datasetId
large_stringlengths 6
110
| author
large_stringlengths 3
34
| last_modified
large_stringdate 2021-05-20 00:57:22
2025-05-07 08:14:41
| downloads
int64 0
3.97M
| likes
int64 0
7.74k
| tags
large listlengths 1
2.03k
| task_categories
large listlengths 0
16
| createdAt
large_stringdate 2022-03-02 23:29:22
2025-05-07 08:13:27
| trending_score
float64 1
39
⌀ | card
large_stringlengths 31
1M
|
---|---|---|---|---|---|---|---|---|---|
jdchang/qsharp-bt-mixture | jdchang | 2025-05-05T19:55:28Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T19:54:46Z | null | ---
dataset_info:
features:
- name: message_id
dtype: string
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: reward
sequence: bool
- name: roll_in_ids
sequence:
sequence: int32
- name: roll_outs_ids
sequence:
sequence: int32
- name: processed_answer
sequence: string
splits:
- name: train
num_bytes: 2433860777
num_examples: 27194
download_size: 688707061
dataset_size: 2433860777
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
french-datasets/DrBenchmark_CLISTER | french-datasets | 2025-05-05T19:55:08Z | 0 | 0 | [
"language:fra",
"region:us"
] | [] | 2025-05-05T19:54:38Z | null | ---
language:
- fra
viewer: false
---
Ce répertoire est vide, il a été créé pour améliorer le référencement du jeu de données [DrBenchmark/CLISTER](https://huggingface.co/datasets/DrBenchmark/CLISTER).
|
ieuniversity/group_9_submission | ieuniversity | 2025-05-05T19:53:02Z | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T13:15:21Z | null | ---
dataset_info:
features:
- name: ID
dtype: string
- name: CLASE
dtype: string
splits:
- name: train
num_bytes: 895725
num_examples: 25808
download_size: 501422
dataset_size: 895725
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
buryat-translation/buryat_russian_parallel_corpus | buryat-translation | 2025-05-05T19:52:28Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T19:52:22Z | null | ---
dataset_info:
features:
- name: bxr
dtype: string
- name: ru
dtype: string
- name: corpus
dtype: string
splits:
- name: train
num_bytes: 26915257
num_examples: 118224
- name: test
num_bytes: 1113951
num_examples: 2000
download_size: 12550245
dataset_size: 28029208
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
|
zhengbang0707/REFUEL_it2_mask2_v2_llama3_30k | zhengbang0707 | 2025-05-05T19:51:52Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T19:49:16Z | null | ---
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- split: val
path: data/val-*
dataset_info:
features:
- name: chosen
list:
- name: content
dtype: string
- name: role
dtype: string
- name: reject
list:
- name: content
dtype: string
- name: role
dtype: string
- name: chosen_token
sequence: int64
- name: reject_token
sequence: int64
- name: chosen_mask
sequence: int64
- name: reject_mask
sequence: int64
- name: chosen_reward_list
sequence: float64
- name: reject_reward_list
sequence: float64
- name: chosen_reward_list_new
sequence: float64
- name: reject_reward_list_new
sequence: float64
- name: chosen_reward
dtype: float64
- name: reject_reward
dtype: float64
splits:
- name: train
num_bytes: 2206549179
num_examples: 30000
- name: test
num_bytes: 36786161
num_examples: 500
- name: val
num_bytes: 36656292
num_examples: 500
download_size: 156648282
dataset_size: 2279991632
---
# Dataset Card for "REFUEL_it2_mask2_v2_llama3_30k"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
TheRealPilot638/Llama-3.2-1B-dvts_16_no_chunking_H200 | TheRealPilot638 | 2025-05-05T19:50:15Z | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-03T19:29:07Z | null | ---
dataset_info:
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-1--seed-0--agg_strategy--last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: pred
dtype: string
- name: completion_tokens
dtype: int64
- name: scores
sequence:
sequence: float64
- name: agg_scores
sequence: float64
- name: pred_weighted@1
dtype: string
- name: pred_maj@1
dtype: string
- name: pred_naive@1
dtype: string
- name: pred_weighted@2
dtype: string
- name: pred_maj@2
dtype: string
- name: pred_naive@2
dtype: string
- name: pred_weighted@4
dtype: string
- name: pred_maj@4
dtype: string
- name: pred_naive@4
dtype: string
- name: pred_weighted@8
dtype: string
- name: pred_maj@8
dtype: string
- name: pred_naive@8
dtype: string
- name: pred_weighted@16
dtype: string
- name: pred_maj@16
dtype: string
- name: pred_naive@16
dtype: string
splits:
- name: train
num_bytes: 13571415
num_examples: 500
download_size: 2376352
dataset_size: 13571415
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-1--seed-0--agg_strategy--last--evals
features:
- name: n
dtype: int64
- name: acc_naive
dtype: float64
- name: acc_weighted
dtype: float64
- name: acc_maj
dtype: float64
splits:
- name: train
num_bytes: 32
num_examples: 1
download_size: 1961
dataset_size: 32
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-1--seed-1--agg_strategy--last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: pred
dtype: string
- name: completion_tokens
dtype: int64
- name: scores
sequence:
sequence: float64
- name: agg_scores
sequence: float64
- name: pred_weighted@1
dtype: string
- name: pred_maj@1
dtype: string
- name: pred_naive@1
dtype: string
- name: pred_weighted@2
dtype: string
- name: pred_maj@2
dtype: string
- name: pred_naive@2
dtype: string
- name: pred_weighted@4
dtype: string
- name: pred_maj@4
dtype: string
- name: pred_naive@4
dtype: string
- name: pred_weighted@8
dtype: string
- name: pred_maj@8
dtype: string
- name: pred_naive@8
dtype: string
- name: pred_weighted@16
dtype: string
- name: pred_maj@16
dtype: string
- name: pred_naive@16
dtype: string
splits:
- name: train
num_bytes: 13587591
num_examples: 500
download_size: 2365587
dataset_size: 13587591
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-1--seed-1--agg_strategy--last--evals
features:
- name: n
dtype: int64
- name: acc_naive
dtype: float64
- name: acc_weighted
dtype: float64
- name: acc_maj
dtype: float64
splits:
- name: train
num_bytes: 32
num_examples: 1
download_size: 1961
dataset_size: 32
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-1--seed-2--agg_strategy--last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: pred
dtype: string
- name: completion_tokens
dtype: int64
- name: scores
sequence:
sequence: float64
- name: agg_scores
sequence: float64
- name: pred_weighted@1
dtype: string
- name: pred_maj@1
dtype: string
- name: pred_naive@1
dtype: string
- name: pred_weighted@2
dtype: string
- name: pred_maj@2
dtype: string
- name: pred_naive@2
dtype: string
- name: pred_weighted@4
dtype: string
- name: pred_maj@4
dtype: string
- name: pred_naive@4
dtype: string
- name: pred_weighted@8
dtype: string
- name: pred_maj@8
dtype: string
- name: pred_naive@8
dtype: string
- name: pred_weighted@16
dtype: string
- name: pred_maj@16
dtype: string
- name: pred_naive@16
dtype: string
splits:
- name: train
num_bytes: 13635411
num_examples: 500
download_size: 2386042
dataset_size: 13635411
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-1--seed-2--agg_strategy--last--evals
features:
- name: n
dtype: int64
- name: acc_naive
dtype: float64
- name: acc_weighted
dtype: float64
- name: acc_maj
dtype: float64
splits:
- name: train
num_bytes: 32
num_examples: 1
download_size: 1961
dataset_size: 32
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-1--seed-3--agg_strategy--last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: pred
dtype: string
- name: completion_tokens
dtype: int64
- name: scores
sequence:
sequence: float64
- name: agg_scores
sequence: float64
- name: pred_weighted@1
dtype: string
- name: pred_maj@1
dtype: string
- name: pred_naive@1
dtype: string
- name: pred_weighted@2
dtype: string
- name: pred_maj@2
dtype: string
- name: pred_naive@2
dtype: string
- name: pred_weighted@4
dtype: string
- name: pred_maj@4
dtype: string
- name: pred_naive@4
dtype: string
- name: pred_weighted@8
dtype: string
- name: pred_maj@8
dtype: string
- name: pred_naive@8
dtype: string
- name: pred_weighted@16
dtype: string
- name: pred_maj@16
dtype: string
- name: pred_naive@16
dtype: string
splits:
- name: train
num_bytes: 13546999
num_examples: 500
download_size: 2355221
dataset_size: 13546999
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-1--seed-3--agg_strategy--last--evals
features:
- name: n
dtype: int64
- name: acc_naive
dtype: float64
- name: acc_weighted
dtype: float64
- name: acc_maj
dtype: float64
splits:
- name: train
num_bytes: 32
num_examples: 1
download_size: 1961
dataset_size: 32
configs:
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-1--seed-0--agg_strategy--last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-1--seed-0--agg_strategy--last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-1--seed-0--agg_strategy--last--evals
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-1--seed-0--agg_strategy--last--evals/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-1--seed-1--agg_strategy--last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-1--seed-1--agg_strategy--last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-1--seed-1--agg_strategy--last--evals
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-1--seed-1--agg_strategy--last--evals/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-1--seed-2--agg_strategy--last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-1--seed-2--agg_strategy--last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-1--seed-2--agg_strategy--last--evals
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-1--seed-2--agg_strategy--last--evals/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-1--seed-3--agg_strategy--last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-1--seed-3--agg_strategy--last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-1--seed-3--agg_strategy--last--evals
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-1--seed-3--agg_strategy--last--evals/train-*
---
|
osama24sy/llama3.1-8b-it-10k-qwen-singleturn-onesolution-r256-24-v0.3 | osama24sy | 2025-05-05T19:47:45Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T19:47:42Z | null | ---
dataset_info:
features:
- name: index
dtype: int64
- name: numbers
sequence: int64
- name: operations
sequence:
sequence: string
- name: response
dtype: string
- name: token_count
dtype: int64
splits:
- name: train
num_bytes: 346585
num_examples: 150
download_size: 131720
dataset_size: 346585
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
AKCIT-Audio/LIGHT_transcriptions | AKCIT-Audio | 2025-05-05T19:45:15Z | 34 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-04-30T16:09:27Z | null | ---
dataset_info:
features:
- name: Dialog
dtype: int64
- name: Turn
dtype: int64
- name: Speaker
dtype: string
- name: Sentence
dtype: string
- name: Translated_Sentence
dtype: string
splits:
- name: train
num_bytes: 19929590
num_examples: 103935
download_size: 11314549
dataset_size: 19929590
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
jdchang/qsharp-bt-32b | jdchang | 2025-05-05T19:37:18Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T19:36:33Z | null | ---
dataset_info:
features:
- name: message_id
dtype: string
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: reward
sequence: bool
- name: roll_in_ids
sequence:
sequence: int32
- name: roll_outs_ids
sequence:
sequence: int32
- name: processed_answer
sequence: string
splits:
- name: train
num_bytes: 2980637821
num_examples: 31907
download_size: 841633940
dataset_size: 2980637821
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
autoprogrammer/gsm-lf | autoprogrammer | 2025-05-05T19:31:58Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T19:31:56Z | null | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: completion
dtype: string
- name: conversations
list:
- name: from
dtype: string
- name: value
dtype: string
- name: question
dtype: string
- name: answer
dtype: string
splits:
- name: train
num_bytes: 9930428
num_examples: 8792
download_size: 5321478
dataset_size: 9930428
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
MBZUAI-IFM/24game_final | MBZUAI-IFM | 2025-05-05T19:29:48Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T19:29:46Z | null | ---
dataset_info:
features:
- name: conversations
list:
- name: from
dtype: string
- name: value
dtype: string
- name: metadata
dtype: string
- name: dataset_source
dtype: string
splits:
- name: train
num_bytes: 869894
num_examples: 259
download_size: 398334
dataset_size: 869894
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
reasoning-proj/exp_rob_dLlama_3_1_Nemotron_Nano_8B_v1_madversarial_continue_t30 | reasoning-proj | 2025-05-05T19:28:26Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T19:28:23Z | null | ---
dataset_info:
features:
- name: question
dtype: string
- name: answer_content
dtype: string
- name: reference_answer
dtype: string
- name: id
dtype: string
- name: metadata
struct:
- name: question_license
dtype: string
- name: question_source
dtype: string
- name: model_name
dtype: string
- name: mutated_answer_content
dtype: string
splits:
- name: train
num_bytes: 12391992
num_examples: 498
download_size: 4909229
dataset_size: 12391992
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
xbilek25/static_validation_1.0_absorb_0.1 | xbilek25 | 2025-05-05T19:28:12Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T19:26:03Z | null | ---
dataset_info:
features:
- name: client_id
dtype: string
- name: path
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: sentence
dtype: string
- name: up_votes
