GeradeHouse commited on
Commit
dacd25b
·
verified ·
1 Parent(s): 2258ae0

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +119 -0
app.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ """
3
+ Gradio demo for Wan2.1 First-Last-Frame-to-Video (FLF2V)
4
+ Author: <your-handle>
5
+ """
6
+
7
+ import os, tempfile, numpy as np, torch, gradio as gr
8
+ from diffusers import WanImageToVideoPipeline, AutoencoderKLWan
9
+ from diffusers.utils import export_to_video
10
+ from transformers import CLIPVisionModel
11
+ from PIL import Image
12
+ import torchvision.transforms.functional as TF
13
+
14
+ # ---------------------------------------------------------------------
15
+ # CONFIG ----------------------------------------------------------------
16
+ MODEL_ID = "Wan-AI/Wan2.1-FLF2V-14B-720P-diffusers" # switch to 1.3B if needed
17
+ DTYPE = torch.float16 # or torch.bfloat16 on AMP-friendly GPUs
18
+ MAX_AREA = 1280 * 720 # keep ≤ 720 p
19
+ DEFAULT_FRAMES = 81 # ≈ 5 s at 16 fps
20
+ # ----------------------------------------------------------------------
21
+
22
+ def load_pipeline():
23
+ """Lazy-load the huge model once per process."""
24
+ image_encoder = CLIPVisionModel.from_pretrained(
25
+ MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32
26
+ )
27
+ vae = AutoencoderKLWan.from_pretrained(
28
+ MODEL_ID, subfolder="vae", torch_dtype=DTYPE
29
+ )
30
+ pipe = WanImageToVideoPipeline.from_pretrained(
31
+ MODEL_ID,
32
+ vae=vae,
33
+ image_encoder=image_encoder,
34
+ torch_dtype=DTYPE,
35
+ )
36
+
37
+ # memory helpers for ≤ 24 GB cards / HF T4-medium
38
+ pipe.enable_model_cpu_offload() # paged UNet blocks
39
+ pipe.enable_vae_slicing() # reduces VAE RAM spikes
40
+ # Optional (needs xformers): pipe.enable_xformers_memory_efficient_attention()
41
+ return pipe.to("cuda" if torch.cuda.is_available() else "cpu")
42
+
43
+ PIPE = load_pipeline()
44
+
45
+ # ----------------------------------------------------------------------
46
+ # UTILS ----------------------------------------------------------------
47
+ def aspect_resize(img: Image.Image, max_area=MAX_AREA):
48
+ """Resize while respecting model patch size (multiple of 8*transformer patch)."""
49
+ ar = img.height / img.width
50
+ mod = PIPE.vae_scale_factor_spatial * PIPE.transformer.config.patch_size[1]
51
+ h = round(np.sqrt(max_area * ar)) // mod * mod
52
+ w = round(np.sqrt(max_area / ar)) // mod * mod
53
+ return img.resize((w, h), Image.LANCZOS), h, w
54
+
55
+ def center_crop_resize(img: Image.Image, h, w):
56
+ ratio = max(w / img.width, h / img.height)
57
+ img = img.resize((round(img.width * ratio), round(img.height * ratio)), Image.LANCZOS)
58
+ img = TF.center_crop(img, [h, w])
59
+ return img
60
+
61
+ # ----------------------------------------------------------------------
62
+ # GENERATE --------------------------------------------------------------
63
+ def generate(first_frame, last_frame, prompt, negative_prompt, steps,
64
+ guidance, num_frames, seed, fps):
65
+
66
+ if seed == -1:
67
+ seed = torch.seed()
68
+ generator = torch.Generator(device=PIPE.device).manual_seed(seed)
69
+
70
+ first_frame, h, w = aspect_resize(first_frame)
71
+ if last_frame.size != first_frame.size:
72
+ last_frame = center_crop_resize(last_frame, h, w)
73
+
74
+ out = PIPE(
75
+ image=first_frame,
76
+ last_image=last_frame,
77
+ prompt=prompt,
78
+ negative_prompt=negative_prompt or None,
79
+ height=h,
80
+ width=w,
81
+ num_frames=num_frames,
82
+ num_inference_steps=steps,
83
+ guidance_scale=guidance,
84
+ generator=generator,
85
+ ).frames[0] # list[pillow]
86
+
87
+ video_path = export_to_video(out, fps=fps)
88
+ return video_path, seed
89
+
90
+ # ----------------------------------------------------------------------
91
+ # UI --------------------------------------------------------------------
92
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
93
+ gr.Markdown("## Wan 2.1 FLF2V – First & Last Frame → Video")
94
+
95
+ with gr.Row():
96
+ first_img = gr.Image(label="First frame", type="pil")
97
+ last_img = gr.Image(label="Last frame", type="pil")
98
+
99
+ prompt = gr.Textbox(label="Prompt", placeholder="A blue bird takes off…")
100
+ negative = gr.Textbox(label="Negative prompt (optional)", placeholder="ugly, blurry")
101
+ with gr.Accordion("Advanced parameters", open=False):
102
+ steps = gr.Slider(10, 50, value=30, step=1, label="Sampling steps")
103
+ guidance = gr.Slider(0.0, 10.0, value=5.5, step=0.1, label="Guidance scale")
104
+ num_frames = gr.Slider(16, 129, value=DEFAULT_FRAMES, step=1, label="Frames")
105
+ fps = gr.Slider(4, 30, value=16, step=1, label="FPS (export)")
106
+ seed = gr.Number(value=-1, precision=0, label="Seed (-1 = random)")
107
+
108
+ run_btn = gr.Button("Generate")
109
+ video = gr.Video(label="Result (.mp4)")
110
+ used_seed = gr.Number(label="Seed used", interactive=False)
111
+
112
+ run_btn.click(
113
+ fn=generate,
114
+ inputs=[first_img, last_img, prompt, negative, steps, guidance, num_frames, seed, fps],
115
+ outputs=[video, used_seed]
116
+ )
117
+
118
+ if __name__ == "__main__":
119
+ demo.launch()