Dataset Viewer
datasetId
large_stringlengths 6
110
| author
large_stringlengths 3
34
| last_modified
large_stringdate 2021-05-20 00:57:22
2025-05-07 08:14:41
| downloads
int64 0
3.97M
| likes
int64 0
7.74k
| tags
large listlengths 1
2.03k
| task_categories
large listlengths 0
16
| createdAt
large_stringdate 2022-03-02 23:29:22
2025-05-07 08:13:27
| trending_score
float64 1
39
⌀ | card
large_stringlengths 31
1M
|
---|---|---|---|---|---|---|---|---|---|
Sim4Rec/pearl_with_profiles | Sim4Rec | 2025-05-07T02:34:50Z | 238 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-01-15T03:46:02Z | null | ---
dataset_info:
features:
- name: data_id
dtype: int64
- name: user_persona
dtype: string
- name: seen_movie_titles
sequence: string
- name: gt_abstract
dtype: string
- name: gt_movie_title
dtype: string
- name: gt_genre
dtype: string
- name: gt_director
dtype: string
- name: gt_cast
dtype: string
- name: dialogue
list:
- name: content
dtype: string
- name: role
dtype: string
- name: title
dtype: string
- name: movie_history
list:
- name: rating
dtype: string
- name: review
dtype: string
- name: title
dtype: string
- name: user_profile
dtype: string
- name: user_chat
list:
- name: content
dtype: string
- name: role
dtype: string
- name: assistant_chat
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 1378375511.0
num_examples: 46218
- name: validation
num_bytes: 137941154.0
num_examples: 4606
- name: test
num_bytes: 61914901.0
num_examples: 2069
download_size: 632968306
dataset_size: 1578231566.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
|
icedwind/x_dataset_12970 | icedwind | 2025-05-07T02:08:25Z | 2,049 | 0 | [
"task_categories:text-classification",
"task_categories:token-classification",
"task_categories:question-answering",
"task_categories:summarization",
"task_categories:text-generation",
"task_ids:sentiment-analysis",
"task_ids:topic-classification",
"task_ids:named-entity-recognition",
"task_ids:language-modeling",
"task_ids:text-scoring",
"task_ids:multi-class-classification",
"task_ids:multi-label-classification",
"task_ids:extractive-qa",
"task_ids:news-articles-summarization",
"multilinguality:multilingual",
"source_datasets:original",
"license:mit",
"size_categories:100M<n<1B",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [
"text-classification",
"token-classification",
"question-answering",
"summarization",
"text-generation"
] | 2025-01-28T23:27:14Z | null | ---
license: mit
multilinguality:
- multilingual
source_datasets:
- original
task_categories:
- text-classification
- token-classification
- question-answering
- summarization
- text-generation
task_ids:
- sentiment-analysis
- topic-classification
- named-entity-recognition
- language-modeling
- text-scoring
- multi-class-classification
- multi-label-classification
- extractive-qa
- news-articles-summarization
---
# Bittensor Subnet 13 X (Twitter) Dataset
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
## Dataset Description
- **Repository:** icedwind/x_dataset_12970
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5FjmBWG6CrGX74iFhChXLETvDQ3kcgvroZhsgyGKSXmvxGxK
### Dataset Summary
This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).
### Supported Tasks
The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example:
- Sentiment Analysis
- Trend Detection
- Content Analysis
- User Behavior Modeling
### Languages
Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.
## Dataset Structure
### Data Instances
Each instance represents a single tweet with the following fields:
### Data Fields
- `text` (string): The main content of the tweet.
- `label` (string): Sentiment or topic category of the tweet.
- `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present.
- `datetime` (string): The date when the tweet was posted.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present.
### Data Splits
This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.
## Dataset Creation
### Source Data
Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines.
### Personal and Sensitive Information
All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.
## Considerations for Using the Data
### Social Impact and Biases
Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population.
### Limitations
- Data quality may vary due to the decentralized nature of collection and preprocessing.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public tweets and does not include private accounts or direct messages.
- Not all tweets contain hashtags or URLs.
## Additional Information
### Licensing Information
The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use.
### Citation Information
If you use this dataset in your research, please cite it as follows:
```
@misc{icedwind2025datauniversex_dataset_12970,
title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
author={icedwind},
year={2025},
url={https://huggingface.co/datasets/icedwind/x_dataset_12970},
}
```
### Contributions
To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.
## Dataset Statistics
[This section is automatically updated]
- **Total Instances:** 54816137
- **Date Range:** 2025-01-22T00:00:00Z to 2025-02-13T00:00:00Z
- **Last Updated:** 2025-02-18T17:33:06Z
### Data Distribution
- Tweets with hashtags: 43.35%
- Tweets without hashtags: 56.65%
### Top 10 Hashtags
For full statistics, please refer to the `stats.json` file in the repository.
| Rank | Topic | Total Count | Percentage |
|------|-------|-------------|-------------|
| 1 | NULL | 31054855 | 56.65% |
| 2 | #riyadh | 354013 | 0.65% |
| 3 | #zelena | 257909 | 0.47% |
| 4 | #tiktok | 233757 | 0.43% |
| 5 | #ad | 128023 | 0.23% |
| 6 | #bbb25 | 127665 | 0.23% |
| 7 | #superbowl | 91524 | 0.17% |
| 8 | #bbmzansi | 78771 | 0.14% |
| 9 | #perfect10linersep16 | 77174 | 0.14% |
| 10 | #pr | 75894 | 0.14% |
## Update History
| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2025-01-28T23:28:09Z | 2878524 | 2878524 |
| 2025-02-01T11:31:54Z | 11125347 | 14003871 |
| 2025-02-04T23:35:23Z | 10564190 | 24568061 |
| 2025-02-08T11:37:41Z | 5577751 | 30145812 |
| 2025-02-11T23:42:08Z | 11929151 | 42074963 |
| 2025-02-16T19:40:54Z | 11389333 | 53464296 |
| 2025-02-18T02:31:26Z | 660780 | 54125076 |
| 2025-02-18T17:33:06Z | 691061 | 54816137 |
|
james-1111/x_dataset_0305158 | james-1111 | 2025-05-07T01:16:34Z | 336 | 0 | [
"task_categories:text-classification",
"task_categories:token-classification",
"task_categories:question-answering",
"task_categories:summarization",
"task_categories:text-generation",
"task_ids:sentiment-analysis",
"task_ids:topic-classification",
"task_ids:named-entity-recognition",
"task_ids:language-modeling",
"task_ids:text-scoring",
"task_ids:multi-class-classification",
"task_ids:multi-label-classification",
"task_ids:extractive-qa",
"task_ids:news-articles-summarization",
"multilinguality:multilingual",
"source_datasets:original",
"license:mit",
"size_categories:10M<n<100M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [
"text-classification",
"token-classification",
"question-answering",
"summarization",
"text-generation"
] | 2025-01-25T07:10:23Z | null | ---
license: mit
multilinguality:
- multilingual
source_datasets:
- original
task_categories:
- text-classification
- token-classification
- question-answering
- summarization
- text-generation
task_ids:
- sentiment-analysis
- topic-classification
- named-entity-recognition
- language-modeling
- text-scoring
- multi-class-classification
- multi-label-classification
- extractive-qa
- news-articles-summarization
---
# Bittensor Subnet 13 X (Twitter) Dataset
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
## Dataset Description
- **Repository:** james-1111/x_dataset_0305158
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5FNEpTedLPFnPqoC8qEB56xnMNd12N4GiUwA1gwW385Rt8n3
### Miner Data Compliance Agreement
In uploading this dataset, I am agreeing to the [Macrocosmos Miner Data Compliance Policy](https://github.com/macrocosm-os/data-universe/blob/add-miner-policy/docs/miner_policy.md).
### Dataset Summary
This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).
### Supported Tasks
The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example:
- Sentiment Analysis
- Trend Detection
- Content Analysis
- User Behavior Modeling
### Languages
Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.
## Dataset Structure
### Data Instances
Each instance represents a single tweet with the following fields:
### Data Fields
- `text` (string): The main content of the tweet.
- `label` (string): Sentiment or topic category of the tweet.
- `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present.
- `datetime` (string): The date when the tweet was posted.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present.
### Data Splits
This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.
## Dataset Creation
### Source Data
Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines.
### Personal and Sensitive Information
All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.
## Considerations for Using the Data
### Social Impact and Biases
Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population.
### Limitations
- Data quality may vary due to the decentralized nature of collection and preprocessing.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public tweets and does not include private accounts or direct messages.
- Not all tweets contain hashtags or URLs.
## Additional Information
### Licensing Information
The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use.
### Citation Information
If you use this dataset in your research, please cite it as follows:
```
@misc{james-11112025datauniversex_dataset_0305158,
title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
author={james-1111},
year={2025},
url={https://huggingface.co/datasets/james-1111/x_dataset_0305158},
}
```
### Contributions
To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.
## Dataset Statistics
[This section is automatically updated]
- **Total Instances:** 4499023
- **Date Range:** 2025-01-02T00:00:00Z to 2025-04-27T00:00:00Z
- **Last Updated:** 2025-05-07T01:16:34Z
### Data Distribution
- Tweets with hashtags: 2.51%
- Tweets without hashtags: 97.49%
### Top 10 Hashtags
For full statistics, please refer to the `stats.json` file in the repository.
