
207
+ similarity = util.cos_sim(response_vec, reference_vec).item()
208
+ return similarity
209
+ except Exception as e:
210
+ logger.error(f"Evaluation error: {e}")
211
+ return 0.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
212
 
213
  @spaces.GPU
214
  def process_pdf(self, file):
215
+ """Process PDF with scalability and error handling"""
216
+ if not file:
217
+ return "Please upload a PDF file."
218
 
219
  try:
220
+ pdf_reader = PyPDF2.PdfReader(io.BytesIO(file))
221
+ text = "".join([page.extract_text() or "" for page in pdf_reader.pages])
222
+ if not text.strip():
223
+ return "No extractable text found in PDF."
224
+
225
+ # Chunk text for scalability
226
+ chunks = [text[i:i+300] for i in range(0, len(text), 300)]
227
+ self.pdf_english_texts = [c for c in chunks if not any('\u0600' <= char <= '\u06FF' for char in c)]
228
+ self.pdf_arabic_texts = [c for c in chunks if any('\u0600' <= char <= '\u06FF' for char in c)]
229
+
230
+ # Batch process embeddings
231
+ batch_size = 32
232
+ for lang, texts, embedder in [("en", self.pdf_english_texts, self.english_embedder),
233
+ ("ar", self.pdf_arabic_texts, self.arabic_embedder)]:
234
+ if texts:
235
+ vectors = []
236
+ for i in range(0, len(texts), batch_size):
237
+ batch = texts[i:i+batch_size]
238
+ vectors.extend(embedder.encode(batch))
239
+ dim = len(vectors[0])
240
+ nlist = max(1, len(vectors) // 10)
241
+ quantizer = faiss.IndexFlatL2(dim)
242
+ index = faiss.IndexIVFFlat(quantizer, dim, nlist)
243
+ index.train(np.array(vectors))
244
+ index.add(np.array(vectors))
245
+ setattr(self, f"pdf_{lang}_index", index)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
247
  self.has_pdf_content = True
248
+ return f"PDF processed: {len(self.pdf_english_texts)} English, {len(self.pdf_arabic_texts)} Arabic chunks."
 
 
 
 
 
 
 
 
249
  except Exception as e:
250
+ logger.error(f"PDF processing error: {e}")
251
+ return f"Error processing PDF: {e}"
252
+
253
+ # Gradio Interface
254
  def create_interface():
 
255
  assistant = Vision2030Assistant()
256
 
257
+ def chat(query, history, session_id):
258
+ reply = assistant.generate_response(query, session_id)
259
+ history.append((query, reply))
 
 
 
 
 
 
 
260
  return history, ""
261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
262
  with gr.Blocks() as demo:
263
+ gr.Markdown("# Vision 2030 Virtual Assistant")
264
+ session_id = gr.State(value="user1") # Simple session ID; enhance with authentication
265
+ chatbot = gr.Chatbot()
266
+ msg = gr.Textbox(label="Ask a question")
267
+ submit = gr.Button("Submit")
268
+ pdf_upload = gr.File(label="Upload PDF", type="binary")
269
+ upload_status = gr.Textbox(label="Upload Status")
270
+
271
+ submit.click(chat, [msg, chatbot, session_id], [chatbot, msg])
272
+ pdf_upload.upload(assistant.process_pdf, pdf_upload, upload_status)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
273
 
274
  return demo
275
 
 
276
  demo = create_interface()
277
  demo.launch()