dtype: int64
- name: down_votes
dtype: int64
- name: age
dtype: string
- name: gender
dtype: string
- name: accent
dtype: string
- name: locale
dtype: string
- name: segment
dtype: string
- name: variant
dtype: string
splits:
- name: train
num_bytes: 72296766.0
num_examples: 360
download_size: 65837984
dataset_size: 72296766.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
kaiwenw/distill-r1-qwen-1.5b-hmmt-feb-24-4096-with-labels-prm-indices_107520_115200 | kaiwenw | 2025-05-05T19:24:14Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T19:23:50Z | null | ---
dataset_info:
features:
- name: message_id
dtype: string
- name: problem
dtype: string
- name: answer
dtype: string
- name: processed_answer
dtype: string
- name: responses
dtype: string
- name: reward
dtype: bool
- name: prompt_len
dtype: int64
- name: response_len
dtype: int64
- name: classifier_scores
sequence: float64
splits:
- name: train
num_bytes: 1119348010
num_examples: 7680
download_size: 668600033
dataset_size: 1119348010
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
ajagota71/ajagota71_pythia-70m-detox-epoch-100_800_samples_detoxified | ajagota71 | 2025-05-05T19:24:11Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T19:24:09Z | null | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: output
dtype: string
- name: model_name
dtype: string
- name: temperature
dtype: float64
- name: top_p
dtype: float64
- name: generation_timestamp
dtype: string
splits:
- name: train
num_bytes: 208384
num_examples: 800
download_size: 95857
dataset_size: 208384
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
autoprogrammer/ESFT-translation-lf | autoprogrammer | 2025-05-05T19:22:57Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T19:22:55Z | null | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: completion
dtype: string
- name: conversations
list:
- name: from
dtype: string
- name: value
dtype: string
splits:
- name: train
num_bytes: 7959891
num_examples: 11639
download_size: 3773176
dataset_size: 7959891
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
autoprogrammer/alpaca_farm-lf | autoprogrammer | 2025-05-05T19:22:45Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T19:22:43Z | null | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: completion
dtype: string
- name: conversations
list:
- name: from
dtype: string
- name: value
dtype: string
splits:
- name: train
num_bytes: 7454250
num_examples: 10000
download_size: 4500244
dataset_size: 7454250
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
reasoning-proj/exp_rob_dLlama_3_1_Nemotron_Nano_8B_v1_madversarial_insert_w_t30 | reasoning-proj | 2025-05-05T19:21:53Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T19:21:48Z | null | ---
dataset_info:
features:
- name: question
dtype: string
- name: answer_content
dtype: string
- name: reference_answer
dtype: string
- name: id
dtype: string
- name: metadata
struct:
- name: question_license
dtype: string
- name: question_source
dtype: string
- name: model_name
dtype: string
- name: mutated_answer_content
dtype: string
splits:
- name: train
num_bytes: 12562179
num_examples: 498
download_size: 5016483
dataset_size: 12562179
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
kaiwenw/distill-r1-qwen-1.5b-hmmt-feb-24-4096-with-labels-prm-indices_76800_84480 | kaiwenw | 2025-05-05T19:20:54Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T19:20:31Z | null | ---
dataset_info:
features:
- name: message_id
dtype: string
- name: problem
dtype: string
- name: answer
dtype: string
- name: processed_answer
dtype: string
- name: responses
dtype: string
- name: reward
dtype: bool
- name: prompt_len
dtype: int64
- name: response_len
dtype: int64
- name: classifier_scores
sequence: float64
splits:
- name: train
num_bytes: 1119030828
num_examples: 7680
download_size: 669765637
dataset_size: 1119030828
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
HungVu2003/opt-350m_beta_0.5_alpha_0.0_num-company_2_dataset_0_for_gen_11_v2 | HungVu2003 | 2025-05-05T19:20:33Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T19:20:32Z | null | ---
dataset_info:
features:
- name: question
dtype: string
splits:
- name: train
num_bytes: 986510
num_examples: 12500
download_size: 636460
dataset_size: 986510
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
kaiwenw/distill-r1-qwen-1.5b-hmmt-feb-24-4096-with-labels-prm-indices_53760_61440 | kaiwenw | 2025-05-05T19:20:11Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T19:19:43Z | null | ---
dataset_info:
features:
- name: message_id
dtype: string
- name: problem
dtype: string
- name: answer
dtype: string
- name: processed_answer
dtype: string
- name: responses
dtype: string
- name: reward
dtype: bool
- name: prompt_len
dtype: int64
- name: response_len
dtype: int64
- name: classifier_scores
sequence: float64
splits:
- name: train
num_bytes: 1116451858
num_examples: 7680
download_size: 668345460
dataset_size: 1116451858
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
ajagota71/EleutherAI_pythia-70M_700_samples_original | ajagota71 | 2025-05-05T19:19:08Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T19:18:43Z | null | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: output
dtype: string
- name: model_name
dtype: string
- name: temperature
dtype: float64
- name: top_p
dtype: float64
- name: generation_timestamp
dtype: string
splits:
- name: train
num_bytes: 182490
num_examples: 700
download_size: 84954
dataset_size: 182490
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
HungVu2003/opt-350m_beta_0.5_alpha_0.0_num-company_2_dataset_1_for_gen_10_v2 | HungVu2003 | 2025-05-05T19:14:41Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T19:14:38Z | null | ---
dataset_info:
features:
- name: question
dtype: string
splits:
- name: train
num_bytes: 3728613
num_examples: 12500
download_size: 1977457
dataset_size: 3728613
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
HungVu2003/opt-350m_beta_0.5_alpha_0.0_num-company_2_dataset_1_for_gen_8_v2 | HungVu2003 | 2025-05-05T19:02:27Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T19:02:26Z | null | ---
dataset_info:
features:
- name: question
dtype: string
splits:
- name: train
num_bytes: 3701324
num_examples: 12500
download_size: 1974942
dataset_size: 3701324
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
kaiwenw/distill-r1-qwen-1.5b-hmmt-feb-24-4096-with-old-prm-indices_107520_115200 | kaiwenw | 2025-05-05T18:56:17Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T18:56:05Z | null | ---
dataset_info:
features:
- name: message_id
dtype: string
- name: problem
dtype: string
- name: answer
dtype: string
- name: processed_answer
dtype: string
- name: responses
dtype: string
- name: reward
dtype: bool
- name: prompt_len
dtype: int64
- name: response_len
dtype: int64
- name: classifier_scores
sequence: float64
splits:
- name: train
num_bytes: 1119348010
num_examples: 7680
download_size: 264394896
dataset_size: 1119348010
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
kaiwenw/distill-r1-qwen-1.5b-hmmt-feb-24-4096-with-old-prm-indices_69120_76800 | kaiwenw | 2025-05-05T18:55:49Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T18:55:36Z | null | ---
dataset_info:
features:
- name: message_id
dtype: string
- name: problem
dtype: string
- name: answer
dtype: string
- name: processed_answer
dtype: string
- name: responses
dtype: string
- name: reward
dtype: bool
- name: prompt_len
dtype: int64
- name: response_len
dtype: int64
- name: classifier_scores
sequence: float64
splits:
- name: train
num_bytes: 1111892365
num_examples: 7680
download_size: 263270008
dataset_size: 1111892365
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
kaiwenw/distill-r1-qwen-1.5b-hmmt-feb-24-4096-with-old-prm-indices_61440_69120 | kaiwenw | 2025-05-05T18:55:46Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T18:55:34Z | null | ---
dataset_info:
features:
- name: message_id
dtype: string
- name: problem
dtype: string
- name: answer
dtype: string
- name: processed_answer
dtype: string
- name: responses
dtype: string
- name: reward
dtype: bool
- name: prompt_len
dtype: int64
- name: response_len
dtype: int64
- name: classifier_scores
sequence: float64
splits:
- name: train
num_bytes: 1117754896
num_examples: 7680
download_size: 264514132
dataset_size: 1117754896
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
MBZUAI-IFM/AM_clean_en_final_10perc | MBZUAI-IFM | 2025-05-05T18:54:47Z | 0 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T10:20:58Z | null | ---
dataset_info:
features:
- name: conversations
list:
- name: from
dtype: string
- name: value
dtype: string
- name: dataset_source
dtype: string
- name: metadata
dtype: string
- name: has_forbidden
dtype: bool
splits:
- name: train
num_bytes: 2512045175.0
num_examples: 107490
download_size: 1137638779
dataset_size: 2512045175.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
HungVu2003/opt-350m_beta_0.5_alpha_0.0_num-company_2_dataset_1_for_gen_6_v2 | HungVu2003 | 2025-05-05T18:50:32Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T18:50:31Z | null | ---
dataset_info:
features:
- name: question
dtype: string
splits:
- name: train
num_bytes: 3679977
num_examples: 12500
download_size: 1965856
dataset_size: 3679977
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
weqweasdas/qw_rej_math | weqweasdas | 2025-05-05T18:50:16Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T18:50:15Z | null | ---
dataset_info:
features:
- name: idx
dtype: int64
- name: question
dtype: string
- name: gt_cot
dtype: string
- name: gt
dtype: string
- name: level
dtype: int64
- name: solution
dtype: string
- name: answer
dtype: string
- name: code
sequence: string
- name: pred
sequence: string
- name: report
sequence: 'null'
- name: score
sequence: bool
splits:
- name: train
num_bytes: 7197998
num_examples: 500
download_size: 1730882
dataset_size: 7197998
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
MBZUAI-IFM/AM_clean_en_final_90perc | MBZUAI-IFM | 2025-05-05T18:49:10Z | 0 | 0 | [
"size_categories:1M<n<10M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T10:49:26Z | null | ---
dataset_info:
features:
- name: conversations
list:
- name: from
dtype: string
- name: value
dtype: string
- name: dataset_source
dtype: string
- name: metadata
dtype: string
- name: has_forbidden
dtype: bool
splits:
- name: train
num_bytes: 22500485772.0
num_examples: 967376
download_size: 10190024913
dataset_size: 22500485772.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Abeyankar/mcity_clean_2844_crowd | Abeyankar | 2025-05-05T18:47:56Z | 0 | 0 | [
"task_categories:image-classification",
"task_categories:object-detection",
"language:en",
"license:mit",
"size_categories:1K<n<10K",
"modality:image",
"library:fiftyone",
"region:us",
"fiftyone",
"fisheye8k",
"image",
"image-classification",
"object-detection"
] | [
"image-classification",
"object-detection"
] | 2025-05-05T18:44:50Z | null | ---
annotations_creators: []
language: en
license: mit
size_categories:
- 1K<n<10K
task_categories:
- image-classification
- object-detection
task_ids: []
pretty_name: mcity_clean_newf2_2844
tags:
- fiftyone
- fisheye8k
- image
- image-classification
- object-detection
- object-detection
description: Removed erroneous annotations, and changed labels using cvat
dataset_summary: '
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 2844 samples.
## Installation
If you haven''t already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
from fiftyone.utils.huggingface import load_from_hub
# Load the dataset
# Note: other available arguments include ''max_samples'', etc
dataset = load_from_hub("Abeyankar/mcity_clean_2844_crowd")
# Launch the App
session = fo.launch_app(dataset)
```
'
---
# Dataset Card for mcity_clean_newf2_2844
<!-- Provide a quick summary of the dataset. -->
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 2844 samples.
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
from fiftyone.utils.huggingface import load_from_hub
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = load_from_hub("Abeyankar/mcity_clean_2844_crowd")
# Launch the App
session = fo.launch_app(dataset)
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** en
- **License:** mit
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed] |
ICICLE-AI/ResourceEstimation_HLOGenCNN | ICICLE-AI | 2025-05-05T18:45:21Z | 11 | 0 | [
"task_categories:graph-ml",
"task_categories:tabular-regression",
"source_datasets:custom",
"language:en",
"license:apache-2.0",
"size_categories:1K<n<10K",
"region:us",
"HPC",
"resource-prediction",
"XLA",
"compiler-features",
"deep-learning",
"graph-learning",
"scheduling"
] | [
"graph-ml",
"tabular-regression"
] | 2025-04-04T17:34:45Z | null | ---
dataset_name: "hlo-feature-dataset"
pretty_name: "HLO Feature Dataset for Deep Learning Resource Estimation"
dataset_type: "graph-and-tabular"
license: "apache-2.0"
task_categories:
- graph-ml
- tabular-regression
language: "en"
tags:
- HPC
- resource-prediction
- XLA
- compiler-features
- deep-learning
- graph-learning
- scheduling
size_categories:
- 1K<n<10K
source_datasets:
- custom
dataset_summary: >
The HLO Feature Dataset contains High-Level Optimizer (HLO) graph features and metadata extracted
from deep learning training workloads. It is designed for tasks such as runtime prediction, resource
estimation, and graph-based machine learning in HPC environments.
Each entry pairs model configuration metadata with compiler graph data stored in `.npz` format.
