|
--- |
|
base_model: Qwen/Qwen2.5-VL-3B-Instruct |
|
library_name: peft |
|
datasets: |
|
- llamaindex/vdr-multilingual-train |
|
- nomic-ai/colpali_train_set_split_by_source |
|
language: |
|
- en |
|
- it |
|
- fr |
|
- de |
|
- es |
|
pipeline_tag: visual-document-retrieval |
|
tags: |
|
- vidore |
|
- colpali |
|
- multimodal_embedding |
|
- multilingual_embedding |
|
- Text-to-Visual Document (T→VD) retrieval |
|
--- |
|
|
|
# ColNomic Embed Multimodal 3B: State-of-the-Art Visual Document Retrieval |
|
|
|
`colnomic-embed-multimodal-3b` is a multi-vector state-of-the-art multimodal embedding model that excels at visual document retrieval tasks: |
|
|
|
- **High Performance**: Achieves 61.2 NDCG@5 on Vidore-v2, outperforming all other models except ColNomic Embed Multimodal 7B |
|
- **Unified Text-Image Encoding**: Directly encodes interleaved text and images without complex preprocessing |
|
- **Advanced Architecture**: 3B parameter multimodal embedding model |
|
- **Open-Weights**: Model weights available for research use |
|
|
|
## Performance |
|
|
|
| Model | Avg. | ESG Restaurant Human | Econ Macro Multi. | AXA Multi. | MIT Bio | ESG Restaurant Synth. | ESG Restaurant Synth. Multi. | MIT Bio Multi. | AXA | Econ. Macro | |
|
|-------|------|----------------------|-------------------|------------|---------|----------------------|----------------------------|---------------|-----|------------| |
|
| [ColNomic Embed Multimodal 7B](https://huggingface.co/nomic-ai/colnomic-embed-multimodal-7b)| 62.7 | 73.9 | 54.7 | 61.3 | 66.1 | 57.3 | 56.7 | 64.2 | 68.3 | 61.6 | |
|
| **ColNomic Embed Multimodal** 3B | 61.2 | 65.8 | 55.4 | 61.0 | 63.5 | 56.6 | 57.2 | 62.5 | 68.8 | 60.2 | |
|
| T-Systems ColQwen2.5-3B | 59.9 | 72.1 | 51.2 | 60.0 | 65.3 | 51.7 | 53.3 | 61.7 | 69.3 | 54.8 | |
|
| [Nomic Embed Multimodal 7B](https://huggingface.co/nomic-ai/nomic-embed-multimodal-7b) | 59.7 | 65.7 | 57.7 | 59.3 | 64.0 | 49.2 | 51.9 | 61.2 | 66.3 | 63.1 | |
|
| GME Qwen2 7B | 59.0 | 65.8 | 56.2 | 55.4 | 64.0 | 54.3 | 56.7 | 55.1 | 60.7 | 62.9 | |
|
| [Nomic Embed Multimodal 3B](https://huggingface.co/nomic-ai/nomic-embed-multimodal-3b) | 58.8 | 59.8 | 57.5 | 58.8 | 62.5 | 49.4 | 49.4 | 58.6 | 69.6 | 63.5 | |
|
| Llama Index vdr-2b-multi-v1 | 58.4 | 63.1 | 52.8 | 61.0 | 60.6 | 50.3 | 51.2 | 56.9 | 68.8 | 61.2 | |
|
| Voyage Multimodal 3 | 55.0 | 56.1 | 55.0 | 59.5 | 56.4 | 47.2 | 46.2 | 51.5 | 64.1 | 58.8 | |
|
|
|
## Getting Started |
|
|
|
To use `colnomic-embed-multimodal-3b`, please install `colpali` from source |
|
|
|
```bash |
|
pip install git+https://github.com/illuin-tech/colpali.git |
|
``` |
|
|
|
|
|
```python |
|
import torch |
|
from PIL import Image |
|
from transformers.utils.import_utils import is_flash_attn_2_available |
|
|
|
from colpali_engine.models import ColQwen2_5, ColQwen2_5_Processor |
|
|
|
model_name = "nomic-ai/colnomic-embed-multimodal-3b" |
|
|
|
model = ColQwen2_5.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.bfloat16, |
|
device_map="cuda:0", # or "mps" if on Apple Silicon |
|
attn_implementation="flash_attention_2" if is_flash_attn_2_available() else None, |
|
).eval() |
|
|
|
processor = ColQwen2_5_Processor.from_pretrained(model_name) |
|
|
|
# Your inputs |
|
images = [ |
|
Image.new("RGB", (128, 128), color="white"), |
|
Image.new("RGB", (64, 32), color="black"), |
|
] |
|
queries = [ |
|
"What is the organizational structure for our R&D department?", |
|
"Can you provide a breakdown of last year’s financial performance?", |
|
] |
|
|
|
# Process the inputs |
|
batch_images = processor.process_images(images).to(model.device) |
|
batch_queries = processor.process_queries(queries).to(model.device) |
|
|
|
# Forward pass |
|
with torch.no_grad(): |
|
image_embeddings = model(**batch_images) |
|
query_embeddings = model(**batch_queries) |
|
|
|
