Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -4,8 +4,6 @@ Gradio demo for Wan2.1 First-Last-Frame-to-Video (FLF2V)
|
|
4 |
Author: <your-handle>
|
5 |
"""
|
6 |
|
7 |
-
import os
|
8 |
-
import tempfile
|
9 |
import numpy as np
|
10 |
import torch
|
11 |
import gradio as gr
|
@@ -19,12 +17,12 @@ import torchvision.transforms.functional as TF
|
|
19 |
# CONFIG ----------------------------------------------------------------
|
20 |
MODEL_ID = "Wan-AI/Wan2.1-FLF2V-14B-720P-diffusers" # switch to 1.3B if needed
|
21 |
DTYPE = torch.float16 # or torch.bfloat16 on AMP-friendly GPUs
|
22 |
-
MAX_AREA = 1280 * 720 # keep ≤
|
23 |
-
DEFAULT_FRAMES = 81 # ≈
|
24 |
# ----------------------------------------------------------------------
|
25 |
|
26 |
def load_pipeline():
|
27 |
-
"""Lazy
|
28 |
# image encoder in full precision
|
29 |
image_encoder = CLIPVisionModel.from_pretrained(
|
30 |
MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32
|
@@ -41,8 +39,8 @@ def load_pipeline():
|
|
41 |
)
|
42 |
|
43 |
# memory helpers for ≤ 24 GB cards / HF T4-medium
|
44 |
-
pipe.enable_model_cpu_offload()
|
45 |
-
pipe.vae.enable_slicing()
|
46 |
# Optional: if you have xformers installed
|
47 |
# pipe.enable_xformers_memory_efficient_attention()
|
48 |
|
@@ -53,7 +51,7 @@ PIPE = load_pipeline()
|
|
53 |
# ----------------------------------------------------------------------
|
54 |
# UTILS ----------------------------------------------------------------
|
55 |
def aspect_resize(img: Image.Image, max_area=MAX_AREA):
|
56 |
-
"""Resize while respecting model patch size (multiple of
|
57 |
ar = img.height / img.width
|
58 |
mod = PIPE.vae_scale_factor_spatial * PIPE.transformer.config.patch_size[1]
|
59 |
h = round(np.sqrt(max_area * ar)) // mod * mod
|
@@ -61,6 +59,7 @@ def aspect_resize(img: Image.Image, max_area=MAX_AREA):
|
|
61 |
return img.resize((w, h), Image.LANCZOS), h, w
|
62 |
|
63 |
def center_crop_resize(img: Image.Image, h, w):
|
|
|
64 |
ratio = max(w / img.width, h / img.height)
|
65 |
img = img.resize(
|
66 |
(round(img.width * ratio), round(img.height * ratio)), Image.LANCZOS
|
@@ -76,13 +75,13 @@ def generate(first_frame, last_frame, prompt, negative_prompt, steps,
|
|
76 |
seed = torch.seed()
|
77 |
generator = torch.Generator(device=PIPE.device).manual_seed(seed)
|
78 |
|
79 |
-
# preprocess
|
80 |
first_frame, h, w = aspect_resize(first_frame)
|
81 |
if last_frame.size != first_frame.size:
|
82 |
last_frame = center_crop_resize(last_frame, h, w)
|
83 |
|
84 |
-
# run pipeline
|
85 |
-
|
86 |
image=first_frame,
|
87 |
last_image=last_frame,
|
88 |
prompt=prompt,
|
@@ -94,9 +93,9 @@ def generate(first_frame, last_frame, prompt, negative_prompt, steps,
|
|
94 |
guidance_scale=guidance,
|
95 |
generator=generator,
|
96 |
)
|
97 |
-
frames =
|
98 |
|
99 |
-
# export
|
100 |
video_path = export_to_video(frames, fps=fps)
|
101 |
return video_path, seed
|
102 |
|
@@ -109,8 +108,9 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
109 |
first_img = gr.Image(label="First frame", type="pil")
|
110 |
last_img = gr.Image(label="Last frame", type="pil")
|
111 |
|
112 |
-
prompt
|
113 |
-
negative
|
|
|
114 |
with gr.Accordion("Advanced parameters", open=False):
|
115 |
steps = gr.Slider(10, 50, value=30, step=1, label="Sampling steps")
|
116 |
guidance = gr.Slider(0.0, 10.0, value=5.5, step=0.1, label="Guidance scale")
|
|
|
4 |
Author: <your-handle>
|
5 |
"""
|
6 |
|
|
|
|
|
7 |
import numpy as np
|
8 |
import torch
|
9 |
import gradio as gr
|
|
|
17 |
# CONFIG ----------------------------------------------------------------
|
18 |
MODEL_ID = "Wan-AI/Wan2.1-FLF2V-14B-720P-diffusers" # switch to 1.3B if needed
|
19 |
DTYPE = torch.float16 # or torch.bfloat16 on AMP-friendly GPUs
|
20 |
+
MAX_AREA = 1280 * 720 # keep ≤ 720p
|
21 |
+
DEFAULT_FRAMES = 81 # ≈ 5s at 16 fps
|
22 |
# ----------------------------------------------------------------------
|
23 |
|
24 |
def load_pipeline():
|
25 |
+
"""Lazy‐load the huge model once per process."""
