File size: 7,271 Bytes
e97541f
d70d99b
 
 
 
47ff4dc
d70d99b
 
 
 
 
 
 
 
 
 
 
 
 
e97541f
 
d70d99b
e97541f
d70d99b
e97541f
d70d99b
 
 
 
e97541f
d70d99b
e97541f
141336b
 
86627b4
3b6071f
141336b
86627b4
3b6071f
86627b4
141336b
 
e97541f
d111b5e
 
 
6baedbf
 
4fac0f5
6baedbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d70d99b
e97541f
d70d99b
 
 
 
 
 
e97541f
d70d99b
e97541f
d70d99b
e97541f
d70d99b
 
 
 
e97541f
d70d99b
e97541f
d70d99b
e97541f
d70d99b
 
 
 
 
 
e97541f
 
 
d70d99b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ace11e
d70d99b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
---
base_model: Qwen/Qwen2.5-VL-3B-Instruct
library_name: peft
datasets:
- llamaindex/vdr-multilingual-train
- nomic-ai/colpali_train_set_split_by_source
language:
- en
- it
- fr
- de
- es
pipeline_tag: visual-document-retrieval
tags:
- vidore
- colpali
- multimodal_embedding
- multilingual_embedding
- Text-to-Visual Document (T→VD) retrieval
---

# ColNomic Embed Multimodal 3B: State-of-the-Art Visual Document Retrieval

`colnomic-embed-multimodal-3b` is a multi-vector state-of-the-art multimodal embedding model that excels at visual document retrieval tasks:

- **High Performance**: Achieves 61.2 NDCG@5 on Vidore-v2, outperforming all other models except ColNomic Embed Multimodal 7B
- **Unified Text-Image Encoding**: Directly encodes interleaved text and images without complex preprocessing
- **Advanced Architecture**: 3B parameter multimodal embedding model
- **Open-Weights**: Model weights available for research use

## Performance

| Model | Avg. | ESG Restaurant Human | Econ Macro Multi. | AXA Multi. | MIT Bio | ESG Restaurant Synth. | ESG Restaurant Synth. Multi. | MIT Bio Multi. | AXA | Econ. Macro |
|-------|------|----------------------|-------------------|------------|---------|----------------------|----------------------------|---------------|-----|------------|
| [ColNomic Embed Multimodal 7B](https://huggingface.co/nomic-ai/colnomic-embed-multimodal-7b)| 62.7 | 73.9 | 54.7 | 61.3 | 66.1 | 57.3 | 56.7 | 64.2 | 68.3 | 61.6 |
| **ColNomic Embed Multimodal** 3B | 61.2 | 65.8 | 55.4 | 61.0 | 63.5 | 56.6 | 57.2 | 62.5 | 68.8 | 60.2 |
| T-Systems ColQwen2.5-3B | 59.9 | 72.1 | 51.2 | 60.0 | 65.3 | 51.7 | 53.3 | 61.7 | 69.3 | 54.8 |
| [Nomic Embed Multimodal 7B](https://huggingface.co/nomic-ai/nomic-embed-multimodal-7b) | 59.7 | 65.7 | 57.7 | 59.3 | 64.0 | 49.2 | 51.9 | 61.2 | 66.3 | 63.1 |
| GME Qwen2 7B | 59.0 | 65.8 | 56.2 | 55.4 | 64.0 | 54.3 | 56.7 | 55.1 | 60.7 | 62.9 |
| [Nomic Embed Multimodal 3B](https://huggingface.co/nomic-ai/nomic-embed-multimodal-3b) | 58.8 | 59.8 | 57.5 | 58.8 | 62.5 | 49.4 | 49.4 | 58.6 | 69.6 | 63.5 |
| Llama Index vdr-2b-multi-v1 | 58.4 | 63.1 | 52.8 | 61.0 | 60.6 | 50.3 | 51.2 | 56.9 | 68.8 | 61.2 |
| Voyage Multimodal 3 | 55.0 | 56.1 | 55.0 | 59.5 | 56.4 | 47.2 | 46.2 | 51.5 | 64.1 | 58.8 |

