File size: 5,306 Bytes
dacd25b
 
 
f40229f
dacd25b
 
29a7230
 
 
dacd25b
 
f40229f
dacd25b
 
 
 
 
f40229f
 
 
 
dacd25b
 
 
f40229f
 
dacd25b
 
 
f40229f
dacd25b
 
 
f40229f
dacd25b
 
 
 
 
 
 
f40229f
 
 
 
 
 
 
 
29a7230
dacd25b
 
 
 
 
 
 
f40229f
dacd25b
 
 
 
 
 
 
f40229f
dacd25b
29a7230
f40229f
 
29a7230
 
dacd25b
 
 
 
 
 
f40229f
dacd25b
 
f40229f
dacd25b
f40229f
dacd25b
 
 
 
c83344b
 
dacd25b
 
 
 
 
 
 
 
 
f40229f
29a7230
f40229f
dacd25b
f40229f
29a7230
dacd25b
 
 
 
 
 
 
 
 
 
 
f40229f
 
c83344b
dacd25b
 
 
 
 
 
 
f40229f
 
dacd25b
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#!/usr/bin/env python
"""
Gradio demo for Wan2.1 First-Last-Frame-to-Video (FLF2V)
Author: GeradeHouse
"""

import numpy as np
import torch
import gradio as gr
from diffusers import WanImageToVideoPipeline, AutoencoderKLWan
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel, CLIPImageProcessor
from PIL import Image
import torchvision.transforms.functional as TF

# ---------------------------------------------------------------------
# CONFIG ----------------------------------------------------------------
MODEL_ID       = "Wan-AI/Wan2.1-FLF2V-14B-720P-diffusers"  # or switch to 1.3B
DTYPE          = torch.float16                            # or bfloat16
MAX_AREA       = 1280 * 720                                # ≤720p
DEFAULT_FRAMES = 81                                        # ~5s @16 fps
# ----------------------------------------------------------------------

def load_pipeline():
    """Lazy‐load & configure the pipeline once per process."""
    # 1) load the CLIP image encoder (full-precision)
    image_encoder = CLIPVisionModel.from_pretrained(
        MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32
    )
    # 2) load the VAE (half-precision)
    vae = AutoencoderKLWan.from_pretrained(
        MODEL_ID, subfolder="vae", torch_dtype=DTYPE
    )
    # 3) load the video pipeline
    pipe = WanImageToVideoPipeline.from_pretrained(
        MODEL_ID,
        vae=vae,
        image_encoder=image_encoder,
        torch_dtype=DTYPE,
    )

    # 4) override the processor with the fast Rust implementation
    pipe.image_processor = CLIPImageProcessor.from_pretrained(
        MODEL_ID, subfolder="image_processor", use_fast=True
    )

    # 5) memory helpers (offload UNet to CPU as needed)
    # pipe.enable_model_cpu_offload()
    # (Removed pipe.vae.enable_slicing() — not supported on AutoencoderKLWan)

    return pipe.to("cuda" if torch.cuda.is_available() else "cpu")

PIPE = load_pipeline()

# ----------------------------------------------------------------------
# UTILS ----------------------------------------------------------------
def aspect_resize(img: Image.Image, max_area=MAX_AREA):
    """Resize while keeping aspect & respecting patch multiples."""
    ar = img.height / img.width
    mod = PIPE.vae_scale_factor_spatial * PIPE.transformer.config.patch_size[1]
    h = round(np.sqrt(max_area * ar)) // mod * mod
    w = round(np.sqrt(max_area / ar)) // mod * mod
    return img.resize((w, h), Image.LANCZOS), h, w

def center_crop_resize(img: Image.Image, h, w):
    """Center‐crop & resize to H×W."""
    ratio = max(w / img.width, h / img.height)
    img = img.resize(
        (round(img.width * ratio), round(img.height * ratio)),
        Image.LANCZOS
    )
    return TF.center_crop(img, [h, w])

# ----------------------------------------------------------------------
# GENERATE --------------------------------------------------------------
def generate(first_frame, last_frame, prompt, negative_prompt, steps,
             guidance, num_frames, seed, fps):

    # seed handling
    if seed == -1:
        seed = torch.seed()
    gen = torch.Generator(device=PIPE.device).manual_seed(seed)

    # preprocess frames
    first_frame, h, w = aspect_resize(first_frame)
    if last_frame.size != first_frame.size:
        last_frame = center_crop_resize(last_frame, h, w)

    # run the pipeline
    output = PIPE(
        image=first_frame,
        last_image=last_frame,
        prompt=prompt,
        negative_prompt=negative_prompt or None,
        height=h,
        width=w,
        num_frames=num_frames,
        num_inference_steps=steps,
        guidance_scale=guidance,
        generator=gen,
    )
    frames = output.frames[0]  # list of PIL Image

    # export to MP4
    video_path = export_to_video(frames, fps=fps)
    return video_path, seed

# ----------------------------------------------------------------------
# UI --------------------------------------------------------------------
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("## Wan 2.1 FLF2V – First & Last Frame → Video")

    with gr.Row():
        first_img = gr.Image(label="First frame", type="pil")
        last_img  = gr.Image(label="Last frame",  type="pil")

    prompt         = gr.Textbox(label="Prompt", placeholder="A blue bird takes off…")
    negative       = gr.Textbox(label="Negative prompt (optional)", placeholder="ugly, blurry")

    with gr.Accordion("Advanced parameters", open=False):
        steps      = gr.Slider(10, 50, value=30, step=1, label="Sampling steps")
        guidance   = gr.Slider(0.0, 10.0, value=5.5, step=0.1, label="Guidance scale")
        num_frames = gr.Slider(16, 129, value=DEFAULT_FRAMES, step=1, label="Frames")
        fps        = gr.Slider(4, 30, value=16, step=1, label="FPS (export)")
        seed       = gr.Number(value=-1, precision=0, label="Seed (-1 = random)")

    run_btn   = gr.Button("Generate")
    video     = gr.Video(label="Result (.mp4)")
    used_seed = gr.Number(label="Seed used", interactive=False)

    run_btn.click(
        fn=generate,
        inputs=[first_img, last_img, prompt, negative, steps, guidance, num_frames, seed, fps],
        outputs=[video, used_seed]
    )

if __name__ == "__main__":
    demo.launch()