Ideal for ML system optimization studies, GNN research, and AI workload scheduling.
structured_data:
features:
- name: "batch"
type: "integer"
- name: "epochs"
type: "integer"
- name: "learn_rate"
type: "float"
- name: "gpu_core_count"
type: "integer"
- name: "gpu_memory_size"
type: "integer"
- name: "fit_time"
type: "float"
- name: "npz_path"
type: "string"
graph_data:
node_features: "node_feat"
edge_index: "edge_index"
additional_keys:
- "node_opcode"
- "node_config_ids"
- "node_splits"
usage_example: |
```python
from datasets import load_dataset
import numpy as np
dataset = load_dataset("your-username/hlo-feature-dataset")
sample = dataset['train'][0]
graph_data = np.load(sample['npz_path'])
node_features = graph_data['node_feat']
edges = graph_data['edge_index']
---
# HLO Feature Dataset for Deep Learning Resource Estimation
[](https://huggingface.co/datasets/your-username/hlo-feature-dataset)
## Dataset Summary
The **HLO Feature Dataset** is a collection of compiler-level graph features (HLO graphs) extracted from deep learning training workloads. Alongside detailed metadata (model configs, GPU stats), this dataset enables machine learning approaches for:
- ⏱️ **Training Time Prediction**
- 📉 **Resource Consumption Estimation**
- ⚡ **HPC and GPU Scheduling Optimization**
- 🧩 **Graph-based Neural Architecture Analysis**
This dataset is ideal for experimenting with regression models (e.g., XGBoost) and Graph Neural Networks (GNNs) using compiler features.
---
## Supported Tasks
- **⚙️ Runtime & Resource Prediction**: Predict training time (`fit_time`) based on HLO features.
- **📊 ML for Systems Optimization**: Use tabular + graph data for AI workload management.
- **🔗 Graph Representation Learning**: Apply GNNs on HLO graphs (`node_feat`, `edge_index`).
---
## Dataset Structure
Each entry includes:
- **Metadata**: From `dataset-new.csv` (model, optimizer, GPU specs, timing metrics, etc.)
- **HLO Graph Features**: `.npz` files containing:
- `node_opcode`, `node_feat`, `edge_index`, `node_config_ids`, `node_splits`
---
## Usage Example
This example demonstrates how to load metadata, preprocess features, and train an XGBoost model to predict training time (`fit_time`), as shown in the Colab notebook.
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from xgboost import XGBRegressor
# Load metadata CSV
df = pd.read_csv('dataset-new.csv')
# Example feature selection (drop non-numeric/categorical handling needed)
X = df[['batch', 'epochs', 'learn_rate', 'gpu_core_count', 'gpu_memory_size']]
y = df['fit_time']
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Initialize XGBoost Regressor
xgb_model = XGBRegressor(n_estimators=100, learning_rate=0.1, max_depth=6, random_state=42)
xgb_model.fit(X_train, y_train)
# Evaluate
preds = xgb_model.predict(X_test)
rmse = mean_squared_error(y_test, preds, squared=False)
print(f"RMSE: {rmse}")
```
---
### Example Notebooks
#### 🚀 Baseline: XGBoost for Resource Estimation
A sample baseline implementation using **XGBoost** is provided to demonstrate how to predict resource metrics such as `fit_time` using the dataset's metadata.
📥 **Download the notebook** from the repository:
[Baseline_XGBoost_Resource_Estimation.ipynb](https://huggingface.co/datasets/ICICLE-AI/ResourceEstimation_HLOGenCNN/blob/main/Baseline_XGBoost_Resource_Estimation.ipynb)
This notebook covers:
- Loading and preprocessing metadata from `dataset-new.csv`
- Training an XGBoost regressor to predict training time
- Evaluating model performance (e.g., RMSE)
> ⚡ **Note:** Make sure to adjust paths if cloning the dataset locally or integrating with Hugging Face `datasets` API.
---
### Loading HLO Graph Features
For graph-based ML tasks, load the `.npz` files:
```python
npz_file = df.iloc[0]['npz_path']
graph_data = np.load(npz_file)
node_features = graph_data['node_feat']
edges = graph_data['edge_index']
print("Node Feature Shape:", node_features.shape)
print("Edge Index Shape:", edges.shape)
```
---
<!-- ## Citation
If you use this dataset, please cite:
```
@misc{hlofeatures2025,
title={HLO Feature Dataset for AI Resource Estimation},
author={Your Name},
year={2025},
url={https://huggingface.co/datasets/your-username/hlo-feature-dataset}
} -->
```
---
## License
Specify your license here (e.g., MIT, Apache-2.0).
---
## Contributions
Open to contributions! Feel free to suggest improvements or share your models trained on this dataset. |
HungVu2003/opt-350m_beta_0.5_alpha_0.0_num-company_2_dataset_1_for_gen_5_v2 | HungVu2003 | 2025-05-05T18:44:43Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T18:44:42Z | null | ---
dataset_info:
features:
- name: question
dtype: string
splits:
- name: train
num_bytes: 3690117
num_examples: 12500
download_size: 1971558
dataset_size: 3690117
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
chcaa/fiction4sentiment | chcaa | 2025-05-05T18:39:49Z | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T09:36:05Z | null | ---
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: float64
- name: category
dtype: string
- name: author
dtype: string
- name: id
dtype: string
- name: year
dtype: float64
- name: org_lang
dtype: string
- name: annotator_1
dtype: float64
- name: annotator_2
dtype: float64
- name: annotator_3
dtype: float64
- name: tr_xlm_roberta
dtype: float64
- name: vader
dtype: float64
- name: __index_level_0__
dtype: string
splits:
- name: train
num_bytes: 1051007
num_examples: 6300
download_size: 326724
dataset_size: 1051007
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
## Dataset description
A dataset of literary sentences human-annotated for valence (0-10) used for developing multilingual SA
### 🔬 Data
| | No. texts | No. annotations | No. words | Period |
|-------------|-----|------|--------|------------|
| **Fairy tales** | 3 | 772 | 18,597 | 1837-1847 |
| **Hymns** | 65 | 2,026 | 12,798 | 1798-1873 |
| **Prose** | 1 | 1,923 | 30,279 | 1952 |
| **Poetry** | 40 | 1,579 | 11,576 | 1965 |
This is the **Fiction4 dataset** of literary texts, spanning 109 individual texts across 4 genres and two languages (**English** and **Danish**) in the 19th and 20th century.
The corpus consists of 3 main authors, Sylvia Plath for poetry, Ernest Hemingway for prose and H.C. Andersen for fairytales. Hymns represent a heterogenous colleciton from Danish official church hymnbooks from 1798-1873.
The corpus was annotated for valence on a sentence basis by at least 2 annotators/sentence.
## Some tags:
- text: sentence from a literary piece
- label: human mean annotated score (0-10)
- category: which literary genre it is [prose, poetry, hymns, fairytales]
- automatic sentiment scores of the sentences via a model-based & a dictionary based method. Columns=[tr_xlm_roberta, vader]
- id: parent story or collection of text
## Citation
If you want to use this data, please cite our work [available here](https://ceur-ws.org/Vol-3834/paper98.pdf):
```
@inproceedings{feldkamp_sentiment_2024,
title = {Sentiment {Below} the {Surface}: {Omissive} and {Evocative} {Strategies} in {Literature} and {Beyond}},
shorttitle = {Sentiment {Below} the {Surface}},
booktitle = {Computational {Humanities} {Research} 2024},
publisher = {CEUR Workshop Proceedings},
author = {Feldkamp, Pascale and Overgaard, Ea Lindhardt and Nielbo, Kristoffer Laigaard and Bizzoni, Yuri},
year = {2024},
}
```
|
HungVu2003/opt-350m_beta_0.5_alpha_0.0_num-company_2_dataset_1_for_gen_2_v2 | HungVu2003 | 2025-05-05T18:26:42Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T18:26:40Z | null | ---
dataset_info:
features:
- name: question
dtype: string
splits:
- name: train
num_bytes: 3710700
num_examples: 12500
download_size: 1972121
dataset_size: 3710700
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
HungVu2003/opt-350m_beta_0.5_alpha_0.0_num-company_2_dataset_0_for_gen_2_v2 | HungVu2003 | 2025-05-05T18:26:38Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T18:26:37Z | null | ---
dataset_info:
features:
- name: question
dtype: string
splits:
- name: train
num_bytes: 977521
num_examples: 12500
download_size: 629784
dataset_size: 977521
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
reasoning-proj/exp_rob_dLlama_3_1_Nemotron_Nano_8B_v1_mbenign_complete_step_t10 | reasoning-proj | 2025-05-05T18:23:52Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T18:23:50Z | null | ---
dataset_info:
features:
- name: question
dtype: string
- name: answer_content
dtype: string
- name: reference_answer
dtype: string
- name: id
dtype: string
- name: metadata
struct:
- name: question_license
dtype: string
- name: question_source
dtype: string
- name: model_name
dtype: string
- name: mutated_answer_content
dtype: string
splits:
- name: train
num_bytes: 1094403
num_examples: 50
download_size: 471856
dataset_size: 1094403
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
HungVu2003/opt-350m_beta_0.5_alpha_0.0_num-company_2_dataset_0_for_gen_1_v2 | HungVu2003 | 2025-05-05T18:20:46Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T18:20:44Z | null | ---
dataset_info:
features:
- name: question
dtype: string
splits:
- name: train
num_bytes: 986113
num_examples: 12500
download_size: 635326
dataset_size: 986113
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
neuraxcompany/Check_in-Dataset | neuraxcompany | 2025-05-05T18:04:26Z | 8 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-04-28T18:26:57Z | null | ---
dataset_info:
features:
- name: Check-In/Input
dtype: string
- name: Classifcation/Output
dtype: string
splits:
- name: train
num_bytes: 18951
num_examples: 139
download_size: 6116
dataset_size: 18951
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
omourier/Lego_rouge | omourier | 2025-05-05T18:01:27Z | 44 | 0 | [
"task_categories:robotics",
"modality:video",
"region:us",
"phosphobot",
"so100",
"phospho-dk"
] | [
"robotics"
] | 2025-05-04T16:57:17Z | null |
---
tags:
- phosphobot
- so100
- phospho-dk
task_categories:
- robotics
---
# Lego_rouge
**This dataset was generated using a [phospho starter pack](https://robots.phospho.ai).**
This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot and RLDS.