| Rank | Topic | Total Count | Percentage |
|------|-------|-------------|-------------|
| 1 | NULL | 1238008 | 91.65% |
| 2 | #箱根駅伝 | 8147 | 0.60% |
| 3 | #thameposeriesep9 | 7605 | 0.56% |
| 4 | #दुनियाको_भ्रमित_करना_बंद_करो | 6500 | 0.48% |
| 5 | #ad | 5237 | 0.39% |
| 6 | #tiktok | 5032 | 0.37% |
| 7 | #zelena | 4878 | 0.36% |
| 8 | #smackdown | 4844 | 0.36% |
| 9 | #कबीर_परमेश्वर_निर्वाण_दिवस | 4843 | 0.36% |
| 10 | #delhielectionresults | 3476 | 0.26% |
## Update History
| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2025-01-25T07:07:31Z | 453526 | 453526 |
| 2025-01-25T07:07:59Z | 453526 | 907052 |
| 2025-01-25T07:08:28Z | 453526 | 1360578 |
| 2025-01-25T07:08:56Z | 446896 | 1807474 |
| 2025-01-25T07:09:24Z | 446896 | 2254370 |
| 2025-01-25T07:09:52Z | 446896 | 2701266 |
| 2025-01-25T07:10:21Z | 446896 | 3148162 |
| 2025-01-25T07:10:51Z | 446896 | 3595058 |
| 2025-02-18T03:40:24Z | 467290 | 4062348 |
| 2025-05-07T01:16:34Z | 436675 | 4499023 |
|
reasoning-proj/exp_rob_dfiltered_DeepSeek-R1-Distill-Qwen-7B_mbenign_complete_step_t30 | reasoning-proj | 2025-05-07T00:37:57Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-07T00:37:55Z | null | ---
dataset_info:
features:
- name: question
dtype: string
- name: answer_content
dtype: string
- name: reference_answer
dtype: string
- name: id
dtype: string
- name: metadata
struct:
- name: question_license
dtype: string
- name: question_source
dtype: string
- name: model_name
dtype: string
- name: verifier_score
dtype: int64
- name: mutated_answer_content
dtype: string
splits:
- name: train
num_bytes: 9163480
num_examples: 600
download_size: 3918238
dataset_size: 9163480
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
CanopyElias/emilia-snac-with-spk-emb-DE | CanopyElias | 2025-05-06T23:07:19Z | 0 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-06T22:56:30Z | null | ---
dataset_info:
features:
- name: codes_list
sequence: int64
- name: speaker_embedding
sequence: float32
- name: text
dtype: string
splits:
- name: part_34
num_bytes: 20899789
num_examples: 3061
- name: part_84
num_bytes: 2960956
num_examples: 373
- name: part_88
num_bytes: 2855397
num_examples: 365
- name: part_61
num_bytes: 16604500
num_examples: 2195
- name: part_67
num_bytes: 16863948
num_examples: 2220
- name: part_68
num_bytes: 16751360
num_examples: 2227
- name: part_62
num_bytes: 17460872
num_examples: 2293
- name: part_65
num_bytes: 17136460
num_examples: 2249
- name: part_40
num_bytes: 35979781
num_examples: 4764
- name: part_41
num_bytes: 36004130
num_examples: 4829
- name: part_79
num_bytes: 11586778
num_examples: 1471
- name: part_30
num_bytes: 38499602
num_examples: 5343
- name: part_58
num_bytes: 25004870
num_examples: 3318
- name: part_49
num_bytes: 38140081
num_examples: 5124
- name: part_17
num_bytes: 88647911
num_examples: 14188
- name: part_15
num_bytes: 106684060
num_examples: 16768
- name: part_9
num_bytes: 113127812
num_examples: 16535
- name: part_2
num_bytes: 114158041
num_examples: 16914
- name: part_25
num_bytes: 109781455
num_examples: 17620
download_size: 340135587
dataset_size: 829147803
configs:
- config_name: default
data_files:
- split: part_34
path: data/part_34-*
- split: part_84
path: data/part_84-*
- split: part_88
path: data/part_88-*
- split: part_61
path: data/part_61-*
- split: part_67
path: data/part_67-*
- split: part_68
path: data/part_68-*
- split: part_62
path: data/part_62-*
- split: part_65
path: data/part_65-*
- split: part_40
path: data/part_40-*
- split: part_41
path: data/part_41-*
- split: part_79
path: data/part_79-*
- split: part_30
path: data/part_30-*
- split: part_58
path: data/part_58-*
- split: part_49
path: data/part_49-*
- split: part_17
path: data/part_17-*
- split: part_15
path: data/part_15-*
- split: part_9
path: data/part_9-*
- split: part_2
path: data/part_2-*
- split: part_25
path: data/part_25-*
---
|
konwoo/lte-ctx16-fs1-np32-lr1e-05 | konwoo | 2025-05-06T21:50:33Z | 0 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-06T21:50:29Z | null | ---
dataset_info:
features:
- name: text
dtype: string
- name: p_log_probs
dtype: float32
- name: q_log_probs
dtype: float32
- name: p_hat_log_probs
dtype: float32
- name: num_tokens
dtype: float32
splits:
- name: train
num_bytes: 10789651
num_examples: 128000
download_size: 8568695
dataset_size: 10789651
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
louisbrulenaudet/code-artisanat | louisbrulenaudet | 2025-05-06T20:39:32Z | 493 | 0 | [
"task_categories:text-generation",
"task_categories:table-question-answering",
"task_categories:summarization",
"task_categories:text-retrieval",
"task_categories:question-answering",
"task_categories:text-classification",
"multilinguality:monolingual",
"source_datasets:original",
"language:fr",
"license:apache-2.0",
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"doi:10.57967/hf/1457",
"region:us",
"finetuning",
"legal",
"french law",
"droit français",
"Code de l'artisanat"
] | [
"text-generation",
"table-question-answering",
"summarization",
"text-retrieval",
"question-answering",
"text-classification"
] | 2023-12-12T18:49:02Z | null | ---
license: apache-2.0
language:
- fr
multilinguality:
- monolingual
tags:
- finetuning
- legal
- french law
- droit français
- Code de l'artisanat
source_datasets:
- original
pretty_name: Code de l'artisanat
task_categories:
- text-generation
- table-question-answering
- summarization
- text-retrieval
- question-answering
- text-classification
size_categories:
- 1K<n<10K
---
# Code de l'artisanat, non-instruct (2025-05-06)
The objective of this project is to provide researchers, professionals and law students with simplified, up-to-date access to all French legal texts, enriched with a wealth of data to facilitate their integration into Community and European projects.
Normally, the data is refreshed daily on all legal codes, and aims to simplify the production of training sets and labeling pipelines for the development of free, open-source language models based on open data accessible to all.
## Concurrent reading of the LegalKit
[<img src="https://raw.githubusercontent.com/louisbrulenaudet/ragoon/main/assets/badge.svg" alt="Built with RAGoon" width="200" height="32"/>](https://github.com/louisbrulenaudet/ragoon)
To use all the legal data published on LegalKit, you can use RAGoon:
```bash
pip3 install ragoon
```
Then, you can load multiple datasets using this code snippet:
```python
# -*- coding: utf-8 -*-
from ragoon import load_datasets
req = [
"louisbrulenaudet/code-artisanat",
"louisbrulenaudet/code-action-sociale-familles",
# ...
]
datasets_list = load_datasets(
req=req,
streaming=False
)
dataset = datasets.concatenate_datasets(
datasets_list
)
```
### Data Structure for Article Information
This section provides a detailed overview of the elements contained within the `item` dictionary. Each key represents a specific attribute of the legal article, with its associated value providing detailed information.
1. **Basic Information**
- `ref` (string): **Reference** - A reference to the article, combining the title_main and the article `number` (e.g., "Code Général des Impôts, art. 123").
- `texte` (string): **Text Content** - The textual content of the article.
- `dateDebut` (string): **Start Date** - The date when the article came into effect.
- `dateFin` (string): **End Date** - The date when the article was terminated or superseded.
- `num` (string): **Article Number** - The number assigned to the article.
- `id` (string): **Article ID** - Unique identifier for the article.
- `cid` (string): **Chronical ID** - Chronical identifier for the article.
- `type` (string): **Type** - The type or classification of the document (e.g., "AUTONOME").
- `etat` (string): **Legal Status** - The current legal status of the article (e.g., "MODIFIE_MORT_NE").
2. **Content and Notes**
- `nota` (string): **Notes** - Additional notes or remarks associated with the article.
- `version_article` (string): **Article Version** - The version number of the article.
- `ordre` (integer): **Order Number** - A numerical value used to sort articles within their parent section.
3. **Additional Metadata**
- `conditionDiffere` (string): **Deferred Condition** - Specific conditions related to collective agreements.
- `infosComplementaires` (string): **Additional Information** - Extra information pertinent to the article.
- `surtitre` (string): **Subtitle** - A subtitle or additional title information related to collective agreements.
- `nature` (string): **Nature** - The nature or category of the document (e.g., "Article").
- `texteHtml` (string): **HTML Content** - The article's content in HTML format.
4. **Versioning and Extensions**
- `dateFinExtension` (string): **End Date of Extension** - The end date if the article has an extension.
- `versionPrecedente` (string): **Previous Version** - Identifier for the previous version of the article.
- `refInjection` (string): **Injection Reference** - Technical reference to identify the date of injection.
- `idTexte` (string): **Text ID** - Identifier for the legal text to which the article belongs.
- `idTechInjection` (string): **Technical Injection ID** - Technical identifier for the injected element.
5. **Origin and Relationships**
- `origine` (string): **Origin** - The origin of the document (e.g., "LEGI").
- `dateDebutExtension` (string): **Start Date of Extension** - The start date if the article has an extension.
- `idEliAlias` (string): **ELI Alias** - Alias for the European Legislation Identifier (ELI).
- `cidTexte` (string): **Text Chronical ID** - Chronical identifier of the text.
6. **Hierarchical Relationships**
- `sectionParentId` (string): **Parent Section ID** - Technical identifier of the parent section.
- `multipleVersions` (boolean): **Multiple Versions** - Indicates if the article has multiple versions.
- `comporteLiensSP` (boolean): **Contains Public Service Links** - Indicates if the article contains links to public services.
- `sectionParentTitre` (string): **Parent Section Title** - Title of the parent section (e.g., "I : Revenu imposable").
- `infosRestructurationBranche` (string): **Branch Restructuring Information** - Information about branch restructuring.
- `idEli` (string): **ELI ID** - European Legislation Identifier (ELI) for the article.
- `sectionParentCid` (string): **Parent Section Chronical ID** - Chronical identifier of the parent section.
7. **Additional Content and History**
- `numeroBo` (string): **Official Bulletin Number** - Number of the official bulletin where the article was published.
- `infosRestructurationBrancheHtml` (string): **Branch Restructuring Information (HTML)** - Branch restructuring information in HTML format.
- `historique` (string): **History** - Historical context or changes specific to collective agreements.
- `infosComplementairesHtml` (string): **Additional Information (HTML)** - Additional information in HTML format.
- `renvoi` (string): **Reference** - References to content within the article (e.g., "(1)").
- `fullSectionsTitre` (string): **Full Section Titles** - Concatenation of all titles in the parent chain.
- `notaHtml` (string): **Notes (HTML)** - Additional notes or remarks in HTML format.
- `inap` (string): **INAP** - A placeholder for INAP-specific information.
## Feedback
If you have any feedback, please reach out at [louisbrulenaudet@icloud.com](mailto:louisbrulenaudet@icloud.com). |
WardahsLab/UJ_Staple_Pantry_1000 | WardahsLab | 2025-05-06T20:25:17Z | 0 | 0 | [
"task_categories:image-segmentation",
"license:cc-by-sa-4.0",
"size_categories:1K<n<10K",
"format:imagefolder",
"modality:image",
"library:datasets",
"library:mlcroissant",
"region:us"
] | [
"image-segmentation"
] | 2025-05-06T13:35:46Z | null | ---
license: cc-by-sa-4.0
task_categories:
- image-segmentation
size_categories:
- 1K<n<10K
---
# The Staple Pantry Dataset 🥫
This research introduces the **Staple Pantry Dataset**, a new benchmark for **instance-level ingredient segmentation of raw pantry items** focusing on cluttered and overlapping ingredients. Our dataset offers precise instance masks for everyday food items such as grains, flour, spices, and fresh vegetables, providing a more practical benchmark for real-world kitchen automation systems.
## Dataset Overview 📊
### Key Features
- **1,000 images** with **6,882 instance masks** and **405,534,586 labelled pixels** across **100 ingredient categories**.
- **Real-world complexity**: Overlapping items, obscured items, variable lighting, cluttered backgrounds.
- **High-quality annotations**: Pixel-level polygon masks for fine-grained textures (e.g., salt grains, vegetable stems).
## Dataset Structure 📂
The dataset is organised as follows:
```plaintext
UJ Staple Pantry 1000/
├── train/
│ ├── images/
│ ├── annotations.json
├── valid/
│ ├── images/
│ ├── annotations.json
```
## Dataset Splits 🧩
| Split | Images | Instances |
|-------|--------|-----------|
| Train | 800 | 5,506 |
| Test | 200 | 1,376 | |
mih12345/tts_italian_may_7 | mih12345 | 2025-05-06T18:49:01Z | 0 | 0 | [
"license:mit",
"region:us"
] | [] | 2025-05-06T18:08:50Z | null | ---
license: mit
dataset_info:
features:
- name: text
dtype: string
- name: stringlengths
dtype: int64
- name: audio
dtype: audio
- name: audioduration(s)
dtype: float64
splits:
- name: train
num_bytes: 620296000.844
num_examples: 1223
download_size: 566413313
dataset_size: 620296000.844
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
reasoning-proj/exp_rob_dfiltered_Llama-3_1-Nemotron-Nano-8B-v1_mneutral_add_random_text_t50 | reasoning-proj | 2025-05-06T18:40:31Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-06T18:40:27Z | null | ---
dataset_info:
features:
- name: question
dtype: string
- name: answer_content
dtype: string
- name: reference_answer
dtype: string
- name: id
dtype: string
- name: metadata
struct:
- name: question_license
dtype: string
- name: question_source
dtype: string
- name: model_name
dtype: string
- name: verifier_score
dtype: int64
- name: mutated_answer_content
dtype: string
splits:
- name: train
num_bytes: 897822
num_examples: 50
download_size: 351195
dataset_size: 897822
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Aravindh25/trossen_pick_granola_bars_3cam_v1 | Aravindh25 | 2025-05-06T18:13:50Z | 0 | 0 | [
"task_categories:robotics",
"license:apache-2.0",
"region:us",
"LeRobot",
"tutorial"
] | [
"robotics"
] | 2025-05-06T18:12:05Z | null | ---
license: apache-2.0
task_categories:
- robotics
tags:
- LeRobot
- tutorial
configs:
- config_name: default
data_files: data/*/*.parquet
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
## Dataset Description
- **Homepage:** [More Information Needed]
- **Paper:** [More Information Needed]
- **License:** apache-2.0
## Dataset Structure
[meta/info.json](meta/info.json):
```json
{
"codebase_version": "v2.1",
"robot_type": "trossen_ai_solo",
"total_episodes": 25,
"total_frames": 34048,
"total_tasks": 1,
"total_videos": 75,
"total_chunks": 1,
"chunks_size": 1000,
"fps": 30,
"splits": {
"train": "0:25"
},
"data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet",
"video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4",
"features": {
"action": {
"dtype": "float32",
"shape": [
7
],
"names": [
"main_joint_0",
"main_joint_1",
"main_joint_2",
"main_joint_3",
"main_joint_4",
"main_joint_5",
"main_joint_6"
]
},
"observation.state": {
"dtype": "float32",
"shape": [
7
],
"names": [
"main_joint_0",
"main_joint_1",
"main_joint_2",
"main_joint_3",
"main_joint_4",
"main_joint_5",
"main_joint_6"
]
},
"observation.images.cam_wrist": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 30.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "h264",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"observation.images.cam_high": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 30.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "h264",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"observation.images.cam_front": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 30.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "h264",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"timestamp": {
"dtype": "float32",
"shape": [
1
],
"names": null
},
"frame_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"episode_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"task_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
}
}
}
```
## Citation
**BibTeX:**
```bibtex
[More Information Needed]
``` |
IABD11/DatasetEmocionesIABD11 | IABD11 | 2025-05-06T17:53:37Z | 8 | 0 | [
"license:cc-by-nc-4.0",
"size_categories:n<1K",
"format:csv",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-04-29T17:10:37Z | null | ---
license: cc-by-nc-4.0
---
# DatasetEmocionesIABD11
Este dataset contiene frases en español etiquetadas con emociones básicas. Está diseñado para tareas de clasificación de emociones en texto.
