zpn commited on
Commit
6baedbf
·
verified ·
1 Parent(s): 82b488d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -0
README.md CHANGED
@@ -40,6 +40,54 @@ tags:
40
  | Llama Index vdr-2b-multi-v1 | 58.4 | 63.1 | 52.8 | 61.0 | 60.6 | 50.3 | 51.2 | 56.9 | 68.8 | 61.2 |
41
  | Voyage Multimodal 3 | 55.0 | 56.1 | 55.0 | 59.5 | 56.4 | 47.2 | 46.2 | 51.5 | 64.1 | 58.8 |
42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  ## Model Architecture
44
 
45
  - **Total Parameters**: 3B
 
40
  | Llama Index vdr-2b-multi-v1 | 58.4 | 63.1 | 52.8 | 61.0 | 60.6 | 50.3 | 51.2 | 56.9 | 68.8 | 61.2 |
41
  | Voyage Multimodal 3 | 55.0 | 56.1 | 55.0 | 59.5 | 56.4 | 47.2 | 46.2 | 51.5 | 64.1 | 58.8 |
42
 
43
+ To use `colnomic-embed-multimodal-7b`, please install `colpali` from source
44
+
45
+ ```bash
46
+ pip install git+https://github.com/nomic-ai/colpali.git
47
+ ```
48
+
49
+
50
+ ```python
51
+ import torch
52
+ from PIL import Image
53
+ from transformers.utils.import_utils import is_flash_attn_2_available
54
+
55
+ from colpali_engine.models import ColQwen2_5, ColQwen2_5_Processor
56
+
57
+ model_name = "nomic-ai/colnomic-embed-multimodal-3b"
58
+
59
+ model = ColQwen2_5.from_pretrained(
60
+ model_name,
61
+ torch_dtype=torch.bfloat16,
62
+ device_map="cuda:0", # or "mps" if on Apple Silicon
63
+ attn_implementation="flash_attention_2" if is_flash_attn_2_available() else None,
64
+ ).eval()
65
+
66
+ processor = ColQwen2_5_Processor.from_pretrained(model_name)
67
+
68
+ # Your inputs
69
+ images = [
70
+ Image.new("RGB", (128, 128), color="white"),
71
+ Image.new("RGB", (64, 32), color="black"),
72
+ ]
73
+ queries = [
74
+ "What is the organizational structure for our R&D department?",
75
+ "Can you provide a breakdown of last year’s financial performance?",
76
+ ]
77
+
78
+ # Process the inputs
79
+ batch_images = processor.process_images(images).to(model.device)
80
+ batch_queries = processor.process_queries(queries).to(model.device)
81
+
82
+ # Forward pass
83
+ with torch.no_grad():
84
+ image_embeddings = model(**batch_images)
85
+ query_embeddings = model(**batch_queries)
86
+
87
+ scores = processor.score_multi_vector(query_embeddings, image_embeddings)
88
+ ```
89
+
90
+
91
  ## Model Architecture
92
 
93
  - **Total Parameters**: 3B