Datasets:
metadata
annotations_creators:
- human-annotated
language:
- afr
- amh
- ara
- aze
- ben
- cmo
- cym
- dan
- deu
- ell
- eng
- fas
- fin
- fra
- heb
- hin
- hun
- hye
- ind
- isl
- ita
- jav
- jpn
- kan
- kat
- khm
- kor
- lav
- mal
- mon
- msa
- mya
- nld
- nob
- pol
- por
- ron
- rus
- slv
- spa
- sqi
- swa
- swe
- tam
- tel
- tgl
- tha
- tur
- urd
- vie
license: apache-2.0
multilinguality: translated
task_categories:
- text-classification
task_ids: []
configs:
- config_name: default
data_files:
- path: train/*.json.gz
split: train
- path: test/*.json.gz
split: test
- path: validation/*.json.gz
split: validation
- config_name: ta
data_files:
- path: train/ta.json.gz
split: train
- path: test/ta.json.gz
split: test
- path: validation/ta.json.gz
split: validation
- config_name: is
data_files:
- path: train/is.json.gz
split: train
- path: test/is.json.gz
split: test
- path: validation/is.json.gz
split: validation
- config_name: pl
data_files:
- path: train/pl.json.gz
split: train
- path: test/pl.json.gz
split: test
- path: validation/pl.json.gz
split: validation
- config_name: zh-CN
data_files:
- path: train/zh-CN.json.gz
split: train
- path: test/zh-CN.json.gz
split: test
- path: validation/zh-CN.json.gz
split: validation
- config_name: el
data_files:
- path: train/el.json.gz
split: train
- path: test/el.json.gz
split: test
- path: validation/el.json.gz
split: validation
- config_name: ru
data_files:
- path: train/ru.json.gz
split: train
- path: test/ru.json.gz
split: test
- path: validation/ru.json.gz
split: validation
- config_name: te
data_files:
- path: train/te.json.gz
split: train
- path: test/te.json.gz
split: test
- path: validation/te.json.gz
split: validation
- config_name: cy
data_files:
- path: train/cy.json.gz
split: train
- path: test/cy.json.gz
split: test
- path: validation/cy.json.gz
split: validation
- config_name: he
data_files:
- path: train/he.json.gz
split: train
- path: test/he.json.gz
split: test
- path: validation/he.json.gz
split: validation
- config_name: de
data_files:
- path: train/de.json.gz
split: train
- path: test/de.json.gz
split: test
- path: validation/de.json.gz
split: validation
- config_name: af
data_files:
- path: train/af.json.gz
split: train
- path: test/af.json.gz
split: test
- path: validation/af.json.gz
split: validation
- config_name: ml
data_files:
- path: train/ml.json.gz
split: train
- path: test/ml.json.gz
split: test
- path: validation/ml.json.gz
split: validation
- config_name: sl
data_files:
- path: train/sl.json.gz
split: train
- path: test/sl.json.gz
split: test
- path: validation/sl.json.gz
split: validation
- config_name: vi
data_files:
- path: train/vi.json.gz
split: train
- path: test/vi.json.gz
split: test
- path: validation/vi.json.gz
split: validation
- config_name: mn
data_files:
- path: train/mn.json.gz
split: train
- path: test/mn.json.gz
split: test
- path: validation/mn.json.gz
split: validation
- config_name: tl
data_files:
- path: train/tl.json.gz
split: train
- path: test/tl.json.gz
split: test
- path: validation/tl.json.gz
split: validation
- config_name: it
data_files:
- path: train/it.json.gz
split: train
- path: test/it.json.gz
split: test
- path: validation/it.json.gz
split: validation
- config_name: jv
data_files:
- path: train/jv.json.gz
split: train
- path: test/jv.json.gz
split: test
- path: validation/jv.json.gz
split: validation
- config_name: sq
data_files:
- path: train/sq.json.gz
