|
--- |
|
language: |
|
- tl |
|
pretty_name: Filipino multi-modal NLP dataset. Consists of 350k+ Filipino news articles |
|
and associated images |
|
size_categories: |
|
- 100K<n<1M |
|
source_datasets: |
|
- original |
|
tags: |
|
- news |
|
task_categories: |
|
- text-to-image |
|
- image-to-text |
|
- text-generation |
|
- summarization |
|
- text-classification |
|
- text2text-generation |
|
task_ids: |
|
- news-articles-headline-generation |
|
- news-articles-summarization |
|
dataset_info: |
|
- config_name: default |
|
features: |
|
- name: title |
|
dtype: string |
|
- name: body |
|
sequence: string |
|
- name: image |
|
dtype: image |
|
- name: website |
|
dtype: string |
|
- name: category_group |
|
dtype: string |
|
- name: category |
|
dtype: string |
|
- name: title_choice_first_paragraph |
|
dtype: string |
|
- name: title_choices |
|
sequence: string |
|
- name: title_choice_gold_idx |
|
dtype: int32 |
|
- name: date |
|
dtype: string |
|
- name: author |
|
dtype: string |
|
- name: url |
|
dtype: string |
|
- name: img_url |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 39449948960.917 |
|
num_examples: 281403 |
|
- name: validation |
|
num_bytes: 5093856283.5 |
|
num_examples: 35175 |
|
- name: test |
|
num_bytes: 4923596011.806 |
|
num_examples: 35177 |
|
download_size: 39815624261 |
|
dataset_size: 49467401256.223 |
|
- config_name: no-image |
|
features: |
|
- name: title |
|
dtype: string |
|
- name: body |
|
sequence: string |
|
- name: category_group |
|
dtype: string |
|
- name: category |
|
dtype: string |
|
- name: website |
|
dtype: string |
|
- name: title_choice_first_paragraph |
|
dtype: string |
|
- name: title_choices |
|
sequence: string |
|
- name: title_choice_gold_idx |
|
dtype: int32 |
|
- name: date |
|
dtype: string |
|
- name: author |
|
dtype: string |
|
- name: url |
|
dtype: string |
|
- name: img_url |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 578462672 |
|
num_examples: 281403 |
|
- name: validation |
|
num_bytes: 74036069 |
|
num_examples: 35175 |
|
- name: test |
|
num_bytes: 73488921 |
|
num_examples: 35177 |
|
download_size: 427915786 |
|
dataset_size: 725987662 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: validation |
|
path: data/validation-* |
|
- split: test |
|
path: data/test-* |
|
- config_name: no-image |
|
data_files: |
|
- split: train |
|
path: no-image/train-* |
|
- split: validation |
|
path: no-image/validation-* |
|
- split: test |
|
path: no-image/test-* |
|
--- |
|
A Filipino multi-modal language dataset for text+visual tasks. Consists of 351,755 Filipino news articles (w/ associated images) gathered from Filipino news outlets. |
|
|
|
|
|
# Description |
|
|
|
Total # of articles: **351,755** |
|
|
|
80-10-10 split for training, validation, and testing. |
|
|
|
Dataset field descriptions: |
|
|
|
```body - Article text |
|
title - Article title |
|
image - Article image |
|
website - Name of the news outlet |
|
category_group - Category grouped into 5 distinct classes. News, Sports, Entertainment, Crime, and Other |
|
category - News category name given by the news outlet |
|
date - Date published |
|
author - Article author |
|
url - URL of the article |
|
img_url - URL of the article image |
|
title_choice_first_paragraph - Opening paragraph of the article |
|
title_choices - 4 possible titles, one of them being the true one |
|
title_choice_gold_idx - Idx of the true title among the choices |
|
``` |
|
|
|
title_choice_* fields are included to support the task of textual entailment — taking advantage of the "inverted pyramid" structure of news articles. |
|
|
|
# Dataset Usage |
|
Two dataset configurations: **default** (includes images) and **no-image** (excludes images) |
|
|
|
**Using** `datasets` **library** |
|
|
|
**default** |
|
``` |
|
from datasets import load_dataset |
|
dset = load_dataset('LanceBunag/BalitaNLP', streaming=True) # streaming recommended due to size of dataset w/ images |
|
``` |
|
|
|
**no-image** |
|
``` |
|
from datasets import load_dataset |
|
dset = load_dataset('LanceBunag/BalitaNLP', 'no-image') |
|
``` |
|
|
|
# Citation |
|
Published in [Buñag & Esquivel, 2023](https://storage.googleapis.com/public-kenricklancebunag/Transformer-based%20Conditional%20Language%20Models%20-%20IEOM%20Submission.pdf). |
|
If you are using **BalitaNLP** in your work, please cite the following: |
|
|
|
``` |
|
@inproceedings{bunagtransformer, |
|
author={Bunag, Kenrick Lance T and Esquivel, Rosanna A} |
|
title={Transformer-Based Conditional Language Models to Generate Filipino News Articles}, |
|
year = {2023}, |
|
publisher = {IEOM Society International}, |
|
url = {https://ieomsociety.org/proceedings/2023manila/595.pdf}, |
|
booktitle = {Proceedings of the International Conference on Industrial Engineering and Operations Management}, |
|
pages = {2231–2237}, |
|
numpages = {7}, |
|
location = {Manila, Philippines}, |
|
} |
|
``` |