|
kaiwenw/distill-r1-qwen-1.5b-aime-25-4096-with-labels-prm-indices_84480_92160 | kaiwenw | 2025-05-05T17:54:02Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T17:53:33Z | null | ---
dataset_info:
features:
- name: message_id
dtype: string
- name: problem
dtype: string
- name: answer
dtype: string
- name: processed_answer
dtype: string
- name: responses
dtype: string
- name: reward
dtype: bool
- name: prompt_len
dtype: int64
- name: response_len
dtype: int64
- name: classifier_scores
sequence: float64
splits:
- name: train
num_bytes: 1032849438
num_examples: 7680
download_size: 612176029
dataset_size: 1032849438
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
kaiwenw/distill-r1-qwen-1.5b-aime-25-4096-with-labels-prm-indices_69120_76800 | kaiwenw | 2025-05-05T17:53:27Z | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T17:53:03Z | null | ---
dataset_info:
features:
- name: message_id
dtype: string
- name: problem
dtype: string
- name: answer
dtype: string
- name: processed_answer
dtype: string
- name: responses
dtype: string
- name: reward
dtype: bool
- name: prompt_len
dtype: int64
- name: response_len
dtype: int64
- name: classifier_scores
sequence: float64
splits:
- name: train
num_bytes: 1029518855
num_examples: 7680
download_size: 610884582
dataset_size: 1029518855
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
kaiwenw/distill-r1-qwen-1.5b-aime-25-4096-with-labels-prm-indices_99840_107520 | kaiwenw | 2025-05-05T17:53:03Z | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T17:52:43Z | null | ---
dataset_info:
features:
- name: message_id
dtype: string
- name: problem
dtype: string
- name: answer
dtype: string
- name: processed_answer
dtype: string
- name: responses
dtype: string
- name: reward
dtype: bool
- name: prompt_len
dtype: int64
- name: response_len
dtype: int64
- name: classifier_scores
sequence: float64
splits:
- name: train
num_bytes: 1026838073
num_examples: 7680
download_size: 608914979
dataset_size: 1026838073
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
kaiwenw/distill-r1-qwen-1.5b-aime-25-4096-with-labels-prm-indices_7680_15360 | kaiwenw | 2025-05-05T17:52:06Z | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T17:51:44Z | null | ---
dataset_info:
features:
- name: message_id
dtype: string
- name: problem
dtype: string
- name: answer
dtype: string
- name: processed_answer
dtype: string
- name: responses
dtype: string
- name: reward
dtype: bool
- name: prompt_len
dtype: int64
- name: response_len
dtype: int64
- name: classifier_scores
sequence: float64
splits:
- name: train
num_bytes: 1026378721
num_examples: 7680
download_size: 609169924
dataset_size: 1026378721
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
ntnu-smil/longclip_qa_keyword_normalized | ntnu-smil | 2025-05-05T17:38:10Z | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T17:22:06Z | null | ---
dataset_info:
features:
- name: question_id
dtype: string
- name: speaker_id
dtype: string
- name: relevance
dtype: float64
- name: asr
dtype: string
- name: response1
dtype: string
- name: response2
dtype: string
- name: response3
dtype: string
- name: response4
dtype: string
- name: form_id
dtype: string
- name: response1_score
dtype: float64
- name: response2_score
dtype: float64
- name: response3_score
dtype: float64
- name: response4_score
dtype: float64
- name: similarity1
dtype: float64
- name: similarity2
dtype: float64
- name: similarity3
dtype: float64
- name: similarity4
dtype: float64
splits:
- name: train
num_bytes: 279612
num_examples: 227
- name: validation
num_bytes: 45886
num_examples: 34
- name: test
num_bytes: 49825
num_examples: 40
download_size: 220635
dataset_size: 375323
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
|
sophiayk20/restarts-both-speakers | sophiayk20 | 2025-05-05T17:34:30Z | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T17:33:03Z | null | ---
dataset_info:
features:
- name: id
dtype: string
- name: dialogue
dtype: string
- name: disfluent_dialogue
dtype: string
- name: summary
dtype: string
splits:
- name: ATOS
num_bytes: 2382843
num_examples: 1500
- name: OTOS
num_bytes: 2444700
num_examples: 1500
download_size: 1192578
dataset_size: 4827543
configs:
- config_name: default
data_files:
- split: ATOS
path: data/ATOS-*
- split: OTOS
path: data/OTOS-*
---
|
nischalon10/neetcode | nischalon10 | 2025-05-05T17:34:23Z | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T17:34:18Z | null | ---
dataset_info:
features:
- name: id
dtype: int64
- name: slug
dtype: string
- name: title
dtype: string
- name: difficulty
dtype: string
- name: content
dtype: string
- name: java
dtype: string
- name: c++
dtype: string
- name: python
dtype: string
- name: javascript
dtype: string
- name: acRate
dtype: string
- name: similarQuestions
dtype: string
- name: topicTags
dtype: string
- name: canon_title
dtype: string
splits:
- name: train
num_bytes: 13360626.427966101
num_examples: 1990
- name: validation
num_bytes: 1483768.0605932204
num_examples: 221
- name: test
num_bytes: 1000368.5114406779
num_examples: 149
download_size: 7218674
dataset_size: 15844762.999999998
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
|
graf/ultra-sft-selfgen | graf | 2025-05-05T17:30:26Z | 0 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T17:29:49Z | null | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: chosen
dtype: string
- name: rejected
dtype: string
- name: chosen_feedback
sequence: string
- name: rejected_feedback
sequence: string
- name: chosen_reward
sequence: float64
- name: rejected_reward
sequence: float64
- name: id
dtype: string
splits:
- name: train
num_bytes: 969657547
num_examples: 122324
download_size: 457829318
dataset_size: 969657547
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
HungVu2003/opt-350m_beta_0.0_alpha_0.2_num-company_2_dataset_1_for_gen_17_v2 | HungVu2003 | 2025-05-05T17:26:44Z | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T17:26:42Z | null | ---
dataset_info:
features:
- name: question
dtype: string
splits:
- name: train
num_bytes: 3081126
num_examples: 13750
download_size: 938463
dataset_size: 3081126
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
HungVu2003/opt-350m_beta_1.0_alpha_0.4_num-company_2_dataset_0_for_gen_7_v2 | HungVu2003 | 2025-05-05T17:24:17Z | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T17:24:15Z | null | ---
dataset_info:
features:
- name: question
dtype: string
splits:
- name: train
num_bytes: 3518844
num_examples: 15000
download_size: 1596382
dataset_size: 3518844
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
zheminh/SWE-bench_Lite_oracle_2 | zheminh | 2025-05-05T17:17:09Z | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T17:00:48Z | null | ---
dataset_info:
features:
- name: instance_id
dtype: string
- name: text
dtype: string
- name: repo
dtype: string
- name: base_commit
dtype: string
- name: problem_statement
dtype: string
- name: hints_text
dtype: string
- name: created_at
dtype: string
- name: patch
dtype: string
- name: test_patch
dtype: string
- name: version
dtype: string
- name: FAIL_TO_PASS
dtype: string
- name: PASS_TO_PASS
dtype: string
- name: environment_setup_commit
dtype: string
splits:
- name: test
num_bytes: 21007265
num_examples: 300
download_size: 8820799
dataset_size: 21007265
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
---
|
inovruzova/azerbaijani-art-collection | inovruzova | 2025-05-05T17:13:47Z | 22 | 0 | [
"task_categories:image-classification",
"license:cc-by-4.0",
"size_categories:n<1K",
"format:imagefolder",
"modality:image",
"library:datasets",
"library:mlcroissant",
"region:us",
"art"
] | [
"image-classification"
] | 2025-05-03T11:47:23Z | null | ---
license: cc-by-4.0
task_categories:
- image-classification
tags:
- art
size_categories:
- n<1K
---
Note: Data is collected by the Afina Apayeva, Ariana Kenbayeva, Ilhama Novruzova, Mehriban Aliyeva, and only art_metal category is taken by scraping Azerbaijan Carpet Museum's official website.
---
**Dataset Source:**
We took the pictures of art works by smartphones. For some of them, we took their pictures from 3 perspectives: left, right, and front. For most of them, we took just one picture from the front side to avoid data duplication.
- Primary photos taken by team members at:
- [Azerbaijan National Museum of Art](https://nationalartmuseum.az/?lang=en)
- [Azerbaijan State Museum of Musical Culture](https://www.musicmuseum.az/en/index.php)
- Additional images scraped for class balancing (*art_metal* category) with the consent of [Azerbaijani National Carpet Museum](https://azcarpetmuseum.az/en)
---
**Dataset Details:**
- Total Images: `625`
- Classes: `painting`, `musical_instruments`, `art_metal`, `sculpture`, `sketch`, `keramics`, `photography`
- Size of Downloaded Dataset Files: `1.87 GB` |
themachinefan/test_9b | themachinefan | 2025-05-05T17:10:51Z | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T17:10:48Z | null | ---
dataset_info:
features:
- name: lora_id
dtype: string
- name: base_model
dtype: string
- name: template
dtype: string
- name: undesired_text
dtype: string
- name: desired_text
sequence: string
- name: dataset_type
dtype: string
- name: dataset_info
dtype: string
splits:
- name: train
num_bytes: 462
num_examples: 1
download_size: 4982
dataset_size: 462
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
ai2-adapt-dev/interactive_tool_use_gpt4o | ai2-adapt-dev | 2025-05-05T17:09:09Z | 272 | 1 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-04-17T18:47:59Z | null | ---
dataset_info:
features:
- name: id
dtype: string
- name: messages
list:
- name: content
dtype: string
- name: function_calls
dtype: string
- name: functions
dtype: string
- name: role
dtype: string
- name: source
dtype: string
- name: interaction_type
dtype: string
splits:
- name: train
num_bytes: 304295007
num_examples: 104638
download_size: 80226148
dataset_size: 304295007
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Voxel51/mind2web_multimodal_test_website | Voxel51 | 2025-05-05T17:04:21Z | 25 | 1 | [
"task_categories:image-classification",
"task_categories:object-detection",
"language:en",
"size_categories:1K<n<10K",
"format:imagefolder",
"modality:image",
"library:datasets",
"library:mlcroissant",
"library:fiftyone",
"arxiv:2401.01614",
"region:us",
"fiftyone",
"visual-agents",
"os-agents",
"gui-grounding",
"image",
"image-classification",
"object-detection"
] | [
"image-classification",
"object-detection"
] | 2025-04-30T19:51:00Z | null | ---
annotations_creators: []
language: en
size_categories:
- 1K<n<10K
task_categories:
- image-classification
- object-detection
task_ids: []
pretty_name: mind2web_multimodal
tags:
- fiftyone
- visual-agents
- os-agents
- gui-grounding
- image
- image-classification
- object-detection
dataset_summary: '
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 1019 samples.
## Installation
If you haven''t already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
from fiftyone.utils.huggingface import load_from_hub
# Load the dataset
# Note: other available arguments include ''max_samples'', etc
dataset = load_from_hub("Voxel51/mind2web_multimodal_test_website")
# Launch the App
session = fo.launch_app(dataset)
```
'
---
# Dataset Card for Multimodal Mind2Web "Cross-Website" Test Split
**Note**: This dataset is the test split of the Cross-Website dataset introduced in the paper.

This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 1019 samples.
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
from fiftyone.utils.huggingface import load_from_hub
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = load_from_hub("Voxel51/mind2web_multimodal_test_website")
# Launch the App
session = fo.launch_app(dataset)
```
# Dataset Details for "Cross-Website" Split in Multimodal Mind2Web
## Dataset Description
**Curated by:** The Ohio State University NLP Group (OSU-NLP-Group)
**Shared by:** OSU-NLP-Group on Hugging Face
**Language(s) (NLP):** en
**License:** OPEN-RAIL License (mentioned in the Impact Statements section)
## Dataset Sources
**Repository:** https://github.com/OSU-NLP-Group/SeeAct and https://huggingface.co/datasets/osunlp/Multimodal-Mind2Web
**Paper:** "GPT-4V(ision) is a Generalist Web Agent, if Grounded" by Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, Yu Su
**Demo:** https://osu-nlp-group.github.io/SeeAct
## Uses
### Direct Use
- Evaluating web agents' ability to generalize to new websites within familiar domains
- Testing website-level transfer capabilities of models
- Benchmarking adaptability to new website interfaces with similar functionality
- Assessing how models handle design variations within the same domain category
### Out-of-Scope Use
- Developing web agents for harmful purposes (as stated in the paper's impact statement)
- Automating actions that could violate website terms of service
- Creating agents that access users' personal profiles or perform sensitive operations without consent
## Dataset Structure
- Contains 142 tasks across 9 domains and 10 websites
- Tasks average 7.2 actions each
- Average 4,653 visual tokens per task (highest among the three splits)
- Average 612 HTML elements per task (most complex pages among the splits)
- Average 114,358 HTML tokens per task
- Each example includes task descriptions, HTML structure, operations (CLICK, TYPE, SELECT), target elements with attributes, and action histories
### FiftyOne Dataset Structure
**Basic Info:** 1,338 web UI screenshots with task-based annotations
**Core Fields:**
- `action_uid`: StringField - Unique action identifier
- `annotation_id`: StringField - Annotation identifier
- `target_action_index`: IntField - Index of target action in sequence
- `ground_truth`: EmbeddedDocumentField(Detection) - Element to interact with:
- `label`: Action type (TYPE, CLICK)
- `bounding_box`: a list of relative bounding box coordinates in [0, 1] in the following format: `<top-left-x>, <top-left-y>, <width>, <height>]`
- `target_action_reprs`: String representation of target action
- `website`: EmbeddedDocumentField(Classification) - Website name
- `domain`: EmbeddedDocumentField(Classification) - Website domain category
- `subdomain`: EmbeddedDocumentField(Classification) - Website subdomain category
- `task_description`: StringField - Natural language description of the task
- `full_sequence`: ListField(StringField) - Complete sequence of actions for the task
- `previous_actions`: ListField - Actions already performed in the sequence
- `current_action`: StringField - Action to be performed
- `alternative_candidates`: EmbeddedDocumentField(Detections) - Other possible elements
## Dataset Creation
### Curation Rationale
The Cross-Website split was specifically designed to evaluate an agent's ability to generalize to new websites within domains it has encountered during training, representing a medium difficulty generalization scenario.
### Source Data
#### Data Collection and Processing
- Based on the original MIND2WEB dataset
- Each HTML document is aligned with its corresponding webpage screenshot image
- Underwent human verification to confirm element visibility and correct rendering for action prediction
- Specifically includes 10 new websites from the top-level domains represented in the training data
#### Who are the source data producers?
Web screenshots and HTML were collected from 10 websites across 9 domains that were represented in the training data, but the specific websites were held out.
### Annotations
#### Annotation process
Each task includes annotated action sequences showing the correct steps to complete the task. These were likely captured through a tool that records user actions on websites.
#### Who are the annotators?
Researchers from The Ohio State University NLP Group or hired annotators, though specific details aren't provided in the paper.
### Personal and Sensitive Information
The dataset focuses on non-login tasks to comply with user agreements and avoid privacy issues.
## Bias, Risks, and Limitations
- This split presents a medium difficulty generalization scenario, testing adaptation to new interfaces within familiar domains
- In-context learning methods show advantages over supervised fine-tuning on this split
- The pages in this split are the most complex in terms of HTML elements and have the highest average visual tokens
- Website layouts and functionality may change over time, affecting the validity of the dataset
- Limited to only 10 websites across 9 domains, may not capture the full diversity of websites within those domains
## Citation
### BibTeX:
```bibtex
@article{zheng2024seeact,
title={GPT-4V(ision) is a Generalist Web Agent, if Grounded},
author={Boyuan Zheng and Boyu Gou and Jihyung Kil and Huan Sun and Yu Su},
booktitle={Forty-first International Conference on Machine Learning},
year={2024},
url={https://openreview.net/forum?id=piecKJ2DlB},
}
@inproceedings{deng2023mindweb,
title={Mind2Web: Towards a Generalist Agent for the Web},
author={Xiang Deng and Yu Gu and Boyuan Zheng and Shijie Chen and Samuel Stevens and Boshi Wang and Huan Sun and Yu Su},
booktitle={Thirty-seventh Conference on Neural Information Processing Systems},
year={2023},
url={https://openreview.net/forum?id=kiYqbO3wqw}
}
```
### APA:
Zheng, B., Gou, B., Kil, J., Sun, H., & Su, Y. (2024). GPT-4V(ision) is a Generalist Web Agent, if Grounded. arXiv preprint arXiv:2401.01614.