split: train
- path: test/sq.json.gz
split: test
- path: validation/sq.json.gz
split: validation
- config_name: fa
data_files:
- path: train/fa.json.gz
split: train
- path: test/fa.json.gz
split: test
- path: validation/fa.json.gz
split: validation
- config_name: nb
data_files:
- path: train/nb.json.gz
split: train
- path: test/nb.json.gz
split: test
- path: validation/nb.json.gz
split: validation
- config_name: km
data_files:
- path: train/km.json.gz
split: train
- path: test/km.json.gz
split: test
- path: validation/km.json.gz
split: validation
- config_name: th
data_files:
- path: train/th.json.gz
split: train
- path: test/th.json.gz
split: test
- path: validation/th.json.gz
split: validation
- config_name: ja
data_files:
- path: train/ja.json.gz
split: train
- path: test/ja.json.gz
split: test
- path: validation/ja.json.gz
split: validation
- config_name: hi
data_files:
- path: train/hi.json.gz
split: train
- path: test/hi.json.gz
split: test
- path: validation/hi.json.gz
split: validation
- config_name: id
data_files:
- path: train/id.json.gz
split: train
- path: test/id.json.gz
split: test
- path: validation/id.json.gz
split: validation
- config_name: kn
data_files:
- path: train/kn.json.gz
split: train
- path: test/kn.json.gz
split: test
- path: validation/kn.json.gz
split: validation
- config_name: fi
data_files:
- path: train/fi.json.gz
split: train
- path: test/fi.json.gz
split: test
- path: validation/fi.json.gz
split: validation
- config_name: ur
data_files:
- path: train/ur.json.gz
split: train
- path: test/ur.json.gz
split: test
- path: validation/ur.json.gz
split: validation
- config_name: my
data_files:
- path: train/my.json.gz
split: train
- path: test/my.json.gz
split: test
- path: validation/my.json.gz
split: validation
- config_name: lv
data_files:
- path: train/lv.json.gz
split: train
- path: test/lv.json.gz
split: test
- path: validation/lv.json.gz
split: validation
- config_name: fr
data_files:
- path: train/fr.json.gz
split: train
- path: test/fr.json.gz
split: test
- path: validation/fr.json.gz
split: validation
- config_name: ko
data_files:
- path: train/ko.json.gz
split: train
- path: test/ko.json.gz
split: test
- path: validation/ko.json.gz
split: validation
- config_name: sw
data_files:
- path: train/sw.json.gz
split: train
- path: test/sw.json.gz
split: test
- path: validation/sw.json.gz
split: validation
- config_name: sv
data_files:
- path: train/sv.json.gz
split: train
- path: test/sv.json.gz
split: test
- path: validation/sv.json.gz
split: validation
- config_name: nl
data_files:
- path: train/nl.json.gz
split: train
- path: test/nl.json.gz
split: test
- path: validation/nl.json.gz
split: validation
- config_name: da
data_files:
- path: train/da.json.gz
split: train
- path: test/da.json.gz
split: test
- path: validation/da.json.gz
split: validation
- config_name: ar
data_files:
- path: train/ar.json.gz
split: train
- path: test/ar.json.gz
split: test
- path: validation/ar.json.gz
split: validation
- config_name: ms
data_files:
- path: train/ms.json.gz
split: train
- path: test/ms.json.gz
split: test
- path: validation/ms.json.gz
split: validation
- config_name: en
data_files:
- path: train/en.json.gz
split: train
- path: test/en.json.gz
split: test
- path: validation/en.json.gz
split: validation
- config_name: am
data_files:
- path: train/am.json.gz
split: train
- path: test/am.json.gz
split: test
- path: validation/am.json.gz