## Getting Started

To use `colnomic-embed-multimodal-3b`, please install `colpali` from source

```bash
pip install git+https://github.com/illuin-tech/colpali.git
```


```python
import torch
from PIL import Image
from transformers.utils.import_utils import is_flash_attn_2_available

from colpali_engine.models import ColQwen2_5, ColQwen2_5_Processor

model_name = "nomic-ai/colnomic-embed-multimodal-3b"

model = ColQwen2_5.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map="cuda:0",  # or "mps" if on Apple Silicon
    attn_implementation="flash_attention_2" if is_flash_attn_2_available() else None,
).eval()

processor = ColQwen2_5_Processor.from_pretrained(model_name)

# Your inputs
images = [
    Image.new("RGB", (128, 128), color="white"),
    Image.new("RGB", (64, 32), color="black"),
]
queries = [
    "What is the organizational structure for our R&D department?",
    "Can you provide a breakdown of last year’s financial performance?",
]

# Process the inputs
batch_images = processor.process_images(images).to(model.device)
batch_queries = processor.process_queries(queries).to(model.device)

# Forward pass
with torch.no_grad():
    image_embeddings = model(**batch_images)
    query_embeddings = model(**batch_queries)

scores = processor.score_multi_vector(query_embeddings, image_embeddings)
```


## Model Architecture

- **Total Parameters**: 3B
- **Training Approach**: Fine-tuned from Qwen2.5-VL 3B Instruct
- **Architecture Type**: Vision-Language Model with unified text and image input processing
- **Key Innovations**:
  - Same-source sampling to create harder in-batch negatives
  - Multi-vector output option for enhanced performance

## Integration with RAG Workflows

Nomic Embed Multimodal 3B seamlessly integrates with Retrieval Augmented Generation (RAG) workflows:

1. **Direct Document Embedding**: Skip OCR and complex processing by directly embedding document page images
2. **Faster Processing**: Eliminate preprocessing steps for quicker indexing
3. **More Complete Information**: Capture both textual and visual cues in a single embedding
4. **Simple Implementation**: Use the same API for both text and images

## Recommended Use Cases

The model excels at handling real-world document retrieval scenarios that challenge traditional text-only systems:

- **Research Papers**: Capture equations, diagrams, and tables
- **Technical Documentation**: Encode code blocks, flowcharts, and screenshots
- **Product Catalogs**: Represent images, specifications, and pricing tables
- **Financial Reports**: Embed charts, graphs, and numerical data
- **Visually Rich Content**: Where layout and visual information are important
- **Multilingual Documents**: Where visual context provides important cues

## Training Details

ColNomic Embed Multimodal 3B was developed through several key innovations:

1. **Sampling From the Same Source**: Forcing sampling from the same dataset source creates harder in-batch negatives, preventing the model from learning dataset artifacts.

2. **Multi-Vector Configuration**: Providing a multi-vector variant that achieves higher performance than the dense variant.

## Limitations

- Performance may vary when processing documents with unconventional layouts or unusual visual elements
- While it handles multiple languages, performance is strongest on English content
- Processing very large or complex documents may require dividing them into smaller chunks
- Performance on documents with handwriting or heavily stylized fonts may be reduced

## Join the Nomic Community

- Nomic Embed Ecosystem: [https://www.nomic.ai/embed](https://www.nomic.ai/embed)
- Website: [https://nomic.ai](https://nomic.ai)
- Twitter: [https://twitter.com/nomic_ai](https://twitter.com/nomic_ai)
- Discord: [https://discord.gg/myY5YDR8z8](https://discord.gg/myY5YDR8z8)

## Citation

If you find this model useful in your research or applications, please consider citing:

```bibtex
@misc{faysse2024colpaliefficientdocumentretrieval,
  title={ColPali: Efficient Document Retrieval with Vision Language Models}, 
  author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
  year={2024},
  eprint={2407.01449},
  archivePrefix={arXiv},
  primaryClass={cs.IR},
  url={https://arxiv.org/abs/2407.01449}, 
}
@misc{ma2024unifyingmultimodalretrievaldocument,
      title={Unifying Multimodal Retrieval via Document Screenshot Embedding}, 
      author={Xueguang Ma and Sheng-Chieh Lin and Minghan Li and Wenhu Chen and Jimmy Lin},
      year={2024},
      eprint={2406.11251},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2406.11251}, 
}
@misc{nomicembedmultimodal2025,
  title={Nomic Embed Multimodal: Interleaved Text, Image, and Screenshots for Visual Document Retrieval},
  author={Nomic Team},
  year={2025},
  publisher={Nomic AI},
  url={https://nomic.ai/blog/posts/nomic-embed-multimodal},
}
```