|
26 |
# image encoder in full precision
|
27 |
image_encoder = CLIPVisionModel.from_pretrained(
|
28 |
MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32
|
|
|
39 |
)
|
40 |
|
41 |
# memory helpers for ≤ 24 GB cards / HF T4-medium
|
42 |
+
pipe.enable_model_cpu_offload() # page UNet blocks off GPU
|
43 |
+
pipe.vae.enable_slicing() # reduce VAE peak RAM
|
44 |
# Optional: if you have xformers installed
|
45 |
# pipe.enable_xformers_memory_efficient_attention()
|
46 |
|
|
|
51 |
# ----------------------------------------------------------------------
|
52 |
# UTILS ----------------------------------------------------------------
|
53 |
def aspect_resize(img: Image.Image, max_area=MAX_AREA):
|
54 |
+
"""Resize while respecting model patch size (multiple of transformer patch)."""
|
55 |
ar = img.height / img.width
|
56 |
mod = PIPE.vae_scale_factor_spatial * PIPE.transformer.config.patch_size[1]
|
57 |
h = round(np.sqrt(max_area * ar)) // mod * mod
|
|
|
59 |
return img.resize((w, h), Image.LANCZOS), h, w
|
60 |
|
61 |
def center_crop_resize(img: Image.Image, h, w):
|
62 |
+
"""Center‐crop & resize to target H×W."""
|
63 |
ratio = max(w / img.width, h / img.height)
|
64 |
img = img.resize(
|
65 |
(round(img.width * ratio), round(img.height * ratio)), Image.LANCZOS
|
|
|
75 |
seed = torch.seed()
|
76 |
generator = torch.Generator(device=PIPE.device).manual_seed(seed)
|
77 |
|
78 |
+
# preprocess inputs
|
79 |
first_frame, h, w = aspect_resize(first_frame)
|
80 |
if last_frame.size != first_frame.size:
|
81 |
last_frame = center_crop_resize(last_frame, h, w)
|
82 |
|
83 |
+
# run the pipeline
|
84 |
+
output = PIPE(
|
85 |
image=first_frame,
|
86 |
last_image=last_frame,
|
87 |
prompt=prompt,
|
|
|
93 |
guidance_scale=guidance,
|
94 |
generator=generator,
|
95 |
)
|
96 |
+
frames = output.frames[0] # list[PIL.Image]
|
97 |
|
98 |
+
# export to .mp4
|
99 |
video_path = export_to_video(frames, fps=fps)
|
100 |
return video_path, seed
|
101 |
|
|
|
108 |
first_img = gr.Image(label="First frame", type="pil")
|
109 |
last_img = gr.Image(label="Last frame", type="pil")
|
110 |
|
111 |
+
prompt = gr.Textbox(label="Prompt", placeholder="A blue bird takes off…")
|
112 |
+
negative = gr.Textbox(label="Negative prompt (optional)", placeholder="ugly, blurry")
|
113 |
+
|
114 |
with gr.Accordion("Advanced parameters", open=False):
|
115 |
steps = gr.Slider(10, 50, value=30, step=1, label="Sampling steps")
|
116 |
guidance = gr.Slider(0.0, 10.0, value=5.5, step=0.1, label="Guidance scale")
|