split: validation
- config_name: pt
data_files:
- path: train/pt.json.gz
split: train
- path: test/pt.json.gz
split: test
- path: validation/pt.json.gz
split: validation
- config_name: ka
data_files:
- path: train/ka.json.gz
split: train
- path: test/ka.json.gz
split: test
- path: validation/ka.json.gz
split: validation
- config_name: ro
data_files:
- path: train/ro.json.gz
split: train
- path: test/ro.json.gz
split: test
- path: validation/ro.json.gz
split: validation
- config_name: tr
data_files:
- path: train/tr.json.gz
split: train
- path: test/tr.json.gz
split: test
- path: validation/tr.json.gz
split: validation
- config_name: hu
data_files:
- path: train/hu.json.gz
split: train
- path: test/hu.json.gz
split: test
- path: validation/hu.json.gz
split: validation
- config_name: zh-TW
data_files:
- path: train/zh-TW.json.gz
split: train
- path: test/zh-TW.json.gz
split: test
- path: validation/zh-TW.json.gz
split: validation
- config_name: bn
data_files:
- path: train/bn.json.gz
split: train
- path: test/bn.json.gz
split: test
- path: validation/bn.json.gz
split: validation
- config_name: hy
data_files:
- path: train/hy.json.gz
split: train
- path: test/hy.json.gz
split: test
- path: validation/hy.json.gz
split: validation
- config_name: es
data_files:
- path: train/es.json.gz
split: train
- path: test/es.json.gz
split: test
- path: validation/es.json.gz
split: validation
- config_name: az
data_files:
- path: train/az.json.gz
split: train
- path: test/az.json.gz
split: test
- path: validation/az.json.gz
split: validation
tags:
- mteb
- text
MASSIVE: A 1M-Example Multilingual Natural Language Understanding Dataset with 51 Typologically-Diverse Languages
Task category | t2c |
Domains | Spoken |
Reference | https://arxiv.org/abs/2204.08582 |
How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
import mteb
task = mteb.get_tasks(["MassiveIntentClassification"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
To learn more about how to run models on mteb
task check out the GitHub repitory.
Citation
If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.
@misc{fitzgerald2022massive,
archiveprefix = {arXiv},
author = {Jack FitzGerald and Christopher Hench and Charith Peris and Scott Mackie and Kay Rottmann and Ana Sanchez and Aaron Nash and Liam Urbach and Vishesh Kakarala and Richa Singh and Swetha Ranganath and Laurie Crist and Misha Britan and Wouter Leeuwis and Gokhan Tur and Prem Natarajan},
eprint = {2204.08582},
primaryclass = {cs.CL},
title = {MASSIVE: A 1M-Example Multilingual Natural Language Understanding Dataset with 51 Typologically-Diverse Languages},
year = {2022},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
Dataset Statistics
Dataset Statistics
The following code contains the descriptive statistics from the task. These can also be obtained using:
import mteb
task = mteb.get_task("MassiveIntentClassification")
desc_stats = task.metadata.descriptive_stats
{
"validation": {
"num_samples": 103683,
"number_of_characters": 3583467,
"number_texts_intersect_with_train": 5457,
"min_text_length": 1,
"average_text_length": 34.56176036573016,
"max_text_length": 224,
"unique_text": 102325,
"unique_labels": 59,
"labels": {
"iot_hue_lightoff": {
"count": 867
},
"iot_hue_lightdim": {
"count": 867
},
"iot_cleaning": {
"count": 969
},
"general_quirky": {
"count": 5355
},
"takeaway_query": {
"count": 1224
},
"play_music": {
"count": 6273
},
"music_query": {