## 📁 Estructura del Dataset
El dataset está en formato CSV y contiene dos columnas:
- `texto`: una frase en español.
- `emocion`: etiqueta textual que representa la emoción principal expresada en la frase.
### Ejemplo:
```csv
texto,emocion
"Estoy muy feliz por todo lo que está pasando",alegre
"Hoy ha sido un gran día",alegre
"Me encanta la vida",alegre
"No tengo ganas de hacer nada",triste
"Todo me sale mal últimamente",triste
"Estoy muy cansado de todo",triste
"Voy al supermercado",neutral
"Está lloviendo",neutral
"El coche es rojo",neutral
```
# 👨💻 Autor
**Nombre:** Miguel Sedano Izurieta
**Asignatura:** SBD
**Curso:** IABD |
reasoning-proj/exp_rob_dfiltered_DeepSeek_R1_Distill_Qwen_1_5B_madversarial_insert_w_t10 | reasoning-proj | 2025-05-06T17:52:12Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-06T16:48:58Z | null | ---
dataset_info:
features:
- name: question
dtype: string
- name: answer_content
dtype: string
- name: reference_answer
dtype: string
- name: id
dtype: string
- name: metadata
struct:
- name: question_license
dtype: string
- name: question_source
dtype: string
- name: model_name
dtype: string
- name: verifier_score
dtype: int64
- name: mutated_answer_content
dtype: string
splits:
- name: train
num_bytes: 788325
num_examples: 50
download_size: 314168
dataset_size: 788325
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
OPR-Project/NCLT_OpenPlaceRecognition | OPR-Project | 2025-05-06T16:52:50Z | 1,811 | 0 | [
"license:odbl",
"region:us"
] | [] | 2025-03-24T17:26:34Z | null | ---
license: odbl
---
[NCLT Dataset](http://robots.engin.umich.edu/nclt/index.html#top) is The University of Michigan North Campus Long-Term Vision and LIDAR Dataset.
This dataset is a modified version of the NCLT Dataset, which is licensed under the Open Database License (ODbL) v1.0.
As required by the license, this modified version is also released under the ODbL v1.0. You must attribute the original source and share any further modifications under the same license.
---
# ❗ Please note
**This dataset is currently not compatible with the `datasets` library.**
The recommended way to download the data is by using the `huggingface_hub` library.
Example code snippet:
```python
from pathlib import Path
from huggingface_hub import snapshot_download
out_dir = Path("/dir/to/save/data")
out_dir.mkdir(parents=True, exist_ok=True)
snapshot_download(repo_id="OPR-Project/NCLT_OpenPlaceRecognition", repo_type="dataset", local_dir=out_dir)
```
For reading and working with the data, we recommend using the OpenPlaceRecognition library: https://github.com/OPR-Project/OpenPlaceRecognition
|
mteb/MalayalamNewsClassification | mteb | 2025-05-06T16:13:21Z | 0 | 0 | [
"task_categories:text-classification",
"task_ids:topic-classification",
"annotations_creators:derived",
"multilinguality:monolingual",
"language:mal",
"license:mit",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2005.00085",
"arxiv:2502.13595",
"arxiv:2210.07316",
"region:us",
"mteb",
"text"
] | [
"text-classification"
] | 2025-05-06T16:13:17Z | null | ---
annotations_creators:
- derived
language:
- mal
license: mit
multilinguality: monolingual
task_categories:
- text-classification
task_ids:
- topic-classification
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: string
splits:
- name: train
num_bytes: 1153014
num_examples: 5036
- name: test
num_bytes: 292970
num_examples: 1260
download_size: 577789
dataset_size: 1445984
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
<h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">MalayalamNewsClassification</h1>
<div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
<div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>
A Malayalam dataset for 3-class classification of Malayalam news articles
| | |
|---------------|---------------------------------------------|
| Task category | t2c |
| Domains | News, Written |
| Reference | https://github.com/goru001/nlp-for-malyalam |
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_tasks(["MalayalamNewsClassification"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@article{kunchukuttan2020indicnlpcorpus,
author = {Anoop Kunchukuttan and Divyanshu Kakwani and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},
journal = {arXiv preprint arXiv:2005.00085},
title = {AI4Bharat-IndicNLP Corpus: Monolingual Corpora and Word Embeddings for Indic Languages},
year = {2020},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
<details>
<summary> Dataset Statistics</summary>
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("MalayalamNewsClassification")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"test": {
"num_samples": 1260,
"number_of_characters": 101349,
"number_texts_intersect_with_train": 34,
"min_text_length": 14,
"average_text_length": 80.43571428571428,
"max_text_length": 375,
"unique_text": 1251,
"unique_labels": 3,
"labels": {
"business": {
"count": 383
},
"sports": {
"count": 446
},
"entertainment": {
"count": 431
}
}
},
"train": {
"num_samples": 5036,
"number_of_characters": 400263,
"number_texts_intersect_with_train": null,
"min_text_length": 10,
"average_text_length": 79.48034154090548,
"max_text_length": 399,
"unique_text": 4958,
"unique_labels": 3,
"labels": {
"business": {
"count": 1540
},
"sports": {
"count": 1743
},
"entertainment": {
"count": 1753
}
}
}
}
```
</details>
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)* |
c-ho/bll_pt | c-ho | 2025-05-06T15:51:39Z | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-06T14:59:13Z | null | ---
dataset_info:
features:
- name: doc_id
dtype: string
- name: doc_title
dtype: string
- name: doc_lang
dtype: string
- name: doc_type
dtype: string
- name: doc_desc_list
sequence: string
- name: ddc
dtype: string
- name: doc_subject_list
sequence: string
- name: bll_match_id
sequence: string
- name: bll_match_literals
sequence:
sequence: string
- name: bll_superclasses
sequence:
sequence: string
- name: bll_superclass_literals
sequence:
sequence:
sequence: string
- name: bll_top_node
sequence: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 31891495
num_examples: 4476
download_size: 10725952
dataset_size: 31891495
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
xbilek25/static_train_10800_14400 | xbilek25 | 2025-05-06T15:05:53Z | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:audio",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-06T15:05:20Z | null | ---
dataset_info:
features:
- name: client_id
dtype: string
- name: path
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: sentence
dtype: string
- name: up_votes
dtype: int64
- name: down_votes
dtype: int64
- name: age
dtype: string
- name: gender
dtype: string
- name: accent
dtype: string
- name: locale
dtype: string
- name: segment
dtype: string
- name: variant
dtype: string
splits:
- name: train
num_bytes: 773517598.0
num_examples: 3600
download_size: 718803067
dataset_size: 773517598.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
TheoM55/mvtec_all_objects_split | TheoM55 | 2025-05-06T15:02:16Z | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-06T14:56:18Z | null | ---
dataset_info:
features:
- name: image_path
dtype: image
- name: split
dtype: string
- name: object
dtype: string
- name: defect
dtype: string
- name: label
dtype: int64
- name: mask_path
dtype: image
splits:
- name: bottle.train
num_bytes: 111821158.75214793
num_examples: 209
- name: bottle.test
num_bytes: 44740733.676690325
num_examples: 83
- name: cable.train
num_bytes: 303321613.3563691
num_examples: 224
- name: cable.test
num_bytes: 201868992.04221144
num_examples: 150
- name: capsule.train
num_bytes: 252459879.8216287
num_examples: 219
- name: capsule.test
num_bytes: 152284222.31714606
num_examples: 132
- name: carpet.train
num_bytes: 522219865.94546133
num_examples: 280
- name: carpet.test
num_bytes: 218719829.71292493
num_examples: 117
- name: grid.train
num_bytes: 124224944.63429211
num_examples: 264
- name: grid.test
num_bytes: 37170487.141949944
num_examples: 78
- name: hazelnut.train
num_bytes: 480029810.4166978
num_examples: 391
- name: hazelnut.test
num_bytes: 137561138.7642884
num_examples: 110
- name: leather.train
num_bytes: 341465508.2022787
num_examples: 245
- name: leather.test
num_bytes: 183970644.66156146
num_examples: 124
- name: metal_nut.train
num_bytes: 109148948.52857676
num_examples: 220
- name: metal_nut.test
num_bytes: 56704001.29902876
num_examples: 115
- name: pill.train
num_bytes: 168148799.75513634
num_examples: 267
- name: pill.test
num_bytes: 106922400.06032872
num_examples: 167
- name: screw.train
num_bytes: 130516544.22338438
num_examples: 320
- name: screw.test
num_bytes: 65443158.11169219
num_examples: 160
- name: tile.train
num_bytes: 233535029.59805754
num_examples: 230
- name: tile.test
num_bytes: 118193690.71292491
num_examples: 117
- name: toothbrush.train
num_bytes: 64393390.41688457
num_examples: 60
- name: toothbrush.test
num_bytes: 45091343.6918192
num_examples: 42
- name: transistor.train
num_bytes: 274201541.57994026
num_examples: 213
- name: transistor.test
num_bytes: 128987954.69480762
num_examples: 100
- name: wood.train
num_bytes: 377587786.6161748
num_examples: 247
- name: wood.test
num_bytes: 120878073.84889802
num_examples: 79
- name: zipper.train
num_bytes: 98334094.66753829
num_examples: 240
- name: zipper.test
num_bytes: 61185288.74915951
num_examples: 151
download_size: 5269258143
dataset_size: 5271130876.000001
configs:
- config_name: default
data_files:
- split: bottle.train
path: data/bottle.train-*
- split: bottle.test
path: data/bottle.test-*
- split: cable.train
path: data/cable.train-*
- split: cable.test
path: data/cable.test-*
- split: capsule.train
path: data/capsule.train-*
- split: capsule.test
path: data/capsule.test-*
- split: carpet.train
path: data/carpet.train-*
- split: carpet.test
path: data/carpet.test-*
- split: grid.train
path: data/grid.train-*
- split: grid.test
path: data/grid.test-*
- split: hazelnut.train
path: data/hazelnut.train-*
- split: hazelnut.test
path: data/hazelnut.test-*
- split: leather.train
path: data/leather.train-*
- split: leather.test
path: data/leather.test-*
- split: metal_nut.train
path: data/metal_nut.train-*
- split: metal_nut.test
path: data/metal_nut.test-*
- split: pill.train
path: data/pill.train-*
- split: pill.test
path: data/pill.test-*
- split: screw.train
path: data/screw.train-*
- split: screw.test
path: data/screw.test-*
- split: tile.train
path: data/tile.train-*
- split: tile.test
path: data/tile.test-*
- split: toothbrush.train
path: data/toothbrush.train-*
- split: toothbrush.test
path: data/toothbrush.test-*
- split: transistor.train
path: data/transistor.train-*
- split: transistor.test
path: data/transistor.test-*
- split: wood.train
path: data/wood.train-*
- split: wood.test
path: data/wood.test-*
- split: zipper.train
path: data/zipper.train-*
- split: zipper.test
path: data/zipper.test-*
---
|
konwoo/37M-ctx16-100M | konwoo | 2025-05-06T14:20:03Z | 0 | 0 | [
"size_categories:100M<n<1B",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-06T14:16:43Z | null | ---
dataset_info:
features:
- name: text
dtype: string
splits:
- name: train
num_bytes: 6762176534
num_examples: 100000000
download_size: 5092025391
dataset_size: 6762176534
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
txya900619/audiocaps-16k | txya900619 | 2025-05-06T14:13:00Z | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:audio",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-06T13:00:43Z | null | ---
dataset_info:
features:
- name: youtube_id
dtype: string
- name: start_time
dtype: int64
- name: caption
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
splits:
- name: train
num_bytes: 9088777452.895
num_examples: 34365
- name: val
num_bytes: 491016602.331
num_examples: 1759
- name: test
num_bytes: 889188037.952
num_examples: 3366
download_size: 10351008734
dataset_size: 10468982093.178
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: val
path: data/val-*
- split: test
path: data/test-*
---
|
CentrumDiagnostykiZnamion/dataset_melanoma | CentrumDiagnostykiZnamion | 2025-05-06T14:01:08Z | 0 | 0 | [
"license:other",
"size_categories:n<1K",
"format:imagefolder",
"modality:image",
"library:datasets",
"library:mlcroissant",
"region:us"
] | [] | 2025-05-06T14:01:04Z | null | ---
license: other
license_name: safescan-validation-restricted-use-agreement
license_link: LICENSE
--- |
munnabhaimbbsfail/folderuploaddataset | munnabhaimbbsfail | 2025-05-06T13:58:41Z | 0 | 0 | [
"task_categories:token-classification",
"language:aa",
"license:unknown",
"size_categories:n<1K",
"format:imagefolder",
"modality:image",
"library:datasets",
"library:mlcroissant",
"region:us",
"art"
] | [
"token-classification"
] | 2025-05-06T13:39:10Z | null | ---
license: unknown
task_categories:
- token-classification
language:
- aa
tags:
- art
pretty_name: gjhghjhb
size_categories:
- 1K<n<10K
--- |
SciKnowOrg/ontolearner-arts_and_humanities | SciKnowOrg | 2025-05-06T13:24:37Z | 0 | 0 | [
"language:en",
"license:mit",
"region:us",
"OntoLearner",
"ontology-learning",
"arts_and_humanities"
] | [] | 2025-05-06T13:24:33Z | null |
---
license: mit
language:
- en
tags:
- OntoLearner
- ontology-learning
- arts_and_humanities
pretty_name: Agricultural
---
<div>
<img src="https://raw.githubusercontent.com/sciknoworg/OntoLearner/main/images/logo.png" alt="OntoLearner"
style="display: block; margin: 0 auto; width: 500px; height: auto;">
<h1 style="text-align: center; margin-top: 1em;">Arts And Humanities Domain Ontologies</h1>
</div>
## Overview
The arts and humanities domain encompasses ontologies that systematically represent and categorize the diverse aspects of human cultural expression, including music, visual arts, historical artifacts, and broader humanistic studies. This domain plays a crucial role in knowledge representation by providing structured frameworks that facilitate the organization, retrieval, and analysis of complex cultural and artistic data. Through these ontologies, the domain supports interdisciplinary research and enhances the understanding and preservation of cultural heritage.