## Dataset Card Contact
GitHub: https://github.com/OSU-NLP-Group/SeeAct |
kaiwenw/distill-r1-qwen-1.5b-aime-25-4096-with-old-prm-indices_92160_99840 | kaiwenw | 2025-05-05T17:03:00Z | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T17:02:49Z | null | ---
dataset_info:
features:
- name: message_id
dtype: string
- name: problem
dtype: string
- name: answer
dtype: string
- name: processed_answer
dtype: string
- name: responses
dtype: string
- name: reward
dtype: bool
- name: prompt_len
dtype: int64
- name: response_len
dtype: int64
- name: classifier_scores
sequence: float64
splits:
- name: train
num_bytes: 1025447659
num_examples: 7680
download_size: 238327115
dataset_size: 1025447659
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
kaiwenw/distill-r1-qwen-1.5b-aime-25-4096-with-old-prm-indices_0_7680 | kaiwenw | 2025-05-05T17:02:37Z | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T17:02:26Z | null | ---
dataset_info:
features:
- name: message_id
dtype: string
- name: problem
dtype: string
- name: answer
dtype: string
- name: processed_answer
dtype: string
- name: responses
dtype: string
- name: reward
dtype: bool
- name: prompt_len
dtype: int64
- name: response_len
dtype: int64
- name: classifier_scores
sequence: float64
splits:
- name: train
num_bytes: 1031600947
num_examples: 7680
download_size: 239593968
dataset_size: 1031600947
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
kaiwenw/distill-r1-qwen-1.5b-aime-25-4096-with-old-prm-indices_23040_30720 | kaiwenw | 2025-05-05T17:02:24Z | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T17:02:13Z | null | ---
dataset_info:
features:
- name: message_id
dtype: string
- name: problem
dtype: string
- name: answer
dtype: string
- name: processed_answer
dtype: string
- name: responses
dtype: string
- name: reward
dtype: bool
- name: prompt_len
dtype: int64
- name: response_len
dtype: int64
- name: classifier_scores
sequence: float64
splits:
- name: train
num_bytes: 1021291032
num_examples: 7680
download_size: 237781547
dataset_size: 1021291032
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Voxel51/mind2web_multimodal_test_domain | Voxel51 | 2025-05-05T16:54:10Z | 43 | 1 | [
"task_categories:image-classification",
"task_categories:object-detection",
"language:en",
"size_categories:1K<n<10K",
"format:imagefolder",
"modality:image",
"library:datasets",
"library:mlcroissant",
"library:fiftyone",
"arxiv:2401.01614",
"region:us",
"fiftyone",
"visual-agents",
"os-agents",
"gui-grounding",
"image",
"image-classification",
"object-detection"
] | [
"image-classification",
"object-detection"
] | 2025-04-30T20:20:47Z | null | ---
annotations_creators: []
language: en
size_categories:
- 1K<n<10K
task_categories:
- image-classification
- object-detection
task_ids: []
pretty_name: mind2web_multimodal_test_domain
tags:
- fiftyone
- visual-agents
- os-agents
- gui-grounding
- image
- image-classification
- object-detection
dataset_summary: '
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 4050 samples.
## Installation
If you haven''t already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
from fiftyone.utils.huggingface import load_from_hub
# Load the dataset
# Note: other available arguments include ''max_samples'', etc
dataset = load_from_hub("Voxel51/mind2web_multimodal_test_domain")
# Launch the App
session = fo.launch_app(dataset)
```
'
---
# Dataset Card for "Cross-Domain" Test Split in Multimodal Mind2Web
**Note**: This dataset is the test split of the Cross-Domain dataset introduced in the paper.

This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 4050 samples.
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
from fiftyone.utils.huggingface import load_from_hub
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = load_from_hub("Voxel51/mind2web_multimodal_test_domain")
# Launch the App
session = fo.launch_app(dataset)
```
## Dataset Description
**Curated by:** The Ohio State University NLP Group (OSU-NLP-Group)
**Shared by:** OSU-NLP-Group on Hugging Face
**Language(s) (NLP):** en
**License:** OPEN-RAIL License
## Dataset Sources
**Repository:** https://github.com/OSU-NLP-Group/SeeAct and https://huggingface.co/datasets/osunlp/Multimodal-Mind2Web
**Paper:** "GPT-4V(ision) is a Generalist Web Agent, if Grounded" by Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, Yu Su
**Demo:** https://osu-nlp-group.github.io/SeeAct
## Uses
### Direct Use
- Evaluating web agents' ability to generalize to entirely new domains
- Testing zero-shot domain transfer capabilities of models
- Benchmarking the true generalist capabilities of web agents
- Assessing model performance in unseen web environments
### Out-of-Scope Use
- Developing web agents for harmful purposes (as stated in the paper's impact statement)
- Automating actions that could violate website terms of service
- Creating agents that access users' personal profiles or perform sensitive operations without consent
## Dataset Structure
- Contains 694 tasks across 13 domains and 53 websites
- Tasks average 5.9 actions each
- Average 4,314 visual tokens per task
- Average 494 HTML elements per task
- Average 91,163 HTML tokens per task
- Each example includes task descriptions, HTML structure, operations (CLICK, TYPE, SELECT), target elements with attributes, and action histories
### FiftyOne Dataset Structure
**Basic Info:** 1,338 web UI screenshots with task-based annotations
**Core Fields:**
- `action_uid`: StringField - Unique action identifier
- `annotation_id`: StringField - Annotation identifier
- `target_action_index`: IntField - Index of target action in sequence
- `ground_truth`: EmbeddedDocumentField(Detection) - Element to interact with:
- `label`: Action type (TYPE, CLICK)
- `bounding_box`: a list of relative bounding box coordinates in [0, 1] in the following format: `<top-left-x>, <top-left-y>, <width>, <height>]`
- `target_action_reprs`: String representation of target action
- `website`: EmbeddedDocumentField(Classification) - Website name
- `domain`: EmbeddedDocumentField(Classification) - Website domain category
- `subdomain`: EmbeddedDocumentField(Classification) - Website subdomain category
- `task_description`: StringField - Natural language description of the task
- `full_sequence`: ListField(StringField) - Complete sequence of actions for the task
- `previous_actions`: ListField - Actions already performed in the sequence
- `current_action`: StringField - Action to be performed
- `alternative_candidates`: EmbeddedDocumentField(Detections) - Other possible elements
## Dataset Creation
### Curation Rationale
The Cross-Domain split was specifically designed to evaluate an agent's ability to generalize to entirely new domains it hasn't encountered during training, representing the most challenging generalization scenario.
### Source Data
#### Data Collection and Processing
- Based on the original MIND2WEB dataset
- Each HTML document is aligned with its corresponding webpage screenshot image
- Underwent human verification to confirm element visibility and correct rendering for action prediction
- Specifically includes websites from top-level domains held out from the training data
#### Who are the source data producers?
Web screenshots and HTML were collected from 53 websites across 13 domains that were not represented in the training data.
### Annotations
#### Annotation process
Each task includes annotated action sequences showing the correct steps to complete the task. These were likely captured through a tool that records user actions on websites.
#### Who are the annotators?
Researchers from The Ohio State University NLP Group or hired annotators, though specific details aren't provided in the paper.
### Personal and Sensitive Information
The dataset focuses on non-login tasks to comply with user agreements and avoid privacy issues.
## Bias, Risks, and Limitations
- This split presents the most challenging generalization scenario as it tests performance on entirely unfamiliar domains
- In-context learning methods with large models show better performance than supervised fine-tuning on this split
- The gap between SEEACTOracle and other methods is largest in this split (23.2% step success rate difference)
- Website layouts and functionality may change over time, affecting the validity of the dataset
- Limited to the specific domains included; may not fully represent all possible web domains
## Citation
### BibTeX:
```bibtex
@article{zheng2024seeact,
title={GPT-4V(ision) is a Generalist Web Agent, if Grounded},
author={Boyuan Zheng and Boyu Gou and Jihyung Kil and Huan Sun and Yu Su},
booktitle={Forty-first International Conference on Machine Learning},
year={2024},
url={https://openreview.net/forum?id=piecKJ2DlB},
}
@inproceedings{deng2023mindweb,
title={Mind2Web: Towards a Generalist Agent for the Web},
author={Xiang Deng and Yu Gu and Boyuan Zheng and Shijie Chen and Samuel Stevens and Boshi Wang and Huan Sun and Yu Su},
booktitle={Thirty-seventh Conference on Neural Information Processing Systems},
year={2023},
url={https://openreview.net/forum?id=kiYqbO3wqw}
}
```
### APA:
Zheng, B., Gou, B., Kil, J., Sun, H., & Su, Y. (2024). GPT-4V(ision) is a Generalist Web Agent, if Grounded. arXiv preprint arXiv:2401.01614.
## Dataset Card Contact
GitHub: https://github.com/OSU-NLP-Group/SeeAct |
yoad/heb_news_ocr_corpus_transformed | yoad | 2025-05-05T16:51:04Z | 1 | 0 | [
"size_categories:1M<n<10M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T08:53:19Z | null | ---
dataset_info:
features:
- name: article_id
dtype: string
- name: begins
dtype: string
- name: title
dtype: string
- name: type
dtype: string
- name: page
dtype: int64
- name: text
dtype: 'null'
- name: ocr_text
dtype: string
- name: source_file
dtype: string
- name: newspaper_name
dtype: string
- name: date
dtype: timestamp[us]
- name: clean_ocr_text
dtype: string
- name: article_url
dtype: string
splits:
- name: train
num_bytes: 12279570153
num_examples: 2739218
download_size: 6541133124
dataset_size: 12279570153
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
dopaul/simple_pawn_move_v4 | dopaul | 2025-05-05T16:41:31Z | 0 | 0 | [
"task_categories:robotics",
"modality:video",
"region:us",
"phosphobot",
"so100",
"phospho-dk"
] | [
"robotics"
] | 2025-05-05T16:26:14Z | null |
---
tags:
- phosphobot
- so100
- phospho-dk
task_categories:
- robotics
---
# simple_pawn_move_v4
**This dataset was generated using a [phospho starter pack](https://robots.phospho.ai).**
This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot and RLDS.
|
LukeBailey181/STPProverWarmupWithCot_testing | LukeBailey181 | 2025-05-05T16:39:37Z | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T16:39:35Z | null | ---
dataset_info:
features:
- name: header
dtype: string
- name: theorem
dtype: string
- name: proof
dtype: string
- name: augmenter_prompt
dtype: string
- name: augmenter_return
dtype: string
- name: resulting_prover_prompt
dtype: string
- name: resulting_prover_target
dtype: string
splits:
- name: train
num_bytes: 199894
num_examples: 32
download_size: 70706
dataset_size: 199894
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
alinatl/en-es-translation | alinatl | 2025-05-05T16:39:20Z | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T16:38:45Z | null | ---
dataset_info:
features:
- name: en
list:
- name: content
dtype: string
- name: role
dtype: string
- name: sp
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 2237
num_examples: 1
download_size: 4259
dataset_size: 2237
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
sleeping-ai/LLM-as-Judge-retake-sat-baseline | sleeping-ai | 2025-05-05T16:35:45Z | 0 | 0 | [
"license:mit",
"size_categories:n<1K",
"format:csv",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T16:04:42Z | null | ---
license: mit
---
I am storing all the baseline evals I ran for AGIEval-SAT-Math. |
Jellywibble/CW_Cost | Jellywibble | 2025-05-05T16:25:46Z | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T16:25:44Z | null | ---
dataset_info:
features:
- name: category
dtype: string
- name: cost_dollars
dtype: float64
- name: is_engineering
dtype: bool
- name: origin
dtype: string
- name: date
dtype: date32
- name: on_demand
dtype: bool
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 54082
num_examples: 807
download_size: 9023
dataset_size: 54082
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
svjack/Day_if_sentient_beings_SPLITED_AMu_CARD | svjack | 2025-05-05T16:19:17Z | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:audio",
"modality:image",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T13:44:22Z | null | ---
dataset_info:
features:
- name: audio
dtype: audio
- name: image
dtype: image
splits:
- name: train
num_bytes: 51047650.0
num_examples: 47
download_size: 51046203
dataset_size: 51047650.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Amao's Streaming Channel
## Channel Description
**Amao_o** is a lively streamer from a beautiful city known as a "sea of flowers". Presenting as an adorable (but secretly mischievous) kitten/puppy hybrid persona, they host engaging live streams.