"count": 1530
},
"weather_query": {
"count": 6426
},
"music_settings": {
"count": 408
},
"audio_volume_down": {
"count": 408
},
"datetime_query": {
"count": 3264
},
"general_greet": {
"count": 102
},
"alarm_set": {
"count": 1581
},
"audio_volume_up": {
"count": 612
},
"alarm_query": {
"count": 969
},
"news_query": {
"count": 4182
},
"iot_hue_lighton": {
"count": 255
},
"iot_wemo_off": {
"count": 255
},
"iot_hue_lightchange": {
"count": 1122
},
"audio_volume_mute": {
"count": 765
},
"alarm_remove": {
"count": 714
},
"general_joke": {
"count": 765
},
"datetime_convert": {
"count": 459
},
"iot_wemo_on": {
"count": 357
},
"iot_hue_lightup": {
"count": 612
},
"iot_coffee": {
"count": 714
},
"social_post": {
"count": 2550
},
"music_dislikeness": {
"count": 102
},
"cooking_recipe": {
"count": 2091
},
"takeaway_order": {
"count": 1020
},
"music_likeness": {
"count": 816
},
"calendar_query": {
"count": 5202
},
"qa_stock": {
"count": 1224
},
"qa_factoid": {
"count": 4590
},
"calendar_set": {
"count": 6681
},
"recommendation_events": {
"count": 1326
},
"cooking_query": {
"count": 102
},
"calendar_remove": {
"count": 2397
},
"email_sendemail": {
"count": 3213
},
"play_radio": {
"count": 2346
},
"play_audiobook": {
"count": 1785
},
"play_game": {
"count": 1122
},
"lists_query": {
"count": 2550
},
"lists_remove": {
"count": 1887
},
"lists_createoradd": {
"count": 1275
},
"email_addcontact": {
"count": 255
},
"play_podcasts": {
"count": 1734
},
"recommendation_movies": {
"count": 612
},
"recommendation_locations": {
"count": 1581
},
"transport_ticket": {
"count": 1275
},
"transport_query": {
"count": 1836
},
"transport_taxi": {
"count": 1377
},
"transport_traffic": {
"count": 1122
},
"qa_definition": {
"count": 2805
},
"qa_currency": {
"count": 1632
},
"qa_maths": {
"count": 663
},
"social_query": {
"count": 918
},
"email_query": {
"count": 3723
},
"email_querycontact": {
"count": 816
}
}
},
"test": {
"num_samples": 151674,
"number_of_characters": 5230011,
"number_texts_intersect_with_train": 7273,
"min_text_length": 1,
"average_text_length": 34.48192175323391,
"max_text_length": 495,
"unique_text": 148972,
"unique_labels": 59,
"labels": {
"alarm_set": {
"count": 2091
},
"audio_volume_mute": {
"count": 1632
},
"iot_hue_lightchange": {
"count": 1836
},
"iot_hue_lighton": {
"count": 153
},
"iot_hue_lightoff": {
"count": 2193
},
"iot_cleaning": {
"count": 1326
},
"general_quirky": {
"count": 8619
},
"general_greet": {
"count": 51
},
"datetime_query": {
"count": 4488
},
"datetime_convert": {
"count": 765
},
"alarm_remove": {
"count": 1071
},
"alarm_query": {
"count": 1734
},
"music_likeness": {
"count": 1836
},
"iot_hue_lightup": {
"count": 1377
},
"takeaway_order": {
"count": 1122
},
"weather_query": {
"count": 7956
},
"general_joke": {
"count": 969
},
"play_music": {
"count": 8976
},
"iot_hue_lightdim": {
"count": 1071
},
"takeaway_query": {
"count": 1785
},
"news_query": {
"count": 6324
},
"audio_volume_up": {
"count": 663
},
"iot_wemo_off": {
"count": 918
},
"iot_wemo_on": {
"count": 510
},
"iot_coffee": {
"count": 1836
},
"music_query": {
"count": 1785
},
"audio_volume_down": {
"count": 561
},
"audio_volume_other": {
"count": 306
},
"music_dislikeness": {
"count": 204
},
"music_settings": {
"count": 306
},
"recommendation_events": {
"count": 2193
},
"qa_stock": {
"count": 1326
},
"calendar_set": {
"count": 10659
},
"play_audiobook": {
"count": 2091
},
"social_query": {
"count": 1275