## Ontologies
| Ontology ID | Full Name | Classes | Properties | Last Updated |
|-------------|-----------|---------|------------|--------------|
| ChordOntology | Chord Ontology (ChordOntology) | 9 | 0 | 2007-10-25|
| ICON | Icon Ontology (ICON) | 76 | 68 | April 26th, 2024|
| MusicOntology | Music Ontology (MusicOntology) | 92 | 165 | 2013/07/22|
| Nomisma | Nomisma Ontology (Nomisma) | 36 | 71 | 2025-01-22|
| TimelineOntology | Timeline Ontology (TimelineOntology) | 47 | 46 | 25th October 2007|
## Dataset Files
Each ontology directory contains the following files:
1. `<ontology_id>.<format>` - The original ontology file
2. `term_typings.json` - Dataset of term to type mappings
3. `taxonomies.json` - Dataset of taxonomic relations
4. `non_taxonomic_relations.json` - Dataset of non-taxonomic relations
5. `<ontology_id>.rst` - Documentation describing the ontology
## Usage
These datasets are intended for ontology learning research and applications.
|
Elif3757/bookDataSet | Elif3757 | 2025-05-06T12:50:12Z | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-06T12:49:11Z | null | ---
dataset_info:
features:
- name: instruction
dtype: string
- name: input
dtype: string
- name: output
dtype: string
splits:
- name: train
num_bytes: 23135676.7050891
num_examples: 11212
- name: test
num_bytes: 2571089.2949109008
num_examples: 1246
download_size: 9834010
dataset_size: 25706766.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
|
mteb/LearnedHandsEducationLegalBenchClassification | mteb | 2025-05-06T12:42:03Z | 0 | 0 | [
"task_categories:text-classification",
"annotations_creators:expert-annotated",
"multilinguality:monolingual",
"language:eng",
"license:cc-by-nc-sa-4.0",
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2308.11462",
"arxiv:2502.13595",
"arxiv:2210.07316",
"region:us",
"mteb",
"text"
] | [
"text-classification"
] | 2025-05-06T12:41:58Z | null | ---
annotations_creators:
- expert-annotated
language:
- eng
license: cc-by-nc-sa-4.0
multilinguality: monolingual
task_categories:
- text-classification
task_ids: []
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 6971
num_examples: 6
- name: test
num_bytes: 78942
num_examples: 56
download_size: 62342
dataset_size: 85913
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
<h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">LearnedHandsEducationLegalBenchClassification</h1>
<div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
<div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>
This is a binary classification task in which the model must determine if a user's post discusses issues around school, including accommodations for special needs, discrimination, student debt, discipline, and other issues in education.
| | |
|---------------|---------------------------------------------|
| Task category | t2c |
| Domains | Legal, Written |
| Reference | https://huggingface.co/datasets/nguha/legalbench |
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_tasks(["LearnedHandsEducationLegalBenchClassification"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@misc{guha2023legalbench,
archiveprefix = {arXiv},
author = {Neel Guha and Julian Nyarko and Daniel E. Ho and Christopher Ré and Adam Chilton and Aditya Narayana and Alex Chohlas-Wood and Austin Peters and Brandon Waldon and Daniel N. Rockmore and Diego Zambrano and Dmitry Talisman and Enam Hoque and Faiz Surani and Frank Fagan and Galit Sarfaty and Gregory M. Dickinson and Haggai Porat and Jason Hegland and Jessica Wu and Joe Nudell and Joel Niklaus and John Nay and Jonathan H. Choi and Kevin Tobia and Margaret Hagan and Megan Ma and Michael Livermore and Nikon Rasumov-Rahe and Nils Holzenberger and Noam Kolt and Peter Henderson and Sean Rehaag and Sharad Goel and Shang Gao and Spencer Williams and Sunny Gandhi and Tom Zur and Varun Iyer and Zehua Li},
eprint = {2308.11462},
primaryclass = {cs.CL},
title = {LegalBench: A Collaboratively Built Benchmark for Measuring Legal Reasoning in Large Language Models},
year = {2023},
}
@dataset{learned_hands,
author = {{Suffolk University Law School} and {Stanford Legal Design Lab}},
note = {The LearnedHands dataset is licensed under CC BY-NC-SA 4.0},
title = {LearnedHands Dataset},
url = {https://spot.suffolklitlab.org/data/#learnedhands},
urldate = {2022-05-21},
year = {2022},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
<details>
<summary> Dataset Statistics</summary>
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("LearnedHandsEducationLegalBenchClassification")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"test": {
"num_samples": 56,
"number_of_characters": 78257,
"number_texts_intersect_with_train": 0,
"min_text_length": 214,
"average_text_length": 1397.4464285714287,
"max_text_length": 4864,
"unique_text": 56,
"unique_labels": 2,
"labels": {
"1": {
"count": 28
},
"0": {
"count": 28
}
}
},
"train": {
"num_samples": 6,
"number_of_characters": 6899,
"number_texts_intersect_with_train": null,
"min_text_length": 822,
"average_text_length": 1149.8333333333333,
"max_text_length": 1637,
"unique_text": 6,
"unique_labels": 2,
"labels": {
"1": {
"count": 3
},
"0": {
"count": 3
}
}
}
}
```
</details>
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)* |
mteb/LanguageClassification | mteb | 2025-05-06T12:40:38Z | 0 | 0 | [
"task_categories:text-classification",
"task_ids:language-identification",
"annotations_creators:derived",
"multilinguality:monolingual",
"language:ara",
"language:bul",
"language:cmn",
"language:deu",
"language:ell",
"language:eng",
"language:fra",
"language:hin",
"language:ita",
"language:jpn",
"language:nld",
"language:pol",
"language:por",
"language:rus",
"language:spa",
"language:swa",
"language:tha",
"language:tur",
"language:urd",
"language:vie",
"license:unknown",
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2502.13595",
"arxiv:2210.07316",
"region:us",
"mteb",
"text"
] | [
"text-classification"
] | 2025-05-06T12:40:33Z | null | ---
annotations_creators:
- derived
language:
- ara
- bul
- cmn
- deu
- ell
- eng
- fra
- hin
- ita
- jpn
- nld
- pol
- por
- rus
- spa
- swa
- tha
- tur
- urd
- vie
license: unknown
multilinguality: monolingual
task_categories:
- text-classification
task_ids:
- language-identification
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 12455318
num_examples: 70000
- name: validation
num_bytes: 1777455
num_examples: 10000
- name: test
num_bytes: 363008
num_examples: 2048
download_size: 10878978
dataset_size: 14595781
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
<h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">LanguageClassification</h1>
<div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
<div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>
A language identification dataset for 20 languages.
| | |
|---------------|---------------------------------------------|
| Task category | t2c |
| Domains | Reviews, Web, Non-fiction, Fiction, Government, Written |
| Reference | https://huggingface.co/datasets/papluca/language-identification |
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_tasks(["LanguageClassification"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@inproceedings{conneau2018xnli,
author = {Conneau, Alexis
and Rinott, Ruty
and Lample, Guillaume
and Williams, Adina
and Bowman, Samuel R.
and Schwenk, Holger
and Stoyanov, Veselin},
booktitle = {Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing},
location = {Brussels, Belgium},
publisher = {Association for Computational Linguistics},
title = {XNLI: Evaluating Cross-lingual Sentence Representations},
year = {2018},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
<details>
<summary> Dataset Statistics</summary>
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("LanguageClassification")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"test": {
"num_samples": 2048,
"number_of_characters": 224352,
"num_texts_in_train": 31,
"min_text_length": 14,
"average_text_length": 109.546875,
"max_text_length": 1270,
"unique_text": 2025,
"unique_labels": 20,
"labels": {
"17": {
"count": 102
},
"0": {
"count": 102
},
"11": {
"count": 102
},
"4": {
"count": 103
},
"3": {
"count": 102
},
"1": {
"count": 102
},
"10": {
"count": 102
},
"2": {
"count": 103
},
"16": {
"count": 103
},
"9": {
"count": 103
},
"5": {
"count": 102
},
"7": {
"count": 102
},
"13": {
"count": 102
},
"14": {
"count": 103
},
"12": {
"count": 102
},
"15": {
"count": 103
},
"19": {
"count": 102
},
"18": {
"count": 102
},
"6": {
"count": 103
},
"8": {
"count": 103
}
}
},
"train": {
"num_samples": 70000,
"number_of_characters": 7760299,
"num_texts_in_train": null,
"min_text_length": 2,
"average_text_length": 110.86141428571429,
"max_text_length": 2422,
"unique_text": 68978,
"unique_labels": 20,
"labels": {
"12": {
"count": 3500
},
"1": {
"count": 3500
},
"19": {
"count": 3500
},
"15": {
"count": 3500
},
"13": {
"count": 3500
},
"11": {
"count": 3500
},
"17": {
"count": 3500
},
"14": {
"count": 3500
},
"16": {
"count": 3500
},
"5": {
"count": 3500
},
"0": {
"count": 3500
},
"8": {
"count": 3500
},
"7": {
"count": 3500
},
"2": {
"count": 3500
},
"3": {
"count": 3500
},
"10": {
"count": 3500
},
"6": {
"count": 3500
},
"18": {
"count": 3500
},
"4": {
"count": 3500
},
"9": {
"count": 3500
}
}
}
}
```
</details>
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)* |
mteb/HamshahriClustring | mteb | 2025-05-06T12:13:32Z | 0 | 0 | [
"task_categories:text-classification",
"annotations_creators:derived",
"multilinguality:monolingual",
"language:fas",
"license:unknown",
"modality:text",
"arxiv:2502.13595",
"arxiv:2210.07316",
"region:us",
"mteb",
"text"
] | [
"text-classification"
] | 2025-05-06T12:13:29Z | null | ---
annotations_creators:
- derived
language:
- fas
license: unknown
multilinguality: monolingual
task_categories:
- text-classification
task_ids: []
dataset_info:
features:
- name: sentences
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 828718
num_examples: 2048
download_size: 414008
dataset_size: 828718
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
<h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">HamshahriClustring</h1>
<div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
<div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>
These datasets have been extracted from the RSS feed of two Farsi news agency websites.
