metadata
language:
- tl
pretty_name: >-
Filipino multi-modal NLP dataset. Consists of 350k+ Filipino news articles and
associated images
size_categories:
- 100K<n<1M
source_datasets:
- original
tags:
- news
task_categories:
- text-to-image
- image-to-text
- text-generation
- summarization
- text-classification
- text2text-generation
task_ids:
- news-articles-headline-generation
- news-articles-summarization
dataset_info:
- config_name: default
features:
- name: title
dtype: string
- name: body
sequence: string
- name: image
dtype: image
- name: website
dtype: string
- name: category_group
dtype: string
- name: category
dtype: string
- name: title_choice_first_paragraph
dtype: string
- name: title_choices
sequence: string
- name: title_choice_gold_idx
dtype: int32
- name: date
dtype: string
- name: author
dtype: string
- name: url
dtype: string
- name: img_url
dtype: string
splits:
- name: train
num_bytes: 39449948960.917
num_examples: 281403
- name: validation
num_bytes: 5093856283.5
num_examples: 35175
- name: test
num_bytes: 4923596011.806
num_examples: 35177
download_size: 39815624261
dataset_size: 49467401256.223
- config_name: no-image
features:
- name: title
dtype: string
- name: body
sequence: string
- name: category_group
dtype: string
- name: category
dtype: string
- name: website
dtype: string
- name: title_choice_first_paragraph
dtype: string
- name: title_choices
sequence: string
- name: title_choice_gold_idx
dtype: int32
- name: date
dtype: string
- name: author
dtype: string
- name: url
dtype: string
- name: img_url
dtype: string
splits:
- name: train
num_bytes: 578462672
num_examples: 281403
- name: validation
num_bytes: 74036069
num_examples: 35175
- name: test
num_bytes: 73488921
num_examples: 35177
download_size: 427915786
dataset_size: 725987662
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
- config_name: no-image
data_files:
- split: train
path: no-image/train-*
- split: validation
path: no-image/validation-*
- split: test
path: no-image/test-*
A Filipino multi-modal language dataset for text+visual tasks. Consists of 351,755 Filipino news articles (w/ associated images) gathered from Filipino news outlets.
Description
Total # of articles: 351,755
80-10-10 split for training, validation, and testing.
Dataset field descriptions:
title - Article title
image - Article image
website - Name of the news outlet
category_group - Category grouped into 5 distinct classes. News, Sports, Entertainment, Crime, and Other
category - News category name given by the news outlet
date - Date published
author - Article author
url - URL of the article
img_url - URL of the article image
title_choice_first_paragraph - Opening paragraph of the article
title_choices - 4 possible titles, one of them being the true one
title_choice_gold_idx - Idx of the true title among the choices
title_choice_* fields are included to support the task of textual entailment — taking advantage of the "inverted pyramid" structure of news articles.
Dataset Usage
Two dataset configurations: default (includes images) and no-image (excludes images)
Using datasets
library
default
from datasets import load_dataset
dset = load_dataset('LanceBunag/BalitaNLP', streaming=True) # streaming recommended due to size of dataset w/ images
no-image
from datasets import load_dataset
dset = load_dataset('LanceBunag/BalitaNLP', 'no-image')
Citation
Published in Buñag & Esquivel, 2023. If you are using BalitaNLP in your work, please cite the following:
@inproceedings{bunagtransformer,
author={Bunag, Kenrick Lance T and Esquivel, Rosanna A}
title={Transformer-Based Conditional Language Models to Generate Filipino News Articles},
year = {2023},
publisher = {IEOM Society International},
url = {https://ieomsociety.org/proceedings/2023manila/595.pdf},
booktitle = {Proceedings of the International Conference on Industrial Engineering and Operations Management},
pages = {2231–2237},
numpages = {7},
location = {Manila, Philippines},
}