## Streaming Details
• **Primary Content**: Gaming/Mixed Topics/Therapeutic Chat
• **Schedule**:
• **Main Stream**: 8:00 PM - 4:00 AM (local time)
• **Community Chat**: 7:00 PM - 1:00 AM in group 985085334
## Community
Join our cozy community hub in QQ group: 985085334 ("Our Little Cottage")



|
dgambettaphd/D_llm3_gen4_WXS_doc1000_synt64_lr1e-04_acm_SYNLAST | dgambettaphd | 2025-05-05T16:17:26Z | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T16:17:22Z | null | ---
dataset_info:
features:
- name: id_doc
dtype: int64
- name: text
dtype: string
- name: dataset
dtype: string
- name: gen
dtype: int64
- name: synt
dtype: int64
- name: MPP
dtype: float64
splits:
- name: train
num_bytes: 12955987
num_examples: 20000
download_size: 7770912
dataset_size: 12955987
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
samahadhoud/decomposed-tikz-dataset-30-40 | samahadhoud | 2025-05-05T16:15:02Z | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T16:13:53Z | null | ---
dataset_info:
features:
- name: id
dtype: string
- name: png
dtype: image
- name: code
dtype: string
splits:
- name: train
num_bytes: 938623908.404
num_examples: 74708
download_size: 621479832
dataset_size: 938623908.404
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
zhengbang0707/REFUEL_it2_mask1_v2_llama3 | zhengbang0707 | 2025-05-05T16:09:44Z | 0 | 0 | [
"size_categories:100K<n<1M",
"modality:tabular",
"modality:text",
"region:us"
] | [] | 2025-05-05T16:00:55Z | null | ---
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- split: val
path: data/val-*
dataset_info:
features:
- name: chosen
list:
- name: content
dtype: string
- name: role
dtype: string
- name: reject
list:
- name: content
dtype: string
- name: role
dtype: string
- name: chosen_token
sequence: int64
- name: reject_token
sequence: int64
- name: chosen_mask
sequence: int64
- name: chosen_mask_user
sequence: int64
- name: reject_mask
sequence: int64
- name: reject_mask_user
sequence: int64
- name: chosen_reward_list
sequence: float64
- name: reject_reward_list
sequence: float64
- name: chosen_reward_list_new
sequence: float64
- name: reject_reward_list_new
sequence: float64
- name: chosen_reward
dtype: float64
- name: reject_reward
dtype: float64
splits:
- name: train
num_bytes: 12237301422
num_examples: 115117
- name: test
num_bytes: 53174161
num_examples: 500
- name: val
num_bytes: 53044292
num_examples: 500
download_size: 593328057
dataset_size: 12343519875
---
# Dataset Card for "REFUEL_it2_mask1_v2_llama3"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
qingy2024/ACT75 | qingy2024 | 2025-05-05T16:01:48Z | 0 | 0 | [
"license:apache-2.0",
"size_categories:n<1K",
"format:json",
"modality:text",
"modality:video",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T16:01:08Z | null | ---
license: apache-2.0
---
|
hpederm/kex_small | hpederm | 2025-05-05T15:57:56Z | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T15:57:54Z | null | ---
dataset_info:
features:
- name: anchor
dtype: string
- name: positive
dtype: string
splits:
- name: train
num_bytes: 3221622
num_examples: 800
- name: valid
num_bytes: 408119
num_examples: 100
- name: test
num_bytes: 402383
num_examples: 100
download_size: 1800470
dataset_size: 4032124
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: valid
path: data/valid-*
- split: test
path: data/test-*
---
|
DuckZH/so100_test | DuckZH | 2025-05-05T15:47:33Z | 0 | 0 | [
"task_categories:robotics",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:timeseries",
"modality:video",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us",
"LeRobot",
"so100",
"tutorial"
] | [
"robotics"
] | 2025-05-05T15:10:31Z | null | ---
license: apache-2.0
task_categories:
- robotics
tags:
- LeRobot
- so100
- tutorial
configs:
- config_name: default
data_files: data/*/*.parquet
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
## Dataset Description
- **Homepage:** [More Information Needed]
- **Paper:** [More Information Needed]
- **License:** apache-2.0
## Dataset Structure
[meta/info.json](meta/info.json):
```json
{
"codebase_version": "v2.0",
"robot_type": "so100",
"total_episodes": 6,
"total_frames": 8976,
"total_tasks": 1,
"total_videos": 12,
"total_chunks": 1,
"chunks_size": 1000,
"fps": 30,
"splits": {
"train": "0:6"
},
"data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet",
"video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4",
"features": {
"action": {
"dtype": "float32",
"shape": [
6
],
"names": [
"main_shoulder_pan",
"main_shoulder_lift",
"main_elbow_flex",
"main_wrist_flex",
"main_wrist_roll",
"main_gripper"
]
},
"observation.state": {
"dtype": "float32",
"shape": [
6
],
"names": [
"main_shoulder_pan",
"main_shoulder_lift",
"main_elbow_flex",
"main_wrist_flex",
"main_wrist_roll",
"main_gripper"
]
},
"observation.images.wrist": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 30.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "h264",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"observation.images.front": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 30.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "h264",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"timestamp": {
"dtype": "float32",
"shape": [
1
],
"names": null
},
"frame_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"episode_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"task_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
}
}
}
```
## Citation
**BibTeX:**
```bibtex
[More Information Needed]
``` |
HungVu2003/opt-350m_beta_0.0_alpha_0.2_num-company_2_dataset_0_for_gen_17_v2 | HungVu2003 | 2025-05-05T15:41:42Z | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T15:41:41Z | null | ---
dataset_info:
features:
- name: question
dtype: string
splits:
- name: train
num_bytes: 3135643
num_examples: 13750
download_size: 947611
dataset_size: 3135643
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Adriana213/pricer-data | Adriana213 | 2025-05-05T15:35:11Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T15:34:46Z | null | ---
dataset_info:
features:
- name: text
dtype: string
- name: price
dtype: float64
splits:
- name: train
num_bytes: 313746593
num_examples: 400000
- name: test
num_bytes: 1558981
num_examples: 2000
download_size: 185245700
dataset_size: 315305574
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
|
Wilhelmlab/proteometools_ms2_charge | Wilhelmlab | 2025-05-05T15:27:58Z | 0 | 0 | [
"license:cc-by-4.0",
"size_categories:1M<n<10M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T14:08:40Z | null | ---
license: cc-by-4.0
dataset_info:
features:
- name: modified_sequence
dtype: string
- name: max_rt_end
dtype: float64
- name: mean_mass
dtype: float64
- name: mean_rt_apex
dtype: float64
- name: min_andromeda_score
dtype: float64
- name: min_rt_start
dtype: float64
- name: raw_file
sequence: string
- name: package
sequence: string
- name: raw_file_count
dtype: int64
- name: number_diff_cs
dtype: int64
- name: most_abundant_charge_state
sequence: int64
- name: observed_charge_states
sequence: int64
- name: charge_state_dist
sequence: float64
- name: intensity_sum
dtype: float64
- name: mean_abs_intensity
sequence: float64
splits:
- name: train
num_bytes: 554485394
num_examples: 1243018
download_size: 123613327
dataset_size: 554485394
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
austindavis/lichess-uci-tokenized-768 | austindavis | 2025-05-05T15:22:30Z | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T15:22:27Z | null | ---
dataset_info:
features:
- name: tokens
sequence: int64
splits:
- name: train
num_bytes: 131790400
num_examples: 32144
download_size: 14459619
dataset_size: 131790400
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
PHBD/medicaid-financial-management-data | PHBD | 2025-05-05T15:06:01Z | 0 | 0 | [
"language:en",
"size_categories:10K<n<100K",
"format:csv",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"hhs",
"cms"
] | [] | 2025-05-05T15:05:59Z | null | ---
language:
- en
pretty_name: Medicaid Financial Management Data
tags:
- hhs
- cms
---
# Medicaid Financial Management Data
## Description
This dataset reports summary state-by-state total expenditures by program for the Medicaid Program, Medicaid Administration and CHIP programs. These state expenditures are tracked through the automated Medicaid Budget and Expenditure System/State Children's Health Insurance Program Budget and Expenditure System (MBES/CBES).
For more information, visit https://medicaid.gov/medicaid/finance/state-expenditure-reporting/expenditure-reports/index.html.
## Dataset Details
- **Publisher**: Centers for Medicare & Medicaid Services
- **Last Modified**: 2024-12-11
- **Contact**: Medicaid.gov (no-reply@data.medicaid.gov)
## Source
Original data can be found at: https://healthdata.gov/d/2tf3-vhn2
## Usage
You can load this dataset using:
```python
from datasets import load_dataset
dataset = load_dataset("PHBD/medicaid-financial-management-data")
```
## License
This dataset is licensed under https://www.usa.gov/government-works
|
PHBD/impaired-driving-death-rate-by-age-and-sex-2012-an | PHBD | 2025-05-05T15:05:58Z | 0 | 0 | [
"language:en",
"license:odbl",
"size_categories:n<1K",
"format:csv",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"hhs",
"cdc"
] | [] | 2025-05-05T15:05:57Z | null | ---
language:
- en
pretty_name: Impaired Driving Death Rate, by Age and Sex, 2012 & 2014, Region 9 -
San Francisco
tags:
- hhs
- cdc
- cdc
license: odbl
---
# Impaired Driving Death Rate, by Age and Sex, 2012 & 2014, Region 9 - San Francisco
## Description
Rate of deaths by age/gender (per 100,000 population) for people killed in crashes involving a driver with BAC =>0.08%, 2012, 2014. 2012 Source: Fatality Analysis Reporting System (FARS). 2014 Source: National Highway Traffic Administration's (NHTSA) Fatality Analysis Reporting System (FARS), 2014 Annual Report File. Note: Blank cells indicate data are suppressed. Fatality rates based on fewer than 20 deaths are suppressed.
## Dataset Details
- **Publisher**: Centers for Disease Control and Prevention
- **Last Modified**: 2016-09-14
- **Contact**: CDC INFO (cdcinfo@cdc.gov)
## Source
Original data can be found at: https://data.cdc.gov/d/3se3-rwj2
## Usage
You can load this dataset using:
```python
from datasets import load_dataset
dataset = load_dataset("PHBD/impaired-driving-death-rate-by-age-and-sex-2012-an")
```
## License
This dataset is licensed under http://opendefinition.org/licenses/odc-odbl/
|
PHBD/dqs-visits-to-physician-offices-hospital-outpatien | PHBD | 2025-05-05T15:05:49Z | 0 | 0 | [
"language:en",
"size_categories:1K<n<10K",
"format:csv",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"hhs",
"cdc",
"men",
"physicians",
"white",
"women"
] | [] | 2025-05-05T15:05:47Z | null | ---
language:
- en
pretty_name: 'DQS Visits to physician offices, hospital outpatient departments, and
hospital emergency departments, by age, sex, and race: United States'
tags:
- hhs
- cdc
- men
- physicians
- white
- women
---
# DQS Visits to physician offices, hospital outpatient departments, and hospital emergency departments, by age, sex, and race: United States
## Description
Data on visits to physician offices and hospital emergency departments in the United States, by age, sex, and race. Data are from Health, United States. SOURCE: National Center for Health Statistics, National Ambulatory Medical Care Survey and National Hospital Ambulatory Medical Care Survey.
Search, visualize, and download these and other estimates from over 120 health topics with the NCHS Data Query System (DQS), available from: https://www.cdc.gov/nchs/dataquery/index.htm.