| | |
|---------------|---------------------------------------------|
| Task category | t2c |
| Domains | News |
| Reference | https://github.com/mallahyari/Farsi-datasets |
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_tasks(["HamshahriClustring"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
<details>
<summary> Dataset Statistics</summary>
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("HamshahriClustring")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"test": {
"num_samples": 2048,
"number_of_characters": 444075,
"min_text_length": 72,
"average_text_length": 216.83349609375,
"max_text_length": 458,
"unique_texts": 322,
"min_labels_per_text": 2,
"average_labels_per_text": 1.0,
"max_labels_per_text": 237,
"unique_labels": 47,
"labels": {
"6": {
"count": 96
},
"11": {
"count": 150
},
"10": {
"count": 189
},
"25": {
"count": 132
},
"14": {
"count": 26
},
"27": {
"count": 101
},
"34": {
"count": 25
},
"29": {
"count": 111
},
"28": {
"count": 141
},
"17": {
"count": 51
},
"33": {
"count": 54
},
"24": {
"count": 12
},
"12": {
"count": 132
},
"42": {
"count": 237
},
"0": {
"count": 33
},
"30": {
"count": 64
},
"35": {
"count": 23
},
"3": {
"count": 49
},
"44": {
"count": 9
},
"4": {
"count": 16
},
"23": {
"count": 7
},
"16": {
"count": 37
},
"8": {
"count": 26
},
"38": {
"count": 36
},
"1": {
"count": 21
},
"46": {
"count": 14
},
"2": {
"count": 15
},
"45": {
"count": 16
},
"7": {
"count": 27
},
"9": {
"count": 12
},
"5": {
"count": 20
},
"31": {
"count": 21
},
"13": {
"count": 9
},
"43": {
"count": 16
},
"36": {
"count": 7
},
"32": {
"count": 41
},
"26": {
"count": 15
},
"21": {
"count": 10
},
"22": {
"count": 12
},
"20": {
"count": 15
},
"19": {
"count": 2
},
"18": {
"count": 2
},
"39": {
"count": 2
},
"40": {
"count": 2
},
"15": {
"count": 5
},
"37": {
"count": 5
},
"41": {
"count": 2
}
}
}
}
```
</details>
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)* |
mteb/FrenkEnClassification | mteb | 2025-05-06T12:09:40Z | 0 | 0 | [
"task_categories:text-classification",
"task_ids:sentiment-analysis",
"task_ids:sentiment-scoring",
"task_ids:sentiment-classification",
"task_ids:hate-speech-detection",
"annotations_creators:derived",
"multilinguality:monolingual",
"language:eng",
"license:unknown",
"modality:text",
"arxiv:1906.02045",
"arxiv:2502.13595",
"arxiv:2210.07316",
"region:us",
"mteb",
"text"
] | [
"text-classification"
] | 2025-05-06T12:09:36Z | null | ---
annotations_creators:
- derived
language:
- eng
license: unknown
multilinguality: monolingual
task_categories:
- text-classification
task_ids:
- sentiment-analysis
- sentiment-scoring
- sentiment-classification
- hate-speech-detection
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 1323909
num_examples: 8404
- name: validation
num_bytes: 145112
num_examples: 933
- name: test
num_bytes: 466308
num_examples: 2301
download_size: 1244444
dataset_size: 1935329
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
<h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">FrenkEnClassification</h1>
<div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
<div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>
English subset of the FRENK dataset
| | |
|---------------|---------------------------------------------|
| Task category | t2c |
| Domains | Social, Written |
| Reference | https://arxiv.org/abs/1906.02045 |
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_tasks(["FrenkEnClassification"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@misc{ljubešić2019frenk,
archiveprefix = {arXiv},
author = {Nikola Ljubešić and Darja Fišer and Tomaž Erjavec},
eprint = {1906.02045},
primaryclass = {cs.CL},
title = {The FRENK Datasets of Socially Unacceptable Discourse in Slovene and English},
url = {https://arxiv.org/abs/1906.02045},
year = {2019},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
<details>
<summary> Dataset Statistics</summary>
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("FrenkEnClassification")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"test": {
"num_samples": 2301,
"number_of_characters": 434318,
"number_texts_intersect_with_train": 23,
"min_text_length": 1,
"average_text_length": 188.75184702303346,
"max_text_length": 7322,
"unique_text": 2282,
"unique_labels": 2,
"labels": {
"0": {
"count": 1426
},
"1": {
"count": 875
}
}
},
"train": {
"num_samples": 8404,
"number_of_characters": 1216080,
"number_texts_intersect_with_train": null,
"min_text_length": 1,
"average_text_length": 144.70252260828178,
"max_text_length": 5449,
"unique_text": 8275,
"unique_labels": 2,
"labels": {
"0": {
"count": 5379
},
"1": {
"count": 3025
}
}
}
}
```
</details>
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)* |
mteb/CzechSubjectivityClassification | mteb | 2025-05-06T12:01:30Z | 0 | 0 | [
"task_categories:text-classification",
"task_ids:sentiment-analysis",
"task_ids:sentiment-scoring",
"task_ids:sentiment-classification",
"task_ids:hate-speech-detection",
"annotations_creators:human-annotated",
"multilinguality:monolingual",
"language:ces",
"license:unknown",
"modality:text",
"arxiv:2009.08712",
"arxiv:2502.13595",
"arxiv:2210.07316",
"region:us",
"mteb",
"text"
] | [
"text-classification"
] | 2025-05-06T12:01:25Z | null | ---
annotations_creators:
- human-annotated
language:
- ces
license: unknown
multilinguality: monolingual
task_categories:
- text-classification
task_ids:
- sentiment-analysis
- sentiment-scoring
- sentiment-classification
- hate-speech-detection
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 994630
num_examples: 7443
- name: validation
num_bytes: 66061
num_examples: 500
- name: test
num_bytes: 264471
num_examples: 2000
download_size: 949685
dataset_size: 1325162
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
<h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">CzechSubjectivityClassification</h1>
<div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
<div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>
An Czech dataset for subjectivity classification.
| | |
|---------------|---------------------------------------------|
| Task category | t2c |
| Domains | Reviews, Written |
| Reference | https://arxiv.org/abs/2009.08712 |
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_tasks(["CzechSubjectivityClassification"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@inproceedings{priban-steinberger-2022-czech,
address = {Marseille, France},
author = {P{\v{r}}ib{\'a}{\v{n}}, Pavel and
Steinberger, Josef},
booktitle = {Proceedings of the Thirteenth Language Resources and Evaluation Conference},
month = jun,
pages = {1381--1391},
publisher = {European Language Resources Association},
title = {\{C\}zech Dataset for Cross-lingual Subjectivity Classification},
url = {https://aclanthology.org/2022.lrec-1.148},
year = {2022},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
<details>
<summary> Dataset Statistics</summary>
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("CzechSubjectivityClassification")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"validation": {
"num_samples": 500,
"number_of_characters": 54082,
"number_texts_intersect_with_train": 0,
"min_text_length": 28,
"average_text_length": 108.164,
"max_text_length": 443,
"unique_text": 500,
"unique_labels": 2,
"labels": {
"0": {
"count": 250
},
"1": {
"count": 250
}
}
},
"test": {
"num_samples": 2000,
"number_of_characters": 216612,
"number_texts_intersect_with_train": 0,
"min_text_length": 25,
"average_text_length": 108.306,
"max_text_length": 689,
"unique_text": 2000,
"unique_labels": 2,
"labels": {
"0": {
"count": 1000
},
"1": {
"count": 1000
}
}
},
"train": {
"num_samples": 7443,
"number_of_characters": 816035,
"number_texts_intersect_with_train": null,
"min_text_length": 24,
"average_text_length": 109.6379148192933,
"max_text_length": 5399,
"unique_text": 7443,
"unique_labels": 2,
"labels": {
"0": {
"count": 3750
},
"1": {
"count": 3693
}
}
}
}
```
</details>
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)* |
mteb/CrossLingualSemanticDiscriminationWMT21 | mteb | 2025-05-06T12:00:14Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-06T12:00:08Z | null | ---
dataset_info:
- config_name: deu-fra-corpus
features:
- name: _id
dtype: string
- name: text
dtype: string
- name: title
dtype: string
splits:
- name: test
num_bytes: 880283
num_examples: 4465
download_size: 374870
dataset_size: 880283
- config_name: deu-fra-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: int64
splits:
- name: test
num_bytes: 21995
num_examples: 893
download_size: 10903
dataset_size: 21995
- config_name: deu-fra-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 168540
num_examples: 893
download_size: 103956
dataset_size: 168540
configs:
- config_name: deu-fra-corpus
data_files:
- split: test
path: deu-fra-corpus/test-*
- config_name: deu-fra-qrels
data_files:
- split: test
path: deu-fra-qrels/test-*
- config_name: deu-fra-queries
data_files:
- split: test
path: deu-fra-queries/test-*
---
|
mteb/ContractNLINoticeOnCompelledDisclosureLegalBenchClassification | mteb | 2025-05-06T11:58:52Z | 0 | 0 | [
"task_categories:text-classification",
"annotations_creators:expert-annotated",
"multilinguality:monolingual",
"language:eng",
"license:cc-by-4.0",
"modality:text",
"arxiv:2308.11462",
"arxiv:2110.01799",
"arxiv:2502.13595",
"arxiv:2210.07316",
"region:us",
"mteb",
"text"
] | [
"text-classification"
] | 2025-05-06T11:58:48Z | null | ---
annotations_creators:
- expert-annotated
language:
- eng
license: cc-by-4.0
multilinguality: monolingual
task_categories:
- text-classification
task_ids: []
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 3529
num_examples: 8
- name: test
num_bytes: 73354
num_examples: 142
download_size: 37736
dataset_size: 76883
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
<h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">ContractNLINoticeOnCompelledDisclosureLegalBenchClassification</h1>
<div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
<div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>
This task is a subset of ContractNLI, and consists of determining whether a clause from an NDA clause provides that the Receiving Party shall notify Disclosing Party in case Receiving Party is required by law, regulation or judicial process to disclose any Confidential Information.
