--- tags: - merge - mergekit - lazymergekit - openchat/openchat-3.5-0106 - teknium/OpenHermes-2.5-Mistral-7B base_model: - openchat/openchat-3.5-0106 - teknium/OpenHermes-2.5-Mistral-7B --- # djinn djinn is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [openchat/openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106) * [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) ## 🧩 Configuration ```yaml merge_method: linear # use linear so we can include multiple models, albeit at a zero weight parameters: weight: 1.0 # weight everything as 1 unless specified otherwise - linear with one model weighted at 1 is a no-op like passthrough slices: - sources: - model: openchat/openchat-3.5-0106 layer_range: [0, 1] - model: teknium/OpenHermes-2.5-Mistral-7B layer_range: [0, 1] parameters: weight: 0 - sources: - model: bardsai/jaskier-7b-dpo-v6.1 layer_range: [1, 10] - sources: - model: senseable/WestLake-7B-v2 layer_range: [10, 20] - sources: - model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO layer_range: [20, 30] - sources: - model: paulml/OGNO-7B layer_range: [15, 25] - sources: - model: paulml/DPOB-INMTOB-7B layer_range: [22, 32] - sources: - model: mlabonne/AlphaMonarch-7B layer_range: [5, 15] - sources: - model: openchat/openchat-3.5-0106 layer_range: [31, 32] - model: teknium/OpenHermes-2.5-Mistral-7B layer_range: [31, 32] parameters: weight: 0 dtype: float16 tokenizer_source: model:openchat/openchat-3.5-0106 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mayacinka/djinn" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```