Datasets:
mteb
/

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
query-id
stringlengths
3
6
corpus-id
stringlengths
2
6
score
float64
1
1
82449
53562
1
146540
146098
1
146540
146242
1
46138
35314
1
46138
114185
1
46138
160357
1
46138
72491
1
46138
35997
1
46138
37365
1
46138
42968
1
46138
37177
1
46138
123669
1
46138
43807
1
46138
59549
1
46138
163364
1
46138
129925
1
46138
103524
1
46138
38860
1
46138
101844
1
46138
94134
1
46138
62508
1
46138
176882
1
46138
163195
1
46793
35871
1
46792
35026
1
45445
41370
1
46861
44156
1
46861
45133
1
46861
45147
1
46861
44212
1
158717
135850
1
90314
84761
1
90314
86054
1
176686
170750
1
62089
36508
1
62089
163594
1
62089
152192
1
44422
42962
1
27617
10221
1
8540
86243
1
149849
143921
1
119040
87723
1
66505
66359
1
65266
62421
1
392
21636
1
392
40327
1
392
8274
1
392
19249
1
392
20906
1
93137
114054
1
167615
137288
1
60016
60443
1
146317
142297
1
146317
146846
1
146315
143006
1
19975
8711
1
102361
66116
1
102361
67628
1
102361
66339
1
102361
67690
1
9750
103166
1
24148
21437
1
24148
48457
1
11849
13182
1
136583
153437
1
92601
35257
1
92601
34896
1
92601
119569
1
103707
102855
1
145772
12817
1
35219
167890
1
35219
36786
1
145776
106916
1
35217
124515
1
35217
35866
1
35217
36404
1
35217
115368
1
35217
35395
1
35211
52282
1
136325
45826
1
136325
120982
1
96668
130537
1
177486
18192
1
177486
98861
1
180006
28558
1
180006
178726
1
144588
147538
1
134095
133145
1
38565
149017
1
70139
30982
1
70139
70790
1
70139
66298
1
70139
72079
1
70139
79246
1
69176
128032
1
18895
30197
1
87293
89001
1
87124
64655
1
178477
133225
1
178477
133741
1
End of preview. Expand in Data Studio

CQADupstackGamingRetrieval

An MTEB dataset
Massive Text Embedding Benchmark

CQADupStack: A Benchmark Data Set for Community Question-Answering Research

Task category t2t
Domains Web, Written
Reference http://nlp.cis.unimelb.edu.au/resources/cqadupstack/

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["CQADupstackGamingRetrieval"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{hoogeveen2015,
  acmid = {2838934},
  address = {New York, NY, USA},
  articleno = {3},
  author = {Hoogeveen, Doris and Verspoor, Karin M. and Baldwin, Timothy},
  booktitle = {Proceedings of the 20th Australasian Document Computing Symposium (ADCS)},
  doi = {10.1145/2838931.2838934},
  isbn = {978-1-4503-4040-3},
  location = {Parramatta, NSW, Australia},
  numpages = {8},
  pages = {3:1--3:8},
  publisher = {ACM},
  series = {ADCS '15},
  title = {CQADupStack: A Benchmark Data Set for Community Question-Answering Research},
  url = {http://doi.acm.org/10.1145/2838931.2838934},
  year = {2015},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("CQADupstackGamingRetrieval")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 46896,
        "number_of_characters": 22263573,
        "num_documents": 45301,
        "min_document_length": 46,
        "average_document_length": 489.74152888457206,
        "max_document_length": 28835,
        "unique_documents": 45301,
        "num_queries": 1595,
        "min_query_length": 15,
        "average_query_length": 48.772413793103446,
        "max_query_length": 149,
        "unique_queries": 1595,
        "none_queries": 0,
        "num_relevant_docs": 2263,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 1.418808777429467,
        "max_relevant_docs_per_query": 30,
        "unique_relevant_docs": 2263,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
1,276