## Dataset Details
- **Publisher**: Centers for Disease Control and Prevention
- **Temporal Coverage**: 2000/2018
- **Last Modified**: 2025-04-21
- **Contact**: National Center for Health Statistics (healthus@cdc.gov)
## Source
Original data can be found at: https://www.cdc.gov/nchs/hus
## Usage
You can load this dataset using:
```python
from datasets import load_dataset
dataset = load_dataset("PHBD/dqs-visits-to-physician-offices-hospital-outpatien")
```
## License
This dataset is licensed under https://www.usa.gov/government-works
|
TheRealPilot638/Falcon3-1B-dvts-256_no_chunking_H200 | TheRealPilot638 | 2025-05-05T14:34:35Z | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T03:30:55Z | null | ---
dataset_info:
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-0--agg_strategy--last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: pred
dtype: string
- name: completion_tokens
dtype: int64
- name: scores
sequence:
sequence: float64
- name: agg_scores
sequence: float64
- name: pred_weighted@1
dtype: string
- name: pred_maj@1
dtype: string
- name: pred_naive@1
dtype: string
- name: pred_weighted@2
dtype: string
- name: pred_maj@2
dtype: string
- name: pred_naive@2
dtype: string
- name: pred_weighted@4
dtype: string
- name: pred_maj@4
dtype: string
- name: pred_naive@4
dtype: string
- name: pred_weighted@8
dtype: string
- name: pred_maj@8
dtype: string
- name: pred_naive@8
dtype: string
- name: pred_weighted@16
dtype: string
- name: pred_maj@16
dtype: string
- name: pred_naive@16
dtype: string
- name: pred_weighted@32
dtype: string
- name: pred_maj@32
dtype: string
- name: pred_naive@32
dtype: string
- name: pred_weighted@64
dtype: string
- name: pred_maj@64
dtype: string
- name: pred_naive@64
dtype: string
- name: pred_weighted@128
dtype: string
- name: pred_maj@128
dtype: string
- name: pred_naive@128
dtype: string
- name: pred_weighted@256
dtype: string
- name: pred_maj@256
dtype: string
- name: pred_naive@256
dtype: string
splits:
- name: train
num_bytes: 176490377
num_examples: 450
download_size: 26566815
dataset_size: 176490377
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-0--agg_strategy--last--evals
features:
- name: n
dtype: int64
- name: acc_naive
dtype: float64
- name: acc_weighted
dtype: float64
- name: acc_maj
dtype: float64
splits:
- name: train
num_bytes: 128
num_examples: 4
download_size: 2047
dataset_size: 128
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-1--agg_strategy--last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: pred
dtype: string
- name: completion_tokens
dtype: int64
- name: scores
sequence:
sequence: float64
- name: agg_scores
sequence: float64
- name: pred_weighted@1
dtype: string
- name: pred_maj@1
dtype: string
- name: pred_naive@1
dtype: string
- name: pred_weighted@2
dtype: string
- name: pred_maj@2
dtype: string
- name: pred_naive@2
dtype: string
- name: pred_weighted@4
dtype: string
- name: pred_maj@4
dtype: string
- name: pred_naive@4
dtype: string
- name: pred_weighted@8
dtype: string
- name: pred_maj@8
dtype: string
- name: pred_naive@8
dtype: string
- name: pred_weighted@16
dtype: string
- name: pred_maj@16
dtype: string
- name: pred_naive@16
dtype: string
- name: pred_weighted@32
dtype: string
- name: pred_maj@32
dtype: string
- name: pred_naive@32
dtype: string
- name: pred_weighted@64
dtype: string
- name: pred_maj@64
dtype: string
- name: pred_naive@64
dtype: string
- name: pred_weighted@128
dtype: string
- name: pred_maj@128
dtype: string
- name: pred_naive@128
dtype: string
- name: pred_weighted@256
dtype: string
- name: pred_maj@256
dtype: string
- name: pred_naive@256
dtype: string
splits:
- name: train
num_bytes: 196516027
num_examples: 500
download_size: 29614997
dataset_size: 196516027
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-1--agg_strategy--last--evals
features:
- name: n
dtype: int64
- name: acc_naive
dtype: float64
- name: acc_weighted
dtype: float64
- name: acc_maj
dtype: float64
splits:
- name: train
num_bytes: 128
num_examples: 4
download_size: 2044
dataset_size: 128
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-2--agg_strategy--last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: pred
dtype: string
- name: completion_tokens
dtype: int64
- name: scores
sequence:
sequence: float64
- name: agg_scores
sequence: float64
- name: pred_weighted@1
dtype: string
- name: pred_maj@1
dtype: string
- name: pred_naive@1
dtype: string
- name: pred_weighted@2
dtype: string
- name: pred_maj@2
dtype: string
- name: pred_naive@2
dtype: string
- name: pred_weighted@4
dtype: string
- name: pred_maj@4
dtype: string
- name: pred_naive@4
dtype: string
- name: pred_weighted@8
dtype: string
- name: pred_maj@8
dtype: string
- name: pred_naive@8
dtype: string
- name: pred_weighted@16
dtype: string
- name: pred_maj@16
dtype: string
- name: pred_naive@16
dtype: string
- name: pred_weighted@32
dtype: string
- name: pred_maj@32
dtype: string
- name: pred_naive@32
dtype: string
- name: pred_weighted@64
dtype: string
- name: pred_maj@64
dtype: string
- name: pred_naive@64
dtype: string
- name: pred_weighted@128
dtype: string
- name: pred_maj@128
dtype: string
- name: pred_naive@128
dtype: string
- name: pred_weighted@256
dtype: string
- name: pred_maj@256
dtype: string
- name: pred_naive@256
dtype: string
splits:
- name: train
num_bytes: 196160244
num_examples: 500
download_size: 29600111
dataset_size: 196160244
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-2--agg_strategy--last--evals
features:
- name: n
dtype: int64
- name: acc_naive
dtype: float64
- name: acc_weighted
dtype: float64
- name: acc_maj
dtype: float64
splits:
- name: train
num_bytes: 128
num_examples: 4
download_size: 2036
dataset_size: 128
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-3--agg_strategy--last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: pred
dtype: string
- name: completion_tokens
dtype: int64
- name: scores
sequence:
sequence: float64
- name: agg_scores
sequence: float64
- name: pred_weighted@1
dtype: string
- name: pred_maj@1
dtype: string
- name: pred_naive@1
dtype: string
- name: pred_weighted@2
dtype: string
- name: pred_maj@2
dtype: string
- name: pred_naive@2
dtype: string
- name: pred_weighted@4
dtype: string
- name: pred_maj@4
dtype: string
- name: pred_naive@4
dtype: string
- name: pred_weighted@8
dtype: string
- name: pred_maj@8
dtype: string
- name: pred_naive@8
dtype: string
- name: pred_weighted@16
dtype: string
- name: pred_maj@16
dtype: string
- name: pred_naive@16
dtype: string
- name: pred_weighted@32
dtype: string
- name: pred_maj@32
dtype: string
- name: pred_naive@32
dtype: string
- name: pred_weighted@64
dtype: string
- name: pred_maj@64
dtype: string
- name: pred_naive@64
dtype: string
- name: pred_weighted@128
dtype: string
- name: pred_maj@128
dtype: string
- name: pred_naive@128
dtype: string
- name: pred_weighted@256
dtype: string
- name: pred_maj@256
dtype: string
- name: pred_naive@256
dtype: string
splits:
- name: train
num_bytes: 196152625
num_examples: 500
download_size: 29565434
dataset_size: 196152625
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-3--agg_strategy--last--evals
features:
- name: n
dtype: int64
- name: acc_naive
dtype: float64
- name: acc_weighted
dtype: float64
- name: acc_maj
dtype: float64
splits:
- name: train
num_bytes: 128
num_examples: 4
download_size: 2050
dataset_size: 128
configs:
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-0--agg_strategy--last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-0--agg_strategy--last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-0--agg_strategy--last--evals
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-0--agg_strategy--last--evals/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-1--agg_strategy--last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-1--agg_strategy--last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-1--agg_strategy--last--evals
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-1--agg_strategy--last--evals/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-2--agg_strategy--last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-2--agg_strategy--last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-2--agg_strategy--last--evals
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-2--agg_strategy--last--evals/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-3--agg_strategy--last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-3--agg_strategy--last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-3--agg_strategy--last--evals
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-1--seed-3--agg_strategy--last--evals/train-*
---
|
BranoSandy/eval_act_so100_test_2 | BranoSandy | 2025-05-05T14:24:09Z | 0 | 0 | [
"task_categories:robotics",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:timeseries",
"modality:video",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us",
"LeRobot",
"so100",
"tutorial"
] | [
"robotics"
] | 2025-05-05T14:23:51Z | null | ---
license: apache-2.0
task_categories:
- robotics
tags:
- LeRobot
- so100
- tutorial
configs:
- config_name: default
data_files: data/*/*.parquet
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
## Dataset Description
- **Homepage:** [More Information Needed]
- **Paper:** [More Information Needed]
- **License:** apache-2.0
## Dataset Structure
[meta/info.json](meta/info.json):
```json
{
"codebase_version": "v2.1",
"robot_type": "so100",
"total_episodes": 2,
"total_frames": 1634,
"total_tasks": 1,
"total_videos": 4,
"total_chunks": 1,
"chunks_size": 1000,
"fps": 30,
"splits": {
"train": "0:2"
},
"data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet",
"video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4",
"features": {
"action": {
"dtype": "float32",
"shape": [
6
],
"names": [
"main_shoulder_pan",
"main_shoulder_lift",
"main_elbow_flex",
"main_wrist_flex",
"main_wrist_roll",
"main_gripper"
]
},
"observation.state": {
"dtype": "float32",
"shape": [
6
],
"names": [
"main_shoulder_pan",
"main_shoulder_lift",
"main_elbow_flex",
"main_wrist_flex",
"main_wrist_roll",
"main_gripper"
]
},
"observation.images.laptop": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 30.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "h264",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"observation.images.phone": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 30.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "h264",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"timestamp": {
"dtype": "float32",
"shape": [
1
],
"names": null
},
"frame_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"episode_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"task_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
}
}
}
```
## Citation
**BibTeX:**
```bibtex
[More Information Needed]
``` |
Marianne0Habib/stt-english-test-dataset-sample | Marianne0Habib | 2025-05-05T14:15:27Z | 0 | 0 | [
"language:en",
"size_categories:n<1K",
"format:audiofolder",
"modality:audio",
"library:datasets",
"library:mlcroissant",
"region:us"
] | [] | 2025-05-05T13:12:19Z | null | ---
language:
- en
size_categories:
- n<1K
---
# 🗣️ English Speech Audio Dataset (Sample)
This dataset contains English speech samples, annotated by `dialect`, `speaking rate`, `environmental condition`, and includes `ground truth transcriptions`.
It is intended to support research and applications in `Automatic Speech Recognition (ASR)`, and `Spoken language understanding`.
---
## 📁 Dataset Structure
- Audio segments are stored in .wav format
- Accompanied by a CSV file (En_dataset.csv) with rich metadata
---
## 📊Dataset Statistics
| Metric | Value |
|----------------|----------------------------------------|
| Total Segments | 500 |
| Languages | English |
| Audio Format | `.wav` |
| Sampling Rate | 16 kHz |
---
## 📊 Data Insights
**🔢Total Segments**: 500
**🌍Recording Conditions**
| Environment | Count |
|----------------|----------------------------------------|
| Clean | 251 |
| Noisy | 249 |
**🕐Audio Properties**
| Attribute | Category | Count/Value |
|------------------------|----------|-------------|
| Length Type | Short | 472 |
| | Long | 28 |
| Speaking Rate | Average | 306 |
| | Fast | 189 |
| | Slow | 5 |
| Segment Length (sec) | Min | 1.74 |
| | Max | 24.8 |
| | Mean | 6.96 |
---
# 🛠️ How to Use
You can load the dataset using:
```python
from datasets import load_dataset
ds = load_dataset("Marianne0Habib/stt-english-test-dataset-sample")
``` |
macwiatrak/bacbench-antibiotic-resistance-protein-sequences | macwiatrak | 2025-05-05T14:06:43Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T13:35:51Z | null | ---
dataset_info:
features:
- name: genome_name
dtype: string
- name: contig_name
sequence: string
- name: protein_id
sequence:
sequence: string
- name: protein_sequence
sequence:
sequence: string
- name: taxid
dtype: string
- name: locus_tag
sequence:
sequence: string
- name: start
sequence:
sequence: int64
- name: end
sequence:
sequence: int64
- name: product
sequence:
sequence: string
splits:
- name: train
num_bytes: 40490436864
num_examples: 26052
download_size: 34207458365
dataset_size: 40490436864
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
macwiatrak/bacbench-phenotypic-traits-protein-sequences | macwiatrak | 2025-05-05T14:04:48Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T12:54:48Z | null | ---
dataset_info:
features:
- name: genome_name
dtype: string
- name: contig_name
sequence: string
- name: protein_id
sequence:
sequence: string
- name: protein_sequence
sequence:
sequence: string
- name: taxid
dtype: string
- name: locus_tag
sequence:
sequence: string
- name: start
sequence:
sequence: int64
- name: end
sequence:
sequence: int64
- name: product
sequence:
sequence: string
splits:
- name: train
num_bytes: 37098323931
num_examples: 24462
download_size: 31451416670
dataset_size: 37098323931
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
rocketeer-allied/Frether_demo | rocketeer-allied | 2025-05-05T14:01:18Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T14:01:15Z | null | ---
dataset_info:
features:
- name: prompt
dtype: string
splits:
- name: train
num_bytes: 196288
num_examples: 533
download_size: 51970
dataset_size: 196288
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
masato-ka/so100_conditional_grasping | masato-ka | 2025-05-05T13:58:26Z | 0 | 0 | [
"task_categories:robotics",
"license:apache-2.0",
"region:us",
"LeRobot",
"so100",
"tutorial"
] | [
"robotics"
] | 2025-05-05T13:34:34Z | null | ---
license: apache-2.0
task_categories:
- robotics
tags:
- LeRobot
- so100
- tutorial
configs:
- config_name: default
data_files: data/*/*.parquet
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
## Dataset Description
- **Homepage:** [More Information Needed]
- **Paper:** [More Information Needed]
- **License:** apache-2.0
## Dataset Structure
[meta/info.json](meta/info.json):
```json
{
"codebase_version": "v2.1",
"robot_type": "so100",
"total_episodes": 12,
"total_frames": 7163,
"total_tasks": 1,
"total_videos": 12,
"total_chunks": 1,
"chunks_size": 1000,