| | |
|---------------|---------------------------------------------|
| Task category | t2c |
| Domains | Legal, Written |
| Reference | https://huggingface.co/datasets/nguha/legalbench |
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_tasks(["ContractNLINoticeOnCompelledDisclosureLegalBenchClassification"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@misc{guha2023legalbench,
archiveprefix = {arXiv},
author = {Neel Guha and Julian Nyarko and Daniel E. Ho and Christopher Ré and Adam Chilton and Aditya Narayana and Alex Chohlas-Wood and Austin Peters and Brandon Waldon and Daniel N. Rockmore and Diego Zambrano and Dmitry Talisman and Enam Hoque and Faiz Surani and Frank Fagan and Galit Sarfaty and Gregory M. Dickinson and Haggai Porat and Jason Hegland and Jessica Wu and Joe Nudell and Joel Niklaus and John Nay and Jonathan H. Choi and Kevin Tobia and Margaret Hagan and Megan Ma and Michael Livermore and Nikon Rasumov-Rahe and Nils Holzenberger and Noam Kolt and Peter Henderson and Sean Rehaag and Sharad Goel and Shang Gao and Spencer Williams and Sunny Gandhi and Tom Zur and Varun Iyer and Zehua Li},
eprint = {2308.11462},
primaryclass = {cs.CL},
title = {LegalBench: A Collaboratively Built Benchmark for Measuring Legal Reasoning in Large Language Models},
year = {2023},
}
@article{koreeda2021contractnli,
author = {Koreeda, Yuta and Manning, Christopher D},
journal = {arXiv preprint arXiv:2110.01799},
title = {ContractNLI: A dataset for document-level natural language inference for contracts},
year = {2021},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
<details>
<summary> Dataset Statistics</summary>
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("ContractNLINoticeOnCompelledDisclosureLegalBenchClassification")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"test": {
"num_samples": 142,
"number_of_characters": 71490,
"number_texts_intersect_with_train": 0,
"min_text_length": 65,
"average_text_length": 503.4507042253521,
"max_text_length": 1976,
"unique_text": 142,
"unique_labels": 2,
"labels": {
"1": {
"count": 71
},
"0": {
"count": 71
}
}
},
"train": {
"num_samples": 8,
"number_of_characters": 3417,
"number_texts_intersect_with_train": null,
"min_text_length": 181,
"average_text_length": 427.125,
"max_text_length": 816,
"unique_text": 8,
"unique_labels": 2,
"labels": {
"1": {
"count": 4
},
"0": {
"count": 4
}
}
}
}
```
</details>
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)* |
mteb/CUADRofrRofoRofnLegalBenchClassification | mteb | 2025-05-06T11:56:05Z | 0 | 0 | [
"task_categories:text-classification",
"annotations_creators:expert-annotated",
"multilinguality:monolingual",
"language:eng",
"license:cc-by-4.0",
"modality:text",
"arxiv:2308.11462",
"arxiv:2103.06268",
"arxiv:2502.13595",
"arxiv:2210.07316",
"region:us",
"mteb",
"text"
] | [
"text-classification"
] | 2025-05-06T11:56:01Z | null | ---
annotations_creators:
- expert-annotated
language:
- eng
license: cc-by-4.0
multilinguality: monolingual
task_categories:
- text-classification
task_ids: []
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 2384
num_examples: 6
- name: test
num_bytes: 281177
num_examples: 690
download_size: 144348
dataset_size: 283561
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
<h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">CUADRofrRofoRofnLegalBenchClassification</h1>
<div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
<div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>
This task was constructed from the CUAD dataset. It consists of determining if the clause grant one party a right of first refusal, right of first offer or right of first negotiation to purchase, license, market, or distribute equity interest, technology, assets, products or services.
| | |
|---------------|---------------------------------------------|
| Task category | t2c |
| Domains | Legal, Written |
| Reference | https://huggingface.co/datasets/nguha/legalbench |
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_tasks(["CUADRofrRofoRofnLegalBenchClassification"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@misc{guha2023legalbench,
archiveprefix = {arXiv},
author = {Neel Guha and Julian Nyarko and Daniel E. Ho and Christopher Ré and Adam Chilton and Aditya Narayana and Alex Chohlas-Wood and Austin Peters and Brandon Waldon and Daniel N. Rockmore and Diego Zambrano and Dmitry Talisman and Enam Hoque and Faiz Surani and Frank Fagan and Galit Sarfaty and Gregory M. Dickinson and Haggai Porat and Jason Hegland and Jessica Wu and Joe Nudell and Joel Niklaus and John Nay and Jonathan H. Choi and Kevin Tobia and Margaret Hagan and Megan Ma and Michael Livermore and Nikon Rasumov-Rahe and Nils Holzenberger and Noam Kolt and Peter Henderson and Sean Rehaag and Sharad Goel and Shang Gao and Spencer Williams and Sunny Gandhi and Tom Zur and Varun Iyer and Zehua Li},
eprint = {2308.11462},
primaryclass = {cs.CL},
title = {LegalBench: A Collaboratively Built Benchmark for Measuring Legal Reasoning in Large Language Models},
year = {2023},
}
@article{hendrycks2021cuad,
author = {Hendrycks, Dan and Burns, Collin and Chen, Anya and Ball, Spencer},
journal = {arXiv preprint arXiv:2103.06268},
title = {Cuad: An expert-annotated nlp dataset for legal contract review},
year = {2021},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
<details>
<summary> Dataset Statistics</summary>
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("CUADRofrRofoRofnLegalBenchClassification")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"test": {
"num_samples": 690,
"number_of_characters": 272872,
"number_texts_intersect_with_train": 0,
"min_text_length": 69,
"average_text_length": 395.46666666666664,
"max_text_length": 4220,
"unique_text": 690,
"unique_labels": 2,
"labels": {
"1": {
"count": 345
},
"0": {
"count": 345
}
}
},
"train": {
"num_samples": 6,
"number_of_characters": 2312,
"number_texts_intersect_with_train": null,
"min_text_length": 202,
"average_text_length": 385.3333333333333,
"max_text_length": 665,
"unique_text": 6,
"unique_labels": 2,
"labels": {
"1": {
"count": 3
},
"0": {
"count": 3
}
}
}
}
```
</details>
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)* |
mteb/CUADNoSolicitOfEmployeesLegalBenchClassification | mteb | 2025-05-06T11:55:13Z | 0 | 0 | [
"task_categories:text-classification",
"annotations_creators:expert-annotated",
"multilinguality:monolingual",
"language:eng",
"license:cc-by-4.0",
"modality:text",
"arxiv:2308.11462",
"arxiv:2103.06268",
"arxiv:2502.13595",
"arxiv:2210.07316",
"region:us",
"mteb",
"text"
] | [
"text-classification"
] | 2025-05-06T11:55:09Z | null | ---
annotations_creators:
- expert-annotated
language:
- eng
license: cc-by-4.0
multilinguality: monolingual
task_categories:
- text-classification
task_ids: []
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 3111
num_examples: 6
- name: test
num_bytes: 61052
num_examples: 142
download_size: 34785
dataset_size: 64163
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
<h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">CUADNoSolicitOfEmployeesLegalBenchClassification</h1>
<div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
<div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>
This task was constructed from the CUAD dataset. It consists of determining if the clause restricts a party's soliciting or hiring employees and/or contractors from the counterparty, whether during the contract or after the contract ends (or both).
| | |
|---------------|---------------------------------------------|
| Task category | t2c |
| Domains | Legal, Written |
| Reference | https://huggingface.co/datasets/nguha/legalbench |
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_tasks(["CUADNoSolicitOfEmployeesLegalBenchClassification"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@misc{guha2023legalbench,
archiveprefix = {arXiv},
author = {Neel Guha and Julian Nyarko and Daniel E. Ho and Christopher Ré and Adam Chilton and Aditya Narayana and Alex Chohlas-Wood and Austin Peters and Brandon Waldon and Daniel N. Rockmore and Diego Zambrano and Dmitry Talisman and Enam Hoque and Faiz Surani and Frank Fagan and Galit Sarfaty and Gregory M. Dickinson and Haggai Porat and Jason Hegland and Jessica Wu and Joe Nudell and Joel Niklaus and John Nay and Jonathan H. Choi and Kevin Tobia and Margaret Hagan and Megan Ma and Michael Livermore and Nikon Rasumov-Rahe and Nils Holzenberger and Noam Kolt and Peter Henderson and Sean Rehaag and Sharad Goel and Shang Gao and Spencer Williams and Sunny Gandhi and Tom Zur and Varun Iyer and Zehua Li},
eprint = {2308.11462},
primaryclass = {cs.CL},
title = {LegalBench: A Collaboratively Built Benchmark for Measuring Legal Reasoning in Large Language Models},
year = {2023},
}
@article{hendrycks2021cuad,
author = {Hendrycks, Dan and Burns, Collin and Chen, Anya and Ball, Spencer},
journal = {arXiv preprint arXiv:2103.06268},
title = {Cuad: An expert-annotated nlp dataset for legal contract review},
year = {2021},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
<details>
<summary> Dataset Statistics</summary>
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("CUADNoSolicitOfEmployeesLegalBenchClassification")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"test": {
"num_samples": 142,
"number_of_characters": 59348,
"number_texts_intersect_with_train": 0,
"min_text_length": 68,
"average_text_length": 417.943661971831,
"max_text_length": 1881,
"unique_text": 142,
"unique_labels": 2,
"labels": {
"1": {
"count": 71
},
"0": {
"count": 71
}
}
},
"train": {
"num_samples": 6,
"number_of_characters": 3039,
"number_texts_intersect_with_train": null,
"min_text_length": 109,
"average_text_length": 506.5,
"max_text_length": 974,
"unique_text": 6,
"unique_labels": 2,
"labels": {
"1": {
"count": 3
},
"0": {
"count": 3
}
}
}
}
```
</details>
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)* |
mteb/CUADNoSolicitOfCustomersLegalBenchClassification | mteb | 2025-05-06T11:55:07Z | 0 | 0 | [
"task_categories:text-classification",
"annotations_creators:expert-annotated",
"multilinguality:monolingual",
"language:eng",
"license:cc-by-4.0",
"modality:text",
"arxiv:2308.11462",
"arxiv:2103.06268",
"arxiv:2502.13595",
"arxiv:2210.07316",
"region:us",
"mteb",
"text"
] | [
"text-classification"
] | 2025-05-06T11:55:03Z | null | ---
annotations_creators:
- expert-annotated
language:
- eng
license: cc-by-4.0
multilinguality: monolingual
task_categories:
- text-classification
task_ids: []
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 2846
num_examples: 6
- name: test
num_bytes: 34011
num_examples: 84
download_size: 24659
dataset_size: 36857
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
<h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">CUADNoSolicitOfCustomersLegalBenchClassification</h1>
<div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
<div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>
This task was constructed from the CUAD dataset. It consists of determining if the clause restricts a party from contracting or soliciting customers or partners of the counterparty, whether during the contract or after the contract ends (or both).
| | |
|---------------|---------------------------------------------|
| Task category | t2c |
| Domains | Legal, Written |
| Reference | https://huggingface.co/datasets/nguha/legalbench |
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_tasks(["CUADNoSolicitOfCustomersLegalBenchClassification"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@misc{guha2023legalbench,
archiveprefix = {arXiv},
author = {Neel Guha and Julian Nyarko and Daniel E. Ho and Christopher Ré and Adam Chilton and Aditya Narayana and Alex Chohlas-Wood and Austin Peters and Brandon Waldon and Daniel N. Rockmore and Diego Zambrano and Dmitry Talisman and Enam Hoque and Faiz Surani and Frank Fagan and Galit Sarfaty and Gregory M. Dickinson and Haggai Porat and Jason Hegland and Jessica Wu and Joe Nudell and Joel Niklaus and John Nay and Jonathan H. Choi and Kevin Tobia and Margaret Hagan and Megan Ma and Michael Livermore and Nikon Rasumov-Rahe and Nils Holzenberger and Noam Kolt and Peter Henderson and Sean Rehaag and Sharad Goel and Shang Gao and Spencer Williams and Sunny Gandhi and Tom Zur and Varun Iyer and Zehua Li},
eprint = {2308.11462},
primaryclass = {cs.CL},
title = {LegalBench: A Collaboratively Built Benchmark for Measuring Legal Reasoning in Large Language Models},
year = {2023},
}
@article{hendrycks2021cuad,
author = {Hendrycks, Dan and Burns, Collin and Chen, Anya and Ball, Spencer},
journal = {arXiv preprint arXiv:2103.06268},
title = {Cuad: An expert-annotated nlp dataset for legal contract review},
year = {2021},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
<details>
<summary> Dataset Statistics</summary>
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("CUADNoSolicitOfCustomersLegalBenchClassification")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"test": {
"num_samples": 84,
"number_of_characters": 33003,
"number_texts_intersect_with_train": 0,
"min_text_length": 84,
"average_text_length": 392.89285714285717,
"max_text_length": 1314,
"unique_text": 84,
"unique_labels": 2,
"labels": {
"1": {
"count": 42
},
"0": {
"count": 42
}
}
},
"train": {
"num_samples": 6,
"number_of_characters": 2774,
"number_texts_intersect_with_train": null,
"min_text_length": 128,
"average_text_length": 462.3333333333333,
"max_text_length": 829,
"unique_text": 6,
"unique_labels": 2,
"labels": {
"1": {
"count": 3
},
"0": {
"count": 3
}
}
}
}
```
</details>
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)* |
mteb/CUADAffiliateLicenseLicenseeLegalBenchClassification | mteb | 2025-05-06T11:53:00Z | 0 | 0 | [
"task_categories:text-classification",
"annotations_creators:expert-annotated",
"multilinguality:monolingual",
"language:eng",
"license:cc-by-4.0",
"modality:text",
"arxiv:2308.11462",
"arxiv:2103.06268",
"arxiv:2502.13595",
"arxiv:2210.07316",
"region:us",
"mteb",
"text"
] | [
"text-classification"
] | 2025-05-06T11:52:56Z | null | ---
annotations_creators:
- expert-annotated
language:
- eng
license: cc-by-4.0
multilinguality: monolingual
task_categories:
- text-classification
task_ids: []
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 3551
num_examples: 6
- name: test
num_bytes: 98231
num_examples: 198
download_size: 53399
dataset_size: 101782
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
<h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">CUADAffiliateLicenseLicenseeLegalBenchClassification</h1>
<div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
<div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>
This task was constructed from the CUAD dataset. It consists of determining if a clause describes a license grant to a licensee (incl. sublicensor) and the affiliates of such licensee/sublicensor.
