chatty-djinn-14B / README.md
mayacinka's picture
Upload folder using huggingface_hub
e1a49da verified
|
raw
history blame
2.44 kB
metadata
tags:
  - merge
  - mergekit
  - lazymergekit
  - openchat/openchat-3.5-0106
  - teknium/OpenHermes-2.5-Mistral-7B
base_model:
  - openchat/openchat-3.5-0106
  - teknium/OpenHermes-2.5-Mistral-7B

djinn

djinn is a merge of the following models using LazyMergekit:

🧩 Configuration

merge_method: linear # use linear so we can include multiple models, albeit at a zero weight
parameters:
  weight: 1.0 # weight everything as 1 unless specified otherwise - linear with one model weighted at 1 is a no-op like passthrough
slices:
  - sources:
      - model: openchat/openchat-3.5-0106
        layer_range: [0, 1]
      - model: teknium/OpenHermes-2.5-Mistral-7B 
        layer_range: [0, 1]
        parameters:
          weight: 0
  - sources:
      - model: bardsai/jaskier-7b-dpo-v6.1
        layer_range: [1, 10]
  - sources:
      - model: senseable/WestLake-7B-v2
        layer_range: [10, 20]
  - sources:
      - model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
        layer_range: [20, 30]
  - sources:
      - model: paulml/OGNO-7B
        layer_range: [15, 25]
  - sources:
      - model: paulml/DPOB-INMTOB-7B
        layer_range: [22, 32]
  - sources:
      - model: mlabonne/AlphaMonarch-7B
        layer_range: [5, 15]
  - sources: 
      - model: openchat/openchat-3.5-0106
        layer_range: [31, 32]
      - model: teknium/OpenHermes-2.5-Mistral-7B
        layer_range: [31, 32]
        parameters:
          weight: 0
dtype: float16
tokenizer_source: model:openchat/openchat-3.5-0106

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mayacinka/djinn"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])