"fps": 30,
"splits": {
"train": "0:12"
},
"data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet",
"video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4",
"features": {
"action": {
"dtype": "float32",
"shape": [
6
],
"names": [
"main_shoulder_pan",
"main_shoulder_lift",
"main_elbow_flex",
"main_wrist_flex",
"main_wrist_roll",
"main_gripper"
]
},
"observation.state": {
"dtype": "float32",
"shape": [
7
],
"names": [
"main_shoulder_pan",
"main_shoulder_lift",
"main_elbow_flex",
"main_wrist_flex",
"main_wrist_roll",
"main_gripper",
"condition"
]
},
"observation.images.laptop": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.height": 480,
"video.width": 640,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"video.fps": 30,
"video.channels": 3,
"has_audio": false
}
},
"timestamp": {
"dtype": "float32",
"shape": [
1
],
"names": null
},
"frame_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"episode_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"task_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
}
}
}
```
## Citation
**BibTeX:**
```bibtex
[More Information Needed]
``` |
Exgc/Aha-Bench | Exgc | 2025-05-05T13:54:19Z | 48 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:audio",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T07:17:22Z | null | ---
dataset_info:
features:
- name: audio
dtype: audio
- name: question_id
dtype: string
- name: type
dtype: string
- name: question
dtype: string
- name: answer
dtype: string
- name: answer_details
dtype: string
- name: text
dtype: string
- name: label
dtype: string
splits:
- name: sample_with_audio
num_bytes: 213747099.0
num_examples: 649
- name: sample_without_audio
num_bytes: 11267686.0
num_examples: 32
download_size: 93234681
dataset_size: 225014785.0
configs:
- config_name: default
data_files:
- split: sample_with_audio
path: data/sample_with_audio-*
- split: sample_without_audio
path: data/sample_without_audio-*
---
|
gunnybd01/Consumer_Cyclical_News | gunnybd01 | 2025-05-05T13:31:35Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T13:31:27Z | null | ---
dataset_info:
features:
- name: Date
dtype: string
- name: Symbol
dtype: string
- name: Article
dtype: string
splits:
- name: train
num_bytes: 432167634
num_examples: 87160
download_size: 199016910
dataset_size: 432167634
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
gunnybd01/Communication_Services_News | gunnybd01 | 2025-05-05T13:30:19Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T13:30:12Z | null | ---
dataset_info:
features:
- name: Date
dtype: string
- name: Symbol
dtype: string
- name: Article
dtype: string
splits:
- name: train
num_bytes: 175209563
num_examples: 34826
download_size: 84514999
dataset_size: 175209563
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
shylee/so100_pengripA | shylee | 2025-05-05T13:29:45Z | 0 | 0 | [
"task_categories:robotics",
"license:apache-2.0",
"region:us",
"LeRobot",
"so100",
"pengrip"
] | [
"robotics"
] | 2025-05-05T12:57:01Z | null | ---
license: apache-2.0
task_categories:
- robotics
tags:
- LeRobot
- so100
- pengrip
configs:
- config_name: default
data_files: data/*/*.parquet
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
## Dataset Description
- **Homepage:** [More Information Needed]
- **Paper:** [More Information Needed]
- **License:** apache-2.0
## Dataset Structure
[meta/info.json](meta/info.json):
```json
{
"codebase_version": "v2.1",
"robot_type": "so100",
"total_episodes": 25,
"total_frames": 6007,
"total_tasks": 1,
"total_videos": 75,
"total_chunks": 1,
"chunks_size": 1000,
"fps": 30,
"splits": {
"train": "0:25"
},
"data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet",
"video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4",
"features": {
"action": {
"dtype": "float32",
"shape": [
6
],
"names": [
"main_shoulder_pan",
"main_shoulder_lift",
"main_elbow_flex",
"main_wrist_flex",
"main_wrist_roll",
"main_gripper"
]
},
"observation.state": {
"dtype": "float32",
"shape": [
6
],
"names": [
"main_shoulder_pan",
"main_shoulder_lift",
"main_elbow_flex",
"main_wrist_flex",
"main_wrist_roll",
"main_gripper"
]
},
"observation.images.FrontCam": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 30.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"observation.images.TopCam": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 30.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"observation.images.WristCam": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 30.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"timestamp": {
"dtype": "float32",
"shape": [
1
],
"names": null
},
"frame_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"episode_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"task_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
}
}
}
```
## Citation
**BibTeX:**
```bibtex
[More Information Needed]
``` |
athenasaurav/hindi_qa_100 | athenasaurav | 2025-05-05T13:28:16Z | 0 | 0 | [
"task_categories:question-answering",
"task_ids:open-domain-qa",
"annotations_creators:machine-generated",
"language_creators:machine-generated",
"multilinguality:monolingual",
"language:hi",
"license:cc-by-nc-4.0",
"size_categories:10K<n<100K",
"region:us"
] | [
"question-answering"
] | 2025-05-05T13:28:10Z | null | ---
annotations_creators: [machine-generated]
language_creators: [machine-generated]
language: [hi]
license: cc-by-nc-4.0
multilinguality: monolingual
size_categories: [10K<n<100K]
source_datasets: []
task_categories: [question-answering]
task_ids: [open-domain-qa]
pretty_name: Hindi QA Dataset
---
# Hindi QA Dataset
# Pretraining
## Overview
We find that trying to keep good semantic understanding of text boosts the models ability when speaking naturally and empathetically. We propose training the model on batches of speech and text. If you want the model to retain a large part of its text ability - i.e. function as an end-to-end speech model you could keep the ratio of text batch :speech batch as 2:1 to start (for example) and then gradually decrease to 1:1 throughout training. If your model is just trained for TTS start with 1:1 and gradually decrease to 0:1.
## Train
### Config
Include your datasets and other hyperparams in the YAML file.
### Setup and start
```bash
pip install transformers trl wandb flash_attn datasets torch
```
You may need to try different different versions of `flash_attn` depending on your torch/cuda/python version.
```bash
accelerate launch pretrain.py
```
### Disclaimer
This code was copy and pasted into this repo quickly so there maybe bugs. The general outline should be pretty straightforward. It's also set up for multinode training.
Depending on how good the models reasoning abilities to be (and what specifically you want to retain), you can choose with text-based dataset you use. Using simple datasets with QA pairs (for finetuning like ) works pretty well. You can also try using wikipedia - to boost the
# Hindi QA Dataset
This dataset contains question-answer pairs in Hindi, generated using GPT-3.5-turbo. Each question and answer is a single sentence, with a mix of easy, medium, and hard questions, and varying lengths (15-50 words).
## Format
- Each entry is a dictionary with two fields:
- `Question`: The question in Hindi
- `Answer`: The answer in Hindi
## Example
```json
{
"Question": "भारत की राजधानी क्या है?",
"Answer": "भारत की राजधानी नई दिल्ली है।"
}
```
## Usage
You can load this dataset using the HuggingFace Datasets library:
```python
from datasets import load_dataset
ds = load_dataset("athenasaurav/hindi_qa_100", split="train")
print(ds[0])
```
## License
This dataset is licensed under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/). Non-commercial use only.
|
dijisoz23/nutuk_final_benchmark_data | dijisoz23 | 2025-05-05T13:17:24Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T13:07:30Z | null | ---
dataset_info:
features:
- name: question
dtype: string
- name: answer
dtype: string
- name: question_type
dtype: string
splits:
- name: train
num_bytes: 214865
num_examples: 510
download_size: 119000
dataset_size: 214865
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
myScribe/training_data_2025_05_05 | myScribe | 2025-05-05T13:14:56Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T13:14:54Z | null | ---
dataset_info:
features:
- name: id
dtype: string
- name: prompt
struct:
- name: content
dtype: string
- name: role
dtype: string
- name: chosen
struct:
- name: content
dtype: string
- name: role
dtype: string
- name: conversation
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 903537
num_examples: 29
download_size: 441500
dataset_size: 903537
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
AliAfkhamii/hf_emotion_generation_texts | AliAfkhamii | 2025-05-05T13:13:22Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T13:13:12Z | null | ---
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: string
splits:
- name: train
num_bytes: 43469
num_examples: 563
download_size: 19377
dataset_size: 43469
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
ayamekajou/pixmocap-part3 | ayamekajou | 2025-05-05T13:12:28Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T11:54:01Z | null | ---
dataset_info:
features:
- name: image_url
dtype: string
- name: caption
dtype: string
- name: transcripts
sequence: string
- name: image
dtype: image
splits:
- name: train
num_bytes: 107493633391.696
num_examples: 158604
download_size: 106908056793
dataset_size: 107493633391.696
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
anaterna/airflow-class-summarization | anaterna | 2025-05-05T13:06:15Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-05T13:06:13Z | null | ---
dataset_info:
features:
- name: module_path
dtype: string
- name: class_name
dtype: string
- name: parent_class
sequence: string
- name: source_code
dtype: string
- name: docstring
dtype: string
splits:
- name: train
num_bytes: 581548
num_examples: 124
download_size: 236092
dataset_size: 581548
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
jysim/koch_block_2025050521 | jysim | 2025-05-05T13:03:17Z | 0 | 0 | [
"task_categories:robotics",
"license:apache-2.0",
"region:us",
"LeRobot",
"tutorial"
] | [
"robotics"
] | 2025-05-05T12:21:37Z | null | ---
license: apache-2.0
task_categories:
- robotics
tags:
- LeRobot
- tutorial
configs:
- config_name: default
data_files: data/*/*.parquet
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
## Dataset Description
- **Homepage:** [More Information Needed]
- **Paper:** [More Information Needed]
- **License:** apache-2.0
## Dataset Structure
[meta/info.json](meta/info.json):
```json
{
"codebase_version": "v2.1",
"robot_type": "koch",
"total_episodes": 21,
"total_frames": 11888,
"total_tasks": 1,
"total_videos": 42,
"total_chunks": 1,
"chunks_size": 1000,
"fps": 30,
"splits": {
"train": "0:21"
},
"data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet",
"video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4",
"features": {
"action": {
"dtype": "float32",
"shape": [
6
],
"names": [
"main_shoulder_pan",
"main_shoulder_lift",
"main_elbow_flex",
"main_wrist_flex",
"main_wrist_roll",
"main_gripper"
]
},
"observation.state": {
"dtype": "float32",
"shape": [
6
],
"names": [
"main_shoulder_pan",
"main_shoulder_lift",
"main_elbow_flex",
"main_wrist_flex",
"main_wrist_roll",
"main_gripper"
]
},
"observation.images.webcam": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.height": 480,
"video.width": 640,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"video.fps": 30,
"video.channels": 3,
"has_audio": false
}
},
"observation.images.phone": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.height": 480,
"video.width": 640,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"video.fps": 30,
"video.channels": 3,
"has_audio": false
}
},
"timestamp": {
"dtype": "float32",
"shape": [
1
],
"names": null
},
"frame_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"episode_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"task_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
}
}
}
```
## Citation
**BibTeX:**
```bibtex
[More Information Needed]
``` |
myScribe/training_data_foo_bar | myScribe | 2025-05-05T12:59:32Z | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-05T12:59:29Z | null | ---
dataset_info:
features:
- name: id
dtype: string
- name: prompt
struct:
- name: content
dtype: string
- name: role
dtype: string
- name: chosen
struct:
- name: content
dtype: string
- name: role
dtype: string
- name: conversation
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 933639
num_examples: 29
download_size: 448875
dataset_size: 933639
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
jlesein/TestCube8 | jlesein | 2025-05-05T12:57:08Z | 0 | 0 | [
"task_categories:robotics",
"license:apache-2.0",
"size_categories:10K<n<100K",
"format:parquet",
"modality:tabular",
"modality:timeseries",
"modality:video",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us",
"LeRobot"
] | [
"robotics"
] | 2025-05-05T12:55:35Z | null | ---
license: apache-2.0
task_categories:
- robotics
tags:
- LeRobot
configs:
- config_name: default
data_files: data/*/*.parquet
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
## Dataset Description
- **Homepage:** [More Information Needed]
- **Paper:** [More Information Needed]
- **License:** apache-2.0
## Dataset Structure
[meta/info.json](meta/info.json):
```json
{
"codebase_version": "v2.1",
"robot_type": "so100",
"total_episodes": 100,
"total_frames": 40200,
"total_tasks": 1,
"total_videos": 300,
"total_chunks": 1,
"chunks_size": 1000,
"fps": 30,
"splits": {
"train": "0:100"
},
"data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet",
"video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4",
"features": {
"action": {
"dtype": "float32",
"shape": [
6
],
"names": [
"main_shoulder_pan",
"main_shoulder_lift",
"main_elbow_flex",
"main_wrist_flex",
"main_wrist_roll",
"main_gripper"
]
},
"observation.state": {
"dtype": "float32",
"shape": [
6
],
"names": [
"main_shoulder_pan",
"main_shoulder_lift",
"main_elbow_flex",
"main_wrist_flex",
"main_wrist_roll",
"main_gripper"
]
},
"observation.images.robot": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 30.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "h264",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"observation.images.top": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 30.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "h264",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"observation.images.side": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 30.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "h264",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"timestamp": {
"dtype": "float32",
"shape": [
1
],
"names": null
},
"frame_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"episode_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"task_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
}
}
}
```
## Citation
**BibTeX:**
```bibtex
[More Information Needed]
``` |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.