| | |
|---------------|---------------------------------------------|
| Task category | t2c |
| Domains | Legal, Written |
| Reference | https://huggingface.co/datasets/nguha/legalbench |
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_tasks(["CUADAffiliateLicenseLicenseeLegalBenchClassification"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@misc{guha2023legalbench,
archiveprefix = {arXiv},
author = {Neel Guha and Julian Nyarko and Daniel E. Ho and Christopher Ré and Adam Chilton and Aditya Narayana and Alex Chohlas-Wood and Austin Peters and Brandon Waldon and Daniel N. Rockmore and Diego Zambrano and Dmitry Talisman and Enam Hoque and Faiz Surani and Frank Fagan and Galit Sarfaty and Gregory M. Dickinson and Haggai Porat and Jason Hegland and Jessica Wu and Joe Nudell and Joel Niklaus and John Nay and Jonathan H. Choi and Kevin Tobia and Margaret Hagan and Megan Ma and Michael Livermore and Nikon Rasumov-Rahe and Nils Holzenberger and Noam Kolt and Peter Henderson and Sean Rehaag and Sharad Goel and Shang Gao and Spencer Williams and Sunny Gandhi and Tom Zur and Varun Iyer and Zehua Li},
eprint = {2308.11462},
primaryclass = {cs.CL},
title = {LegalBench: A Collaboratively Built Benchmark for Measuring Legal Reasoning in Large Language Models},
year = {2023},
}
@article{hendrycks2021cuad,
author = {Hendrycks, Dan and Burns, Collin and Chen, Anya and Ball, Spencer},
journal = {arXiv preprint arXiv:2103.06268},
title = {Cuad: An expert-annotated nlp dataset for legal contract review},
year = {2021},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
<details>
<summary> Dataset Statistics</summary>
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("CUADAffiliateLicenseLicenseeLegalBenchClassification")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"test": {
"num_samples": 198,
"number_of_characters": 95853,
"number_texts_intersect_with_train": 0,
"min_text_length": 62,
"average_text_length": 484.1060606060606,
"max_text_length": 3074,
"unique_text": 198,
"unique_labels": 2,
"labels": {
"1": {
"count": 99
},
"0": {
"count": 99
}
}
},
"train": {
"num_samples": 6,
"number_of_characters": 3479,
"number_texts_intersect_with_train": null,
"min_text_length": 81,
"average_text_length": 579.8333333333334,
"max_text_length": 1638,
"unique_text": 6,
"unique_labels": 2,
"labels": {
"1": {
"count": 3
},
"0": {
"count": 3
}
}
}
}
```
</details>
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)* |
mteb/Assin2STS | mteb | 2025-05-06T11:49:59Z | 0 | 0 | [
"task_categories:sentence-similarity",
"task_ids:semantic-similarity-scoring",
"task_ids:fact-checking",
"task_ids:fact-checking-retrieval",
"annotations_creators:human-annotated",
"multilinguality:monolingual",
"language:por",
"license:unknown",
"modality:text",
"arxiv:2502.13595",
"arxiv:2210.07316",
"region:us",
"mteb",
"text"
] | [
"sentence-similarity"
] | 2025-05-06T11:49:53Z | null | ---
annotations_creators:
- human-annotated
language:
- por
license: unknown
multilinguality: monolingual
task_categories:
- sentence-similarity
task_ids:
- semantic-similarity-scoring
- fact-checking
- fact-checking-retrieval
dataset_info:
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 785995
num_examples: 6500
- name: test
num_bytes: 309890
num_examples: 2448
- name: validation
num_bytes: 60824
num_examples: 500
download_size: 504138
dataset_size: 1156709
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- split: validation
path: data/validation-*
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
<h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">Assin2STS</h1>
<div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
<div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>
Semantic Textual Similarity part of the ASSIN 2, an evaluation shared task collocated with STIL 2019.
| | |
|---------------|---------------------------------------------|
| Task category | t2t |
| Domains | Written |
| Reference | https://link.springer.com/chapter/10.1007/978-3-030-41505-1_39 |
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_tasks(["Assin2STS"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@inproceedings{real2020assin,
author = {Real, Livy and Fonseca, Erick and Oliveira, Hugo Goncalo},
booktitle = {International Conference on Computational Processing of the Portuguese Language},
organization = {Springer},
pages = {406--412},
title = {The assin 2 shared task: a quick overview},
year = {2020},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
<details>
<summary> Dataset Statistics</summary>
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("Assin2STS")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"test": {
"num_samples": 2448,
"number_of_characters": 262185,
"unique_pairs": 2436,
"min_sentence1_length": 19,
"average_sentence1_len": 55.15318627450981,
"max_sentence1_length": 159,
"unique_sentence1": 2064,
"min_sentence2_length": 18,
"average_sentence2_len": 51.9485294117647,
"max_sentence2_length": 158,
"unique_sentence2": 2075,
"min_score": 1.0,
"avg_score": 3.565230803113747,
"max_score": 5.0
}
}
```
</details>
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)* |
gunnybd01/Real_Estate_News_smr | gunnybd01 | 2025-05-06T11:46:46Z | 210 | 0 | [
"region:us"
] | [] | 2025-05-05T14:42:07Z | null | ---
dataset_info:
features:
- name: Date
dtype: string
- name: Symbol
dtype: string
- name: Article
dtype: string
- name: Summary
dtype: string
splits:
- name: train
num_bytes: 165862467
num_examples: 29040
download_size: 74761920
dataset_size: 165862467
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
reasoning-proj/filtered_math_traces_original_DeepSeek-R1-Distill-Llama-8B | reasoning-proj | 2025-05-06T11:43:13Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-06T11:43:09Z | null | ---
dataset_info:
features:
- name: question
dtype: string
- name: answer_content
dtype: string
- name: reference_answer
dtype: string
- name: id
dtype: string
- name: metadata
struct:
- name: question_license
dtype: string
- name: question_source
dtype: string
- name: model_name
dtype: string
- name: verifier_score
dtype: int64
splits:
- name: train
num_bytes: 14275644
num_examples: 600
download_size: 3642333
dataset_size: 14275644
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
SayantanJoker/processed_seamless_align_hindi_new_chunk_100 | SayantanJoker | 2025-05-06T11:39:22Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-06T11:38:01Z | null | ---
dataset_info:
features:
- name: audio
dtype: audio
- name: transcription
dtype: string
- name: file_name
dtype: string
splits:
- name: train
num_bytes: 2531272564.0
num_examples: 10000
download_size: 2400877104
dataset_size: 2531272564.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
mteb/DBpediaClassification | mteb | 2025-05-06T11:31:43Z | 0 | 0 | [
"task_categories:text-classification",
"task_ids:topic-classification",
"annotations_creators:derived",
"multilinguality:monolingual",
"language:eng",
"license:cc-by-sa-3.0",
"modality:text",
"arxiv:1509.01626",
"arxiv:2502.13595",
"arxiv:2210.07316",
"region:us",
"mteb",
"text"
] | [
"text-classification"
] | 2025-05-06T11:31:39Z | null | ---
annotations_creators:
- derived
language:
- eng
license: cc-by-sa-3.0
multilinguality: monolingual
task_categories:
- text-classification
task_ids:
- topic-classification
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 607175
num_examples: 2048
- name: test
num_bytes: 597695
num_examples: 2048
download_size: 786345
dataset_size: 1204870
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
<h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">DBpediaClassification</h1>
<div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
<div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>
DBpedia14 is a dataset of English texts from Wikipedia articles, categorized into 14 non-overlapping classes based on their DBpedia ontology.
| | |
|---------------|---------------------------------------------|
| Task category | t2c |
| Domains | Encyclopaedic, Written |
| Reference | https://arxiv.org/abs/1509.01626 |
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_tasks(["DBpediaClassification"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@inproceedings{NIPS2015_250cf8b5,
author = {Zhang, Xiang and Zhao, Junbo and LeCun, Yann},
booktitle = {Advances in Neural Information Processing Systems},
editor = {C. Cortes and N. Lawrence and D. Lee and M. Sugiyama and R. Garnett},
pages = {},
publisher = {Curran Associates, Inc.},
title = {Character-level Convolutional Networks for Text Classification},
url = {https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf},
volume = {28},
year = {2015},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
<details>
<summary> Dataset Statistics</summary>
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("DBpediaClassification")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"test": {
"num_samples": 2048,
"number_of_characters": 568368,
"number_texts_intersect_with_train": 0,
"min_text_length": 37,
"average_text_length": 277.5234375,
"max_text_length": 1045,
"unique_text": 2048,
"unique_labels": 14,
"labels": {
"7": {
"count": 147
},
"0": {
"count": 146
},
"10": {
"count": 146
},
"3": {
"count": 146
},
"13": {
"count": 147
},
"2": {
"count": 146
},
"12": {
"count": 147
},
"1": {
"count": 146
},
"6": {
"count": 146
},
"11": {
"count": 146
},
"8": {
"count": 146
},
"5": {
"count": 147
},
"4": {
"count": 146
},
"9": {
"count": 146
}
}
},
"train": {
"num_samples": 2048,
"number_of_characters": 578420,
"number_texts_intersect_with_train": null,
"min_text_length": 22,
"average_text_length": 282.431640625,
"max_text_length": 777,
"unique_text": 2048,
"unique_labels": 14,
"labels": {
"12": {
"count": 147
},
"10": {
"count": 146
},
"2": {
"count": 146
},
"5": {
"count": 147
},
"13": {
"count": 147
},
"9": {
"count": 146
},
"6": {
"count": 146
},
"4": {
"count": 146
},
"3": {
"count": 146
},
"1": {
"count": 146
},
"0": {
"count": 146
},
"8": {
"count": 146
},
"11": {
"count": 146
},
"7": {
"count": 147
}
}
}
}
```
</details>
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)* |
SayantanJoker/processed_seamless_align_hindi_new_chunk_90 | SayantanJoker | 2025-05-06T11:25:24Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-06T11:23:58Z | null | ---
dataset_info:
features:
- name: audio
dtype: audio
- name: transcription
dtype: string
- name: file_name
dtype: string
splits:
- name: train
num_bytes: 2601821036.0
num_examples: 10000
download_size: 2461691227
dataset_size: 2601821036.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
mteb/CodeSearchNetCCRetrieval | mteb | 2025-05-06T11:11:20Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-06T11:10:21Z | null | ---
dataset_info:
- config_name: go-corpus
features:
- name: _id
dtype: string
- name: text
dtype: string
- name: title
dtype: string
splits:
- name: test
num_bytes: 34809839
num_examples: 182735
download_size: 16154525
dataset_size: 34809839
- config_name: go-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: int64
splits:
- name: test
num_bytes: 243660
num_examples: 8122
download_size: 92695
dataset_size: 243660
- config_name: go-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 2020824
num_examples: 8122
download_size: 924417
dataset_size: 2020824
- config_name: java-corpus
features:
- name: _id
dtype: string
- name: text
dtype: string
- name: title
dtype: string
splits:
- name: test
num_bytes: 49027018
num_examples: 181061
download_size: 19858046
dataset_size: 49027018
- config_name: java-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: int64
splits:
- name: test
num_bytes: 328650
num_examples: 10955
download_size: 124190
dataset_size: 328650
- config_name: java-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 3916921
num_examples: 10955
download_size: 1601964
dataset_size: 3916921
- config_name: javascript-corpus
features:
- name: _id
dtype: string
- name: text
dtype: string
- name: title
dtype: string
splits:
- name: test
num_bytes: 18616585
num_examples: 65201
download_size: 8499898
dataset_size: 18616585
- config_name: javascript-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: int64
splits:
- name: test
num_bytes: 92148
num_examples: 3291
download_size: 38534
dataset_size: 92148
- config_name: javascript-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 1506447
num_examples: 3291
download_size: 642774
dataset_size: 1506447
- config_name: php-corpus
features:
- name: _id
dtype: string
- name: text
dtype: string
- name: title
dtype: string
splits:
- name: test
num_bytes: 70164589
num_examples: 268237
download_size: 28221123
dataset_size: 70164589
- config_name: php-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 4928215
num_examples: 14014
download_size: 1899269