scores = processor.score_multi_vector(query_embeddings, image_embeddings) |
|
``` |
|
|
|
|
|
## Model Architecture |
|
|
|
- **Total Parameters**: 3B |
|
- **Training Approach**: Fine-tuned from Qwen2.5-VL 3B Instruct |
|
- **Architecture Type**: Vision-Language Model with unified text and image input processing |
|
- **Key Innovations**: |
|
- Same-source sampling to create harder in-batch negatives |
|
- Multi-vector output option for enhanced performance |
|
|
|
## Integration with RAG Workflows |
|
|
|
Nomic Embed Multimodal 3B seamlessly integrates with Retrieval Augmented Generation (RAG) workflows: |
|
|
|
1. **Direct Document Embedding**: Skip OCR and complex processing by directly embedding document page images |
|
2. **Faster Processing**: Eliminate preprocessing steps for quicker indexing |
|
3. **More Complete Information**: Capture both textual and visual cues in a single embedding |
|
4. **Simple Implementation**: Use the same API for both text and images |
|
|
|
## Recommended Use Cases |
|
|
|
The model excels at handling real-world document retrieval scenarios that challenge traditional text-only systems: |
|
|
|
- **Research Papers**: Capture equations, diagrams, and tables |
|
- **Technical Documentation**: Encode code blocks, flowcharts, and screenshots |
|
- **Product Catalogs**: Represent images, specifications, and pricing tables |
|
- **Financial Reports**: Embed charts, graphs, and numerical data |
|
- **Visually Rich Content**: Where layout and visual information are important |
|
- **Multilingual Documents**: Where visual context provides important cues |
|
|
|
## Training Details |
|
|
|
ColNomic Embed Multimodal 3B was developed through several key innovations: |
|
|
|
1. **Sampling From the Same Source**: Forcing sampling from the same dataset source creates harder in-batch negatives, preventing the model from learning dataset artifacts. |
|
|
|
2. **Multi-Vector Configuration**: Providing a multi-vector variant that achieves higher performance than the dense variant. |
|
|
|
## Limitations |
|
|
|
- Performance may vary when processing documents with unconventional layouts or unusual visual elements |
|
- While it handles multiple languages, performance is strongest on English content |
|
- Processing very large or complex documents may require dividing them into smaller chunks |
|
- Performance on documents with handwriting or heavily stylized fonts may be reduced |
|
|
|
## Join the Nomic Community |
|
|
|
- Nomic Embed Ecosystem: [https://www.nomic.ai/embed](https://www.nomic.ai/embed) |
|
- Website: [https://nomic.ai](https://nomic.ai) |
|
- Twitter: [https://twitter.com/nomic_ai](https://twitter.com/nomic_ai) |
|
- Discord: [https://discord.gg/myY5YDR8z8](https://discord.gg/myY5YDR8z8) |
|
|
|
## Citation |
|
|
|
If you find this model useful in your research or applications, please consider citing: |
|
|
|
```bibtex |
|
@misc{faysse2024colpaliefficientdocumentretrieval, |
|
title={ColPali: Efficient Document Retrieval with Vision Language Models}, |
|
author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo}, |
|
year={2024}, |
|
eprint={2407.01449}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.IR}, |
|
url={https://arxiv.org/abs/2407.01449}, |
|
} |
|
@misc{ma2024unifyingmultimodalretrievaldocument, |
|
title={Unifying Multimodal Retrieval via Document Screenshot Embedding}, |
|
author={Xueguang Ma and Sheng-Chieh Lin and Minghan Li and Wenhu Chen and Jimmy Lin}, |
|
year={2024}, |
|
eprint={2406.11251}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.IR}, |
|
url={https://arxiv.org/abs/2406.11251}, |
|
} |
|
@misc{nomicembedmultimodal2025, |
|
title={Nomic Embed Multimodal: Interleaved Text, Image, and Screenshots for Visual Document Retrieval}, |
|
author={Nomic Team}, |
|
year={2025}, |
|
publisher={Nomic AI}, |
|
url={https://nomic.ai/blog/posts/nomic-embed-multimodal}, |
|
} |
|
``` |