},
"qa_factoid": {
"count": 7191
},
"transport_ticket": {
"count": 1785
},
"recommendation_locations": {
"count": 1581
},
"calendar_query": {
"count": 6426
},
"recommendation_movies": {
"count": 1020
},
"transport_query": {
"count": 2601
},
"cooking_recipe": {
"count": 3672
},
"play_game": {
"count": 1785
},
"calendar_remove": {
"count": 3417
},
"email_query": {
"count": 6069
},
"email_sendemail": {
"count": 5814
},
"play_radio": {
"count": 3672
},
"play_podcasts": {
"count": 3213
},
"lists_query": {
"count": 2601
},
"lists_remove": {
"count": 2652
},
"lists_createoradd": {
"count": 1989
},
"transport_taxi": {
"count": 1173
},
"transport_traffic": {
"count": 765
},
"qa_definition": {
"count": 2907
},
"qa_maths": {
"count": 1275
},
"social_post": {
"count": 4131
},
"qa_currency": {
"count": 1989
},
"email_addcontact": {
"count": 612
},
"email_querycontact": {
"count": 1326
}
}
},
"train": {
"num_samples": 587214,
"number_of_characters": 20507758,
"number_texts_intersect_with_train": null,
"min_text_length": 1,
"average_text_length": 34.92382334208653,
"max_text_length": 295,
"unique_text": 565055,
"unique_labels": 60,
"labels": {
"alarm_set": {
"count": 9282
},
"audio_volume_mute": {
"count": 5610
},
"iot_hue_lightchange": {
"count": 6375
},
"iot_hue_lightoff": {
"count": 7803
},
"iot_hue_lightdim": {
"count": 3876
},
"iot_cleaning": {
"count": 4743
},
"calendar_query": {
"count": 28866
},
"play_music": {
"count": 32589
},
"general_quirky": {
"count": 28305
},
"general_greet": {
"count": 1275
},
"datetime_query": {
"count": 17850
},
"datetime_convert": {
"count": 2652
},
"takeaway_query": {
"count": 6222
},
"alarm_remove": {
"count": 3978
},
"alarm_query": {
"count": 6630
},
"news_query": {
"count": 25653
},
"music_likeness": {
"count": 5763
},
"music_query": {
"count": 7854
},
"iot_hue_lightup": {
"count": 3876
},
"takeaway_order": {
"count": 6885
},
"weather_query": {
"count": 29223
},
"music_settings": {
"count": 2601
},
"general_joke": {
"count": 3672
},
"music_dislikeness": {
"count": 714
},
"audio_volume_other": {
"count": 918
},
"iot_coffee": {
"count": 6324
},
"audio_volume_up": {
"count": 5610
},
"iot_wemo_on": {
"count": 2448
},
"iot_hue_lighton": {
"count": 1122
},
"iot_wemo_off": {
"count": 2652
},
"audio_volume_down": {
"count": 2652
},
"qa_stock": {
"count": 7752
},
"play_radio": {
"count": 14433
},
"recommendation_locations": {
"count": 8823
},
"qa_factoid": {
"count": 27744
},
"calendar_set": {
"count": 41310
},
"play_audiobook": {
"count": 7650
},
"play_podcasts": {
"count": 9843
},
"social_query": {
"count": 5508
},
"transport_query": {
"count": 11577
},
"email_sendemail": {
"count": 18054
},
"recommendation_movies": {
"count": 3570
},
"lists_query": {
"count": 10098
},
"play_game": {
"count": 5712
},
"transport_ticket": {
"count": 6477
},
"recommendation_events": {
"count": 9690
},
"email_query": {
"count": 21318
},
"transport_traffic": {
"count": 5967
},
"cooking_query": {
"count": 204
},
"qa_definition": {
"count": 13617
},
"calendar_remove": {
"count": 15912
},
"lists_remove": {
"count": 8364
},
"cooking_recipe": {
"count": 10557
},
"email_querycontact": {
"count": 6477
},
"lists_createoradd": {
"count": 9027
},
"transport_taxi": {
"count": 5100
},
"qa_maths": {
"count": 3978
},
"social_post": {
"count": 14433
},
"qa_currency": {
"count": 7242
},
"email_addcontact": {
"count": 2754
}
}
}
}
This dataset card was automatically generated using MTEB