dataset_size: 4928215
- config_name: python-corpus
features:
- name: _id
dtype: string
- name: text
dtype: string
- name: title
dtype: string
splits:
- name: test
num_bytes: 108454853
num_examples: 280652
download_size: 45190661
dataset_size: 108454853
- config_name: python-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: int64
splits:
- name: test
num_bytes: 447540
num_examples: 14918
download_size: 168729
dataset_size: 447540
- config_name: python-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 8455942
num_examples: 14918
download_size: 3565411
dataset_size: 8455942
- config_name: ruby-corpus
features:
- name: _id
dtype: string
- name: text
dtype: string
- name: title
dtype: string
splits:
- name: test
num_bytes: 5489759
num_examples: 27588
download_size: 2573853
dataset_size: 5489759
- config_name: ruby-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: int64
splits:
- name: test
num_bytes: 35308
num_examples: 1261
download_size: 15482
dataset_size: 35308
- config_name: ruby-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 354183
num_examples: 1261
download_size: 164306
dataset_size: 354183
configs:
- config_name: go-corpus
data_files:
- split: test
path: go-corpus/test-*
- config_name: go-qrels
data_files:
- split: test
path: go-qrels/test-*
- config_name: go-queries
data_files:
- split: test
path: go-queries/test-*
- config_name: java-corpus
data_files:
- split: test
path: java-corpus/test-*
- config_name: java-qrels
data_files:
- split: test
path: java-qrels/test-*
- config_name: java-queries
data_files:
- split: test
path: java-queries/test-*
- config_name: javascript-corpus
data_files:
- split: test
path: javascript-corpus/test-*
- config_name: javascript-qrels
data_files:
- split: test
path: javascript-qrels/test-*
- config_name: javascript-queries
data_files:
- split: test
path: javascript-queries/test-*
- config_name: php-corpus
data_files:
- split: test
path: php-corpus/test-*
- config_name: php-queries
data_files:
- split: test
path: php-queries/test-*
- config_name: python-corpus
data_files:
- split: test
path: python-corpus/test-*
- config_name: python-qrels
data_files:
- split: test
path: python-qrels/test-*
- config_name: python-queries
data_files:
- split: test
path: python-queries/test-*
- config_name: ruby-corpus
data_files:
- split: test
path: ruby-corpus/test-*
- config_name: ruby-qrels
data_files:
- split: test
path: ruby-qrels/test-*
- config_name: ruby-queries
data_files:
- split: test
path: ruby-queries/test-*
---
|
SayantanJoker/processed_seamless_align_hindi_new_chunk_80 | SayantanJoker | 2025-05-06T11:11:11Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-06T11:09:48Z | null | ---
dataset_info:
features:
- name: audio
dtype: audio
- name: transcription
dtype: string
- name: file_name
dtype: string
splits:
- name: train
num_bytes: 2609116403.0
num_examples: 10000
download_size: 2480586121
dataset_size: 2609116403.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
orinnebula/request | orinnebula | 2025-05-06T11:04:12Z | 3 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [] | 2025-05-06T04:03:20Z | null | ---
dataset_info:
features:
- name: id
dtype: string
- name: model
dtype: string
- name: revision
dtype: string
- name: precision
dtype: string
- name: weight_type
dtype: string
- name: submitted_time
dtype: string
- name: model_type
dtype: string
- name: params
dtype: float64
- name: license
dtype: string
- name: private
dtype: bool
splits:
- name: train
num_bytes: 638
num_examples: 4
download_size: 4486
dataset_size: 638
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
SayantanJoker/processed_seamless_align_hindi_new_chunk_73 | SayantanJoker | 2025-05-06T11:01:19Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-06T10:59:49Z | null | ---
dataset_info:
features:
- name: audio
dtype: audio
- name: transcription
dtype: string
- name: file_name
dtype: string
splits:
- name: train
num_bytes: 2622999296.0
num_examples: 10000
download_size: 2502920456
dataset_size: 2622999296.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
vetter0002/Llama-3.2-1B-Instruct_gsm8k_s5 | vetter0002 | 2025-05-06T11:00:52Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-06T10:43:42Z | null | ---
dataset_info:
config_name: eval_Llama-3.2-1B-Instruct_ft_dgsm8k_batch20_nseq5
features:
- name: Task ID
dtype: int64
- name: Question
dtype: string
- name: Responses
dtype: string
- name: Extracted Answer
dtype: string
- name: Extracted Answers
dtype: string
- name: Ground Truth
dtype: string
splits:
- name: train
num_bytes: 7480491
num_examples: 1319
download_size: 2105256
dataset_size: 7480491
configs:
- config_name: eval_Llama-3.2-1B-Instruct_ft_dgsm8k_batch20_nseq5
data_files:
- split: train
path: eval_Llama-3.2-1B-Instruct_ft_dgsm8k_batch20_nseq5/train-*
---
|
severo/trending-repos | severo | 2025-05-06T11:00:39Z | 741 | 12 | [
"license:apache-2.0",
"size_categories:10K<n<100K",
"format:csv",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"croissant"
] | [] | 2023-07-28T13:57:34Z | null | ---
license: apache-2.0
pretty_name: Trending repositories on Hugging Face
size_categories:
- n<1K
configs:
- config_name: models
data_files: "models.csv"
- config_name: datasets
data_files: "datasets.csv"
- config_name: spaces
data_files: "spaces.csv"
tags:
- croissant
---
# Dataset Card for Dataset Name
## Dataset Description
- **Homepage:**
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:** Sylvain Lesage
### Dataset Summary
This dataset contains the 20 trending repositories of each type: models, datasets, and space, on Hugging Face, every day. Each type can be loaded from its own dataset config.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
Not relevant.
## Dataset Structure
### Data Instances
The dataset contains three configurations:
**models**: the history of trending models on Hugging Face
**datasets**: the history of trending datasets on Hugging Face
**spaces**: the history of trending spaces on Hugging Face
### Data Fields
- date (string): the date of the lookup to the trending repositories
- author (string): id of the repository owner. It can be null.
- id (string): id of the repository
- rank (int64): rank in the trending repositories of its kind (model, dataset, or space). Starts at 1.
- recent_likes (int64): number of likes received lately (last week)
- likes (int64): total number of likes
- month_downloads (int64): number of downloads in the last month. Null for the spaces.
### Data Splits
Each configuration only has one split: `train` that contains all the rows.
## Dataset Creation
### Curation Rationale
The dataset is updated daily through a cron job that calls the `https://huggingface.co/api/trending?type=${repoType}&limit=20` endpoint for each repository type (model, dataset, space). The script runs in an [Observable](https://observablehq.com/@huggingface) notebook, and the files are uploaded using the [huggingface.js](https://github.com/huggingface/huggingface.js) library.
### Source Data
#### Initial Data Collection and Normalization
Not relevant.
#### Who are the source language producers?
Not relevant.
### Annotations
#### Annotation process
Not relevant.
#### Who are the annotators?
Not relevant.
### Personal and Sensitive Information
Only public repositories are included in the trending repositories.
## Considerations for Using the Data
### Social Impact of Dataset
Not relevant.
### Discussion of Biases
The trending repositories reflect the likes given by Hugging Face users in the last week. Any bias that applies to the users can be reflected in this dataset. As a vanity metric, some users might also be tempted to generate fake likes.
### Other Known Limitations
Not relevant.
## Additional Information
### Dataset Curators
Sylvain Lesage, Hugging Face
### Licensing Information
Apache License 2.0
### Citation Information
Not relevant.
### Contributions
Not relevant.
|
kanghokh/klue_mrc_case2 | kanghokh | 2025-05-06T10:46:42Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-06T10:46:37Z | null | ---
dataset_info:
features:
- name: title
dtype: string
- name: category
dtype: string
- name: source
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: question_type
dtype: int64
- name: is_impossible
dtype: bool
- name: answer_text
dtype: string
- name: answer_start
dtype: int64
- name: negative_samples
sequence: string
- name: search_result
sequence: string
- name: answer
dtype: string
- name: refs
sequence: int64
splits:
- name: train
num_bytes: 5375273
num_examples: 289
download_size: 3125131
dataset_size: 5375273
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
GaspardNW/Chien_2.72sec_0aug_0shiftAug_specmask0_nfft2048_hop512_sr48000 | GaspardNW | 2025-05-06T10:45:49Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-06T10:45:02Z | null | ---
dataset_info:
features:
- name: filename
dtype: string
- name: duration
dtype: int64
- name: sampling_rate
dtype: int64
- name: magnitude_array
sequence:
sequence:
sequence: float64
- name: min_max_vals
sequence: float64
splits:
- name: train
num_bytes: 1784057798
num_examples: 849
download_size: 910473011
dataset_size: 1784057798
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
HungVu2003/opt-350m_beta_1.0_alpha_0.2_num-company_3_dataset_2_for_gen_6_v2 | HungVu2003 | 2025-05-06T10:43:51Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-06T10:43:50Z | null | ---
dataset_info:
features:
- name: question
dtype: string
splits:
- name: train
num_bytes: 3972689
num_examples: 14998
download_size: 1501011
dataset_size: 3972689
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
SayantanJoker/processed_seamless_align_hindi_new_chunk_57 | SayantanJoker | 2025-05-06T10:38:04Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-06T10:36:39Z | null | ---
dataset_info:
features:
- name: audio
dtype: audio
- name: transcription
dtype: string
- name: file_name
dtype: string
splits:
- name: train
num_bytes: 2652249548.0
num_examples: 10000
download_size: 2524851601
dataset_size: 2652249548.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
SayantanJoker/processed_seamless_align_hindi_new_chunk_51 | SayantanJoker | 2025-05-06T10:29:21Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-06T10:27:54Z | null | ---
dataset_info:
features:
- name: audio
dtype: audio
- name: transcription
dtype: string
- name: file_name
dtype: string
splits:
- name: train
num_bytes: 2664301672.0
num_examples: 10000
download_size: 2541716672
dataset_size: 2664301672.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
SayantanJoker/processed_seamless_align_hindi_new_chunk_43 | SayantanJoker | 2025-05-06T10:17:43Z | 0 | 0 | [
"region:us"
] | [] | 2025-05-06T10:16:21Z | null | ---
dataset_info:
features:
- name: audio
dtype: audio
- name: transcription
dtype: string
- name: file_name
dtype: string
splits:
- name: train
num_bytes: 2680739446.0
num_examples: 10000
download_size: 2565708463
dataset_size: 2680739446.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
ieasybooks-org/prophet-mosque-library-compressed | ieasybooks-org | 2025-05-06T10:16:54Z | 58 | 0 | [
"task_categories:image-to-text",
"language:ar",
"license:mit",
"size_categories:10K<n<100K",
"format:csv",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [
"image-to-text"
] | 2025-05-04T17:08:25Z | null | ---
license: mit
task_categories:
- image-to-text
language:
- ar
pretty_name: Prophet's Mosque Library - Compressed
size_categories:
- 10K<n<100K
configs:
- config_name: index
data_files:
- split: index
path: index.tsv
---
# Prophet's Mosque Library - Compressed
## 📖 Overview
[Prophet’s Mosque Library](https://alharamain.gov.sa/public/?page=page_299500) is one of the primary resources for Islamic books. It hosts more than 48,000 PDF books across over 70 categories.
In this dataset, we processed the original PDF files using Google Document AI APIs and extracted their contents into two additional formats: TXT and DOCX.
## 📊 Dataset Contents
*Note: The rest of the dataset PDF files exist in this repository: https://huggingface.co/datasets/ieasybooks-org/prophet-mosque-library-compressed-cont.*
This dataset is identical to [ieasybooks-org/prophet-mosque-library](https://huggingface.co/datasets/ieasybooks-org/prophet-mosque-library), with one key difference: the contents have been compressed for easier downloading. Specifically, the `pdf`, `txt`, and `docx` folders have been packaged into `pdf.zip`, `txt.zip`, and `docx.zip`, respectively.
For detailed information about the dataset contents and usage instructions, please refer to the original dataset page: [ieasybooks-org/prophet-mosque-library](https://huggingface.co/datasets/ieasybooks-org/prophet-mosque-library).
|
End of preview. Expand
in Data Studio
README.md exists but content is empty.
